# Graviton Spectrum in Simplified Dark Matter Models with Graviton Mediators in the de Sitter Space

## Abstract

**:**

## 1. Introduction

## 2. Simplified DM Model with Graviton Mediators

## 3. Gravitons in the Presence of DM

#### 3.1. Gravitons in Inflationary Backgrounds

#### 3.2. Gravitons in DM Background in de Sitter Space

## 4. Graviton Spectrum in DM Background in the de Sitter Space

## 5. The Case of the Scalar DM Field

## 6. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Zwicky, F. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J.
**1937**, 86, 217. [Google Scholar] [CrossRef] - Rubin, V.C.; Ford, W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J.
**1970**, 159, 379. [Google Scholar] [CrossRef] - Rubin, V.C.; Thonnard, N.; Ford, W.K., Jr. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R = 4kpc/to UGC 2885/R = 122 kpc/. Astrophys. J.
**1980**, 238, 471–487. [Google Scholar] [CrossRef] - Klypin, A.A.; Kravtsov, A.V.; Valenzuela, O.; Prada, F. Where are the missing Galactic satellites? Astrophys. J.
**1999**, 522, 82–92. [Google Scholar] [CrossRef] - Bell, E.F.; de Jong, R.S. Stellar mass-to-light ratios and the Tully-Fisher relation. Astrophys. J.
**2001**, 550, 212–229. [Google Scholar] [CrossRef] - Beasley, M.A.; Romanowsky, A.J.; Pota, V.; Navarro, I.M.; Delgado, D.M.; Neyer, F.; Deich, A.L. An overmassive dark halo around an ultra-difusse galaxy in the Virgo cluster. Astrophys. J. Lett.
**2016**, 819, 1–7. [Google Scholar] [CrossRef] - Stierwalt, S.; Liss, S.E.; Johnson, K.E.; Patton, D.R.; Privon, G.C.; Besla, G.; Kallivayalil, N.; Putman, M. Direct evidence of hierarchical assembly at low masses from isolated dwarf galaxy groups. arXiv, 2017; arXiv:1701.01731. [Google Scholar]
- Adler, S.L. Planet-bound dark matter and the internal heat of Uranus, Neptune, and hot-Jupiter exoplanets. Phys. Lett. B
**2009**, 671, 203–206. [Google Scholar] [CrossRef] [Green Version] - Ferrari, C.; Govoni, F.; Schindler, S.; Bykov, A.M.; Rephaeli, Y. Observations of extended radio emission in clusters. Space Sci. Rev.
**2008**, 134, 93. [Google Scholar] [CrossRef] - Vikhlinin, A.; Kravtsov, A.; Forman, W.; Jones, C.; Markevitch, M.; Murray, S.S.; Van Speybroeck, L. Chandra sample of nearby relaxed galaxy clusters: Mass, gas fraction, and mass-temperature relation. Astrophys. J.
**2006**, 640, 691–709. [Google Scholar] [CrossRef] - Nagai, D.; Kravtsov, A.V.; Vikhlinin, A. Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium. Astrophys. J.
**2007**, 668, 1. [Google Scholar] [CrossRef] - Dietrich, J.P.; Werner, N.; Clowe, D.; Finoguenov, A.; Kitching, T.; Miller, L.; Simionescu, A. A filament of dark matter between two clusters of galaxies. Nature
**2012**, 487, 202–204. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tyson, J.A.; Wenk, R.A.; Valdes, F. Detection of systematic gravitational lens galaxy image alignments—Mapping dark matter in galaxy clusters. Astrophys. J.
**1990**, 349, L1–L4. [Google Scholar] [CrossRef] - Clowe, D.; Bradac, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.W.; Jones, C.; Zaritsky, D. A direct empirical proof of the existence of dark matter. Astrophys. J.
**2006**, 648, L109. [Google Scholar] [CrossRef] - Bradac, M.; Clowe, D.; Gonzalez, A.H.; Marshall, P.; Forman, W.; Jones, C.; Markevitch, M.; Randall, S.; Schrabback, T.; Zaritsky, D. Strong and weak lensing united. 3. Measuring the mass distribution of the merging galaxy cluster 1E0657-56. Astrophys. J.
**2006**, 652, 937–947. [Google Scholar] [CrossRef] - Bradac, M.; Allen, S.W.; Treu, T.; Ebeling, H.; Massey, R.; Morris, R.G.; von der Linden, A.; Applegate, D. Revealing the properties of dark matter in the merging cluster MACSJ0025.4-1222. Astrophys. J.
**2008**, 687, 959. [Google Scholar] [CrossRef] - Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature
**2005**, 435, 629–636. [Google Scholar] [CrossRef] [Green Version] - Gao, L.; White, S.D.M.; Jenkins, A.; Frenk, C.; Springel, V. Early structure in lambda-CDM. Mon. Not. R. Astron. Soc.
**2005**, 363, 379–392. [Google Scholar] [CrossRef] - Moore, B.; Ghigna, S.; Governato, F.; Lake, G.; Quinn, T.R.; Stadel, J.; Tozzi, P. Dark matter substructure within galactic halos. Astrophys. J.
**1999**, 524, L19–L22. [Google Scholar] [CrossRef] - Nierenberg, A.M.; Treu, T.; Menci, N.; Lu, Y.; Torrey, P.; Vogelsberger, M. The Missing Satellite Problem in 3D. Mon. Not. R. Astron. Soc.
**2016**, 462, 4473. [Google Scholar] [CrossRef] - Freese, K. Review of Observational Evidence for Dark Matter in the Universe and in upcoming searches for Dark Stars. EAS Publ. Ser.
**2009**, 36, 113. [Google Scholar] [CrossRef] - Salucci, P. The distribution of dark matter in galaxies. arXiv, 2018; arXiv:1811.08843. [Google Scholar]
- Arun, K.; Gudennavar, S.B.; Sivaram, C. Dark matter, dark energy, and alternate models: A review. Adv. Space Res.
**2017**, 60, 166–186. [Google Scholar] [CrossRef] [Green Version] - Tanabashi, M.; Particle Data Group. Review of Particle Physics. Phys. Rev. D
**2018**, 98, 030001. [Google Scholar] [CrossRef] - Boveia, A.; Doglioni, C. Dark Matter Searches at Colliders. Ann. Rev. Nucl. Part. Sci.
**2018**, 68, 429–459. [Google Scholar] [CrossRef] - Alves, D.; LHC New Physics Working Group. Simplified Models for LHC New Physics Searches. J. Phys. G Nucl. Part. Phys.
**2012**, 39, 105005. [Google Scholar] [CrossRef] - Albert, A.; Recommendations of the LHC Dark Matter Working Group. Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels. arXiv, 2017; arXiv:1703.05703. [Google Scholar]
- Balázs, C.; Conrad, J.; Farmer, B.; Jacques, T.; Li, T.; Meyer, M.; Queiroz, F.S.; Sánchez-Conde, M.A. Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments. Phys. Rev. D
**2017**, 96, 083002. [Google Scholar] [CrossRef] [Green Version] - Arcadi, G.; Dutra, M.; Ghosh, P.; Lindner, M.; Mambrini, Y.; Pierre, M.; Profumo, S.; Queiroz, F.S. The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C
**2018**, 78, 203. [Google Scholar] [CrossRef] - Lee, H.M.; Park, M.; Sanz, V. Gravity-mediated (or Composite) Dark Matter. Eur. Phys. J. C
**2014**, 74, 2715. [Google Scholar] [CrossRef] - Lee, H.M.; Park, M.; Sanz, V. Gravity-mediated (or Composite) Dark Matter Confronts Astrophysical Data. JHEP
**2014**, 1405, 63. [Google Scholar] [CrossRef] - Kraml, S.; Laa, U.; Mawatari, K.; Yamashita, K. Simplified dark matter models with a spin-2 mediator at the LHC. Eur. Phys. J. C
**2017**, 77, 326. [Google Scholar] [CrossRef] - Andreas, A.; Martin, B.; Oliver, B.; Jim, B.; David, G.C.; Matthew, C.; Gavin, D.; Annapaola, D.C.; Albert, D.R.; Andrea, D.S.; et al. Towards the next generation of simplified Dark Matter models. Phys. Dark Univ.
**2017**, 16, 49–70. [Google Scholar] [CrossRef] [Green Version] - Huang, F.P. Hearing the echoes of dark matter and new physics. arXiv, 2018; arXiv:1811.07892. [Google Scholar]
- Vancea, I.V. Gravity-mediated Dark Matter models in the de Sitter space. Phys. Dark Univ.
**2018**, 22, 67. [Google Scholar] [CrossRef] - Boran, S.; Desai, S.; Kahya, E.O.; Woodard, R.P. GW170817 Falsifies Dark Matter Emulators. Phys. Rev. D
**2018**, 97, 041501. [Google Scholar] [CrossRef] - Visser, M. How to Wick rotate generic curved spacetime. arXiv, 2017; arXiv:1702.05572. [Google Scholar]
- Prokopec, T.; Rigopoulos, G. Path Integral for Inflationary Perturbations. Phys. Rev. D
**2010**, 82, 023529. [Google Scholar] [CrossRef] - Ford, L.H.; Parker, L. Quantized Gravitational Wave Perturbations in Robertson-Walker Universes. Phys. Rev. D
**1977**, 16, 1601. [Google Scholar] [CrossRef] - Allen, B. The Graviton Propagator in De Sitter Space. Phys. Rev. D
**1986**, 34, 3670. [Google Scholar] [CrossRef] - Allen, B. The Graviton Propagator in Homogeneous and Isotropic Space-times. Nucl. Phys. B
**1987**, 287, 743–756. [Google Scholar] [CrossRef] - Higuchi, A.; Kouris, S.S. Large distance behavior of the graviton two point function in de Sitter space-time. Class. Quant. Grav.
**2000**, 17, 3077. [Google Scholar] [CrossRef] - Higuchi, A.; Weeks, R.H. The Physical graviton two point function in de Sitter space-time with S3 spatial sections. Class. Quant. Grav.
**2003**, 20, 3005. [Google Scholar] [CrossRef] - Faizal, M.; Higuchi, A. Physical equivalence between the covariant and physical graviton two-point functions in de Sitter spacetime. Phys. Rev. D
**2012**, 85, 124021. [Google Scholar] [CrossRef] - Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept.
**1992**, 215, 203–333. [Google Scholar] [CrossRef] - Sasaki, M. Large Scale Quantum Fluctuations in the Inflationary Universe. Prog. Theor. Phys.
**1986**, 76, 1036. [Google Scholar] [CrossRef] - Mukhanov, V.F. Quantum Theory of Gauge Invariant Cosmological Perturbations. Sov. Phys. JETP
**1988**, 67, 1297. [Google Scholar] - Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Zwillinger, D., Moll, V., Eds.; Elsevier: Burlington, MA, USA, 2014. [Google Scholar]
- Mikhailov, V.P. Partial Differential Equations; Mir Publishers: Moscow, Russia, 1978. [Google Scholar]
- Grensing, G. Quantized Fields over de Sitter Space. J. Phys. A Math. Gen.
**1977**, 10, 1687. [Google Scholar] [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vancea, I.V.
Graviton Spectrum in Simplified Dark Matter Models with Graviton Mediators in the de Sitter Space. *Universe* **2019**, *5*, 39.
https://doi.org/10.3390/universe5010039

**AMA Style**

Vancea IV.
Graviton Spectrum in Simplified Dark Matter Models with Graviton Mediators in the de Sitter Space. *Universe*. 2019; 5(1):39.
https://doi.org/10.3390/universe5010039

**Chicago/Turabian Style**

Vancea, Ion Vasile.
2019. "Graviton Spectrum in Simplified Dark Matter Models with Graviton Mediators in the de Sitter Space" *Universe* 5, no. 1: 39.
https://doi.org/10.3390/universe5010039