Highlights from the Compact Muon Solenoid (CMS) Experiment †
Abstract
:1. Introduction
2. CMS Experiment at the LHC
2.1. The CMS Detector
2.2. CMS Performance in LHC Run 2
3. Physics Highlights from CMS
3.1. Higgs Boson Physics
3.1.1. Observation of the Process
3.1.2. Search for Higgs Boson Pair Production
3.2. SM Measurements
3.2.1. Measurement of WZ Production Cross-Section
3.2.2. Measurement of W+c Differential Cross-Section
3.3. Top Physics
Measurement of Single (Anti) Top Quark Production Cross-Section and Ratio
3.4. Flavor Physics
Observation of (3P) States
3.5. Searches for Physics Beyond the Standard Model (BSM)
3.5.1. Search for Dark Matter
3.5.2. Search for Emerging Jets
4. Conclusions
Funding
Conflicts of Interest
References
- CMS Collaboration. The CMS experiment at the CERN LHC. J. Instrum. 2008, 3, S08004. [Google Scholar]
- CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. 2012, B716, 30–61. [Google Scholar]
- ATLAS Collaboration. Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. 2012, B716, 1–29. [Google Scholar]
- Englert, F.; Brout, R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 1964, 13, 321–323. [Google Scholar] [CrossRef]
- Higgs, P. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964, 12, 132–133. [Google Scholar] [CrossRef]
- Higgs, P. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 1964, 13, 508–509. [Google Scholar] [CrossRef]
- Guralnik, G.; Hagen, C.; Kibble, T. Global conservation laws and massless particles. Phys. Rev. Lett. 1964, 13, 585–587. [Google Scholar] [CrossRef]
- Higgs, P. Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 1966, 145, 1156–1163. [Google Scholar] [CrossRef]
- Kibble, T. Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 1967, 155, 1554–1561. [Google Scholar] [CrossRef]
- CMS Collaboration. Observation of Production. Phys. Rev. Lett. 2018, 120, 231801. [Google Scholar] [CrossRef]
- CMS Collaboration. CMS Luminosity—Public Results. Available online: https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults (accessed on 10 September 2018).
- CMS Collaboration. CMS Publications. Available online: http://cms-results.web.cern.ch/cms-results/public-results/publications (accessed on 10 September 2018).
- CMS Collaboration. Search for production in the all-jet final state in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2018, 2018, 101. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for production in the decay channel with leptonic decays in proton-proton collisions at = 13 TeV. CMS-PAS-HIG-17-026. J. High Energy Phys. 2018, arXiv:1804.03682. [Google Scholar]
- CMS Collaboration. Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying τ leptons at = 13 TeV. J. High Energy Phys. 2018, 2018, 066. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at = 13 TeV. J. High Energy Phys. 2017, 2017, 047. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at = 13 TeV. J. High Energ. Phys. 2018, 2018, 185. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for the associated production of the Higgs boson with a top-quark pair. J. High Energy Phys. 2014, 2014, 087. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Combination of searches for Higgs Boson Pair Production in Proton-Proton Collisions at = 13 TeV. CMS-PAS-HIG-17-030. 2018. Available online: https://cds.cern.ch/record/2628486?ln=en (accessed on 10 September 2018).
- Branco, G.C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, M.; Silva, J.P. Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 2012, 516, 1–102. [Google Scholar] [CrossRef] [Green Version]
- Fayet, P. Supergauge invariant extension of the higgs mechanism and a model for the electron and its neutrino. Nucl. Phys. B 1975, 90, 104–124. [Google Scholar] [CrossRef]
- Fayet, P. Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Phys. Lett. B 1977, 69, 489. [Google Scholar] [CrossRef]
- CMS Collaboration. Summaries of CMS Cross Section Measurements. Available online: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined (accessed on 10 September 2018).
- CMS Collaboration. Measurements of the pp → WZ Inclusive and Differential Production Cross Section and Constraints on Charged Anomalous Triple Gauge Couplings at = 13 TeV. CMS-PAS-SMP-18-002. 2018. Available online: https://cds.cern.ch/record/2628761 (accessed on 10 November 2018).
- CMS Collaboration. Measurement of Associated Production of W Bosons with Charm Quarks in Proton-Proton Collisions at = 13 TeV with the CMS experiment at the LHC. CMS-PAS-SMP-17-014. 2018. Available online: https://cds.cern.ch/record/2314570 (accessed on 10 November 2018).
- CMS Collaboration. Measurement of the muon charge asymmetry in inclusive pp → W + X production at = 7 TeV and an improved determination of light parton distribution functions. Phys. Rev. D 2014, 90, 032004. [Google Scholar] [CrossRef]
- Alekhin, S.; Blumlein, J.; Moch, S. NLO PDFs from the ABMP16 fit. arXiv, 2018; arXiv:1803.07537. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Precision measurement and interpretation of inclusive W+, W− and Z/γ* production cross sections with the ATLAS detector. Eur. Phys. J. C 2017, 77, 367. [Google Scholar] [CrossRef] [PubMed]
- CMS Collaboration. Measurement of the Single Top Quark and Antiquark Production Cross Sections in the T Channel and Their Ratio in pp Collisions at = 13 TeV. CMS-PAS-TOP-17-011. 2018. Available online: https://cds.cern.ch/record/2628541 (accessed on 10 November 2018).
- CMS Collaboration. Observation of the χb1(3P) and χb2(3P) and measurement of their masses. Phys. Rev. Lett. 2018, 121, 092002. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Q.; Chao, K.T. Bottomonium spectrum with screened potential. Commun. Theor. Phys. 2009, 52, 653–661. [Google Scholar]
- Dib, C.O.; Neill, N.A. χb(3P) splitting predictions in potential models. Phys. Rev. D 2012, 86, 094011. [Google Scholar] [CrossRef]
- Liu, J.F.; Ding, G.J. Bottomonium spectrum with coupled-channel effects. Eur. Phys. J. C 2012, 72, 1981. [Google Scholar] [CrossRef]
- Bhaghyesh; Kumar, K.B.V. Properties of bottomonium in a semi-relativistic Model. Chin. Phys. C 2013, 37, 023103. [Google Scholar] [CrossRef]
- Tian, W.Z.; Cao, L.; Yang, Y.C.; Chen, H. Bottomonium states versus recent experimental observations in the QCD-inspired potential model. Chin. Phys. C 2013, 37, 083101. [Google Scholar] [CrossRef] [Green Version]
- Repko, W.W.; Santia, M.D.; Radford, S.F. Three-loop static QCD potential in heavy Quarkonia. Nucl. Phys. A 2014, 924, 65–73. [Google Scholar]
- Ferretti, J.; Galata, G.; Santopinto, E. Quark structure of the X(3872) and χb(3P) Resonances. Phys. Rev. D 2014, 90, 054010. [Google Scholar] [CrossRef]
- Ferretti, J.; Santopinto, E. Higher mass bottomonia. Phys. Rev. D 2014, 90, 094022. [Google Scholar] [CrossRef]
- Godfrey, S.; Moats, K. Bottomonium mesons and strategies for their observation. Phys. Rev. D 2015, 92, 054034. [Google Scholar] [CrossRef]
- Segovia, J.; Ortega, P.G.; Entem, D.R.; Fernandez, F. Bottomonium spectrum Revisited. Phys. Rev. D 2016, 93, 074027. [Google Scholar] [CrossRef]
- Lu, Y.; Anwar, M.N.; Zou, B.-S. Coupled-channel effects for the bottomonium with realistic wave functions. Phys. Rev. D 2016, 94, 034021. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.J.; Liu, H.; Gui, L.-C.; Zhong, X.-H. Spectrum and electromagnetic transitions of bottomonium. Phys. Rev. D 2017, 95, 074002. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at = 13 TeV. Phys. Rev. D 2018, 97, 092005. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for New Physics in Final States with a Single Photon and Missing Transverse Momentum in Proton–Proton Collisions at = 13 TeV. CMS-PAS-EXO-16-053. 2018. Available online: https://cds.cern.ch/record/2640855 (accessed on 10 November 2018).
- CMS Collaboration. Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton-proton collisions at = 13 TeV. Eur. Phys. J. C 2018, 78, 291. [Google Scholar] [CrossRef]
- CMS Collaboration. Dark Matter Summary Plots. Available online: https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV#ICHEP_2018 (accessed on 10 November 2018).
- CMS Collaboration. Search for New Particles Decaying to a Jet and an Emerging Jet. CMS-PAS-EXO-18-001. 2018. Available online: https://cds.cern.ch/record/2625123 (accessed on 10 November 2018).
- Bai, Y.; Schwaller, P. Scale of dark QCD. Phys. Rev. D 2014, 89, 063522. [Google Scholar] [CrossRef]
- Schwaller, P.; Stolarski, D.; Weiler, A. Emerging jets. J. High Energy Phys. 2015, 2015, 59. [Google Scholar] [CrossRef]
Parameter | 95% CI (Expected) | 95% CI (Observed) |
---|---|---|
−13.3, 2.0] | [−4.1, 1.1] | |
[−1.8, 1.9] | [−2.0, 2.1] | |
[−130, 170] | [−100, 160] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.S.; on behalf of the CMS Collaboration. Highlights from the Compact Muon Solenoid (CMS) Experiment. Universe 2019, 5, 28. https://doi.org/10.3390/universe5010028
Ghosh SS, on behalf of the CMS Collaboration. Highlights from the Compact Muon Solenoid (CMS) Experiment. Universe. 2019; 5(1):28. https://doi.org/10.3390/universe5010028
Chicago/Turabian StyleGhosh, Saranya Samik, and on behalf of the CMS Collaboration. 2019. "Highlights from the Compact Muon Solenoid (CMS) Experiment" Universe 5, no. 1: 28. https://doi.org/10.3390/universe5010028