# Cosmological Constant from Condensation of Defect Excitations

## Abstract

**:**

## 1. Introduction

**Outline of the paper:**In the next Section 2 we will give a definition of the Turaev-Viro (TV) model and a related family of models. We will then follow up with a Hamiltonian description in Section 3. We will first introduce the string net framework that defines a physical Hilbert space associated to the TV model. We then define a kinematical Hilbert space by introducing punctures that can carry defect excitations and thus allow for a dynamics different from the TV model. The kinematical Hilbert spaces still carry a $\mathrm{k}$-dependent structure, but we will define an embedding of the $\tilde{\mathrm{k}}$-Hilbert space into the $\mathrm{k}$-Hilbert space for $\tilde{\mathrm{k}}<\mathrm{k}$. Using the simplest example, namely the two-punctured sphere, we then give a detailed description of the framework in Section 4. In Section 5 we will consider general triangulations and show how to construct the various Hamiltonians, ribbon operators and $\mathrm{k}$- and $\tilde{\mathrm{k}}$-vacua in this case. This will also allow us to analyze the $\mathrm{k}$-vacua in terms of the $\mathrm{k}$ excitations. We close with a discussion and outlook in Section 6. The Appendix A, Appendix B and Appendix C collect various more technical background material, in particular some essential definitions related to $\mathrm{SU}{\left(2\right)}_{\mathrm{k}}$.

## 2. The Turaev-Viro Partition Function and Related Models

## 3. Hamiltonian Description

#### 3.1. Physical Hilbert Space

- The strands of a graph can be deformed isotopically within $\mathsf{\Sigma}$:
- Strands with representation $j=0$ can be added or removed:
- The local connectivity of a graph can be changed by 2–2 (also referred to as F-move) and 3–1 moves and their inverses:

- We will allow for the crossing of two strands but have to denote which strand is over-crossing and which is under-crossing. Certain types of double crossings can be resolved by isotopic deformation of the strands, e.g.,
- We furthermore define a short-hand notation for a certain weighted sum over strands labelled by admissible irreps. We will refer to this combination as a vacuum strand and it is defined as

#### 3.2. Kinematical Hilbert Space Via Introduction of Punctures

#### Embedding the Kinematical $\tilde{\mathrm{k}}$-Hilbert Space Into the Kinematical $\mathrm{k}$-Hilbert Space

## 4. Example: The Two-Punctured Sphere

**Remark.**

## 5. General Triangulations

#### 5.1. Local Considerations

#### 5.2. Ribbon Operators

#### 5.3. Global Solutions

## 6. Discussion

**Quantum groups in quantum gravity:**As mentioned in the introduction, it would be highly interesting to derive a quantum group structure, and in particular the braiding in a quantum group, by imposing the dynamics of 3D gravity with a cosmological constant. To this end, one uses a first order formulation of 3D gravity with triads e and a ($\mathfrak{su}\left(2\right)$ valued) spin connection A. The constraints are then given by the curvature constraints $F-\mathsf{\Lambda}e\wedge e=0$ where F is the curvature of the spin connection. One also has the Gauß constraint (or no-torsion condition) ${d}_{A}e=0$. The curvature constraints are relatively simple to impose for $\mathsf{\Lambda}=0$ as in this case the constraints only involve the connection and one can work in a connection polarization. For non-vanishing $\mathsf{\Lambda}$ however the constraints involve canonically conjugated variables. The constraints can be however rewritten into $C={\textstyle \frac{1}{2}}({F}_{+}+{F}_{-})$ and $G={\textstyle \frac{1}{2}}({F}_{+}-{F}_{-})$ for the curvature and Gauß constraints respectively. This uses the curvatures ${F}_{\pm}$ of two Poincare connections ${A}_{\pm}\left(\mathsf{\Lambda}\right)=A\pm \sqrt{\mathsf{\Lambda}}e$. The price to pay is that the components of the redefined connections become non-commutative.

**Quantum cosmology:**One strategy for deriving a cosmological dynamics from quantum gravity is to consider states which are in a certain sense homogeneous. This approach has been taken in loop quantum cosmology [83,84,85,86,87] based on a notion of homogeneous connection [88,89,90]. Although there are a number of works which made this notion more precise in the quantum realm [91,92,93,94,95,96], the construction of loop quantum cosmology does rather start with a symmetry reduced classical phase space and does not consider a notion of quantum homogeneous states inside the full theory. A first step in this direction was taken in [97,98], where the homogeneity is based on conditions on the triads. The eigenvalues of the triads characterize the size of a fundamental cell and this can be seen as a discretization ambiguity, see also the discussion in [99,100]. An alternative framework is group field theory cosmology [101,102,103]. Group field theory is based on similar constructions as loop quantum gravity [104,105] but in a certain sense includes a sum over discretizations.

**Condensed matter:**Being able to separate kinematics and dynamics we can define $\tilde{\mathrm{k}}$-Hamiltonians ${\mathbf{H}}_{\tilde{\mathrm{k}}}$ whose ground states are given by the $\tilde{\mathrm{k}}$-vacua. We can thus consider linear combinations of two such Hamiltonians $\mathbf{H}\left(\alpha \right)=\alpha {\mathbf{H}}_{\mathrm{k}}+(1-\alpha ){\mathbf{H}}_{\tilde{\mathrm{k}}}$. Varying the coupling constant $\alpha $ we will obtain quantum phase transitions between the two phases characterized by $\tilde{\mathrm{k}}$ and $\mathrm{k}$. That is we expect to see that in the limit of large lattices, the gap between the energies for the ground state(s) and the first excited state(s) vanishes for a certain $\alpha $. A phase transition has to occur as the degeneracy for non-trivial topologies changes if we change the level, e.g., for the torus we have a degeneracy ${(\mathrm{k}+1)}^{2}$ and ${(\tilde{\mathrm{k}}+1)}^{2}$ respectively. We have furthermore order parameters—e.g., the $\mathrm{k}$ or $\tilde{\mathrm{k}}$ Wilson loops—which indicate such transitions by taking on a vanishing value in one phase and a non-vanishing value in the other phase.

**Lattice gauge theory and tensor networks:**The kinematical Hilbert space we construct can be also interpreted as a Hilbert space for $(2+1)$-dimensional lattice gauge theory, where the structure group is q-deformed to $\mathrm{SU}{\left(2\right)}_{\mathrm{k}}$. The $\tilde{\mathrm{k}}$ vacua can in this sense also be understood as phases of lattice gauge theory, which are characterized by non-vanishing expectations values of the curvature.

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Essentials on SU (2) k

## Appendix B. Diagonalization of a Sum of Two Projectors onto One–Dimensional Subspaces

## Appendix C. Transformation for a Tetrahedral Lattice

## References

- Turaev, V.; Viro, O. State sum invariants of 3 manifolds and quantum 6j symbols. Topology
**1992**, 31, 865–902. [Google Scholar] [CrossRef] - Barrett, J.W.; Westbury, B.W. Invariants of piecewise linear three manifolds. Trans. Am. Math. Soc.
**1996**, 348, 3997. [Google Scholar] [CrossRef] - Ponzano, G.; Regge, T. Semiclassical limit of racah coefficients. In Spectroscopy and Group Theoretical Methods in Physics; Block, F., Ed.; John Wiley and Sons: New York, NY, USA, 1968. [Google Scholar]
- Mizoguchi, S.; Tada, T. Three-dimensional gravity from the Turaev-Viro invariant. Phys. Rev. Lett.
**1992**, 68, 1795–1798. [Google Scholar] [CrossRef] [PubMed][Green Version] - Taylor, Y.U.; Woodward, C.T. 6j symbols for U q(sl 2) and non-Euclidean tetrahedra. Sel. Math.
**2006**, 11, 539–571. [Google Scholar] [CrossRef] - Barrett, J.W.; Foxon, T.J. Semiclassical limits of simplicial quantum gravity. Class. Quant. Grav.
**1994**, 11, 543–556. [Google Scholar] [CrossRef] - Roberts, J. Classical 6j-symbols and the tetrahedron. Geom. Topol.
**1999**, 3, 21–66. [Google Scholar] [CrossRef][Green Version] - Regge, T. General Relativity Without Coordinates. Nuovo Cim.
**1961**, 19, 558–571. [Google Scholar] [CrossRef] - Bahr, B.; Dittrich, B. Improved and Perfect Actions in Discrete Gravity. Phys. Rev. D
**2009**, 80, 124030. [Google Scholar] [CrossRef] - Bahr, B.; Dittrich, B. Regge calculus from a new angle. New J. Phys.
**2010**, 12, 033010. [Google Scholar] [CrossRef][Green Version] - Major, S.; Smolin, L. Quantum deformation of quantum gravity. Nucl. Phys. B
**1996**, 473, 267–290. [Google Scholar] [CrossRef][Green Version] - Dupuis, M.; Girelli, F. Observables in Loop Quantum Gravity with a cosmological constant. Phys. Rev. D
**2014**, 90, 104037. [Google Scholar] [CrossRef] - Dupuis, M.; Girelli, F.; Livine, E.R. Deformed Spinor Networks for Loop Gravity: Towards Hyperbolic Twisted Geometries. Gen. Rel. Grav.
**2014**, 46, 1802. [Google Scholar] [CrossRef] - Bonzom, V.; Dupuis, M.; Girelli, F. Towards the Turaev-Viro amplitudes from a Hamiltonian constraint. Phys. Rev. D
**2014**, 90, 104038. [Google Scholar] [CrossRef] - Levin, M.A.; Wen, X.-G. String-net condensation: A physical mechanism for topological phases. Phys. Rev. B
**2005**, 71, 045110. [Google Scholar] [CrossRef][Green Version] - Lan, T.; Wen, X.-G. Topological quasiparticles and the holographic bulk-edge relation in 2+1D string-net models. Phys. Rev. B
**2014**, 90, 115119. [Google Scholar] [CrossRef] - Hu, Y.; Geer, N.; Wu, Y.-S. Full Dyon Excitation Spectrum in Generalized Levin-Wen Models. Phys. Rev. B
**2018**, 97, 195154. [Google Scholar] [CrossRef] - König, R.; Kuperberg, G.; Reichardt, B.W. Quantum computation with Turaev-Viro codes. Ann. Phys.
**2010**, 325, 2707–2749. [Google Scholar] [CrossRef] - Kirillov, A., Jr. String-net model of Turaev-Viro invariants. arXiv, 2011; arXiv:1106.6033. [Google Scholar]
- Dittrich, B.; Geiller, M. Quantum gravity kinematics from extended TQFTs. New J. Phys.
**2017**, 19, 013003. [Google Scholar] [CrossRef][Green Version] - Dittrich, B.; Geiller, M. A New Vacuum for Loop Quantum Gravity. Class. Quantum Grav.
**2015**, 32, 112001. [Google Scholar] [CrossRef] - Dittrich, B.; Geiller, M. Flux formulation of Loop Quantum Gravity: Classical formulation. Class. Quantum Grav.
**2015**, 32, 135016. [Google Scholar] [CrossRef] - Bahr, B.; Dittrich, B.; Geiller, M. A New Realization of Quantum Geometry. arXiv, 2015; arXiv:1506.08571. [Google Scholar]
- Ashtekar, A.; Isham, C.J. Representations of the holonomy algebras of gravity and non-Abelian gauge theories. Class. Quantum Grav.
**1992**, 9, 1433–1468. [Google Scholar] [CrossRef] - Ashtekar, A.; Lewandowski, J. Representation theory of analytic holonomy C* algebras. In Knots and Quantum Gravity; Baez, J., Ed.; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Ashtekar, A.; Lewandowski, J. Projective techniques and functional integration for gauge theories. J. Math. Phys.
**1995**, 36, 2170–2191. [Google Scholar] [CrossRef][Green Version] - Perez, A.; Pranzetti, D. On the regularization of the constraints algebra of Quantum Gravity in 2+1 dimensions with non-vanishing cosmological constant. Class. Quant. Grav.
**2010**, 27, 145009. [Google Scholar] [CrossRef] - Pranzetti, D. 2+1 gravity with positive cosmological constant in LQG: A proposal for the physical state. Class. Quant. Grav.
**2011**, 28, 225025. [Google Scholar] [CrossRef] - Freidel, L.; Krasnov, K. Discrete space-time volume for three-dimensional BF theory and quantum gravity. Class. Quant. Grav.
**1999**, 16, 351–352. [Google Scholar] [CrossRef] - Livine, E.R. 3d Quantum Gravity: Coarse-Graining and q-Deformation. Ann. Henri Poincaré
**2016**, 18, 1465–1491. [Google Scholar] [CrossRef] - Dittrich, B. Diffeomorphism symmetry in quantum gravity models. Adv. Sci. Lett.
**2009**, 2, 151–163. [Google Scholar] [CrossRef] - Bahr, B.; Dittrich, B. (Broken) Gauge Symmetries and Constraints in Regge Calculus. Class. Quant. Grav.
**2009**, 26, 225011. [Google Scholar] [CrossRef] - Dittrich, B.; Steinhaus, S. Path integral measure and triangulation independence in discrete gravity. Phys. Rev. D
**2012**, 85, 044032. [Google Scholar] [CrossRef] - Dittrich, B. How to construct diffeomorphism symmetry on the lattice. PoS QGQGS
**2011**, 2011, 012. [Google Scholar] [CrossRef] - Bahr, B. On background-independent renormalization of spin foam models. Class. Quantum Grav.
**2017**, 34, 075001. [Google Scholar] [CrossRef][Green Version] - Dittrich, B. The continuum limit of loop quantum gravity—A framework for solving the theory. In 100 Years of General Relativity; Ashtekar, A., Pullin, J., Eds.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2017. [Google Scholar]
- Bahr, B.; Dittrich, B.; Steinhaus, S. Perfect discretization of reparametrization invariant path integrals. Phys. Rev. D
**2011**, 83, 105026. [Google Scholar] [CrossRef][Green Version] - Bahr, B.; Steinhaus, S. Numerical evidence for a phase transition in 4d spin foam quantum gravity. Phys. Rev. Lett.
**2016**, 117, 141302. [Google Scholar] [CrossRef] [PubMed] - Bahr, B.; Steinhaus, S. Hypercuboidal renormalization in spin foam quantum gravity. Phys. Rev. D
**2017**, 95, 126006. [Google Scholar] [CrossRef][Green Version] - Dittrich, B. A Simplicial Coarse Graining Scheme for Spin Foams. Unpublished work.
- Levin, M.; Nave, C.P. Tensor renormalization group approach to 2D classical lattice models. Phys. Rev. Lett.
**2007**, 99, 120601. [Google Scholar] [CrossRef] [PubMed] - Xie, Z.Y.; Jiang, H.C.; Chen, Q.N.; Weng, Z.Y.; Xiang, T. Second Renormalization of Tensor-Network States. Phys. Rev. Lett.
**2009**, 103, 160601. [Google Scholar] [CrossRef] [PubMed][Green Version] - Evenbly, G.; Vidal, G. Tensor Network Renormalization. Phys. Rev. Lett.
**2015**, 115, 180405. [Google Scholar] [CrossRef] [PubMed] - Evenbly, G. Algorithms for tensor network renormalization. Phys. Rev. B
**2017**, 95, 045117. [Google Scholar] [CrossRef] - Hauru, M.; Delcamp, C.; Mizera, S. Renormalization of tensor networks using graph independent local truncations. Phys. Rev. B
**2018**, 97, 045111. [Google Scholar] [CrossRef] - Dittrich, B.; Martin-Benito, M.; Schnetter, E. Coarse graining of spin net models: dynamics of intertwiners. New J. Phys.
**2013**, 15, 103004. [Google Scholar] [CrossRef][Green Version] - Dittrich, B.; Kaminski, W. Topological lattice field theories from intertwiner dynamics. arXiv, 2013; arXiv:1311.1798. [Google Scholar]
- Dittrich, B.; Martin-Benito, M.; Steinhaus, S. Quantum group spin nets: refinement limit and relation to spin foams. Phys. Rev. D
**2014**, 90, 024058. [Google Scholar] [CrossRef] - Steinhaus, S. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models. Phys. Rev. D
**2015**, 92, 064007. [Google Scholar] [CrossRef] - Dittrich, B.; Schnetter, E.; Seth, C.J.; Steinhaus, S. Coarse graining flow of spin foam intertwiners. Phys. Rev. D
**2016**, 94, 124050. [Google Scholar] [CrossRef][Green Version] - Dittrich, B.; Mizera, S.; Steinhaus, S. Decorated tensor network renormalization for lattice gauge theories and spin foam models. New J. Phys.
**2016**, 18, 053009. [Google Scholar] [CrossRef][Green Version] - Delcamp, C.; Dittrich, B. Towards a phase diagram for spin foams. Class. Quant. Grav.
**2017**, 34, 225006. [Google Scholar] [CrossRef][Green Version] - Livine, E.R. Deformation Operators of Spin Networks and Coarse-Graining. Class. Quant. Grav.
**2014**, 31, 075004. [Google Scholar] [CrossRef] - Haggard, H.M.; Han, M.; Kaminski, W.; Riello, A. SL(2,C) Chern-Simons Theory, a non-Planar Graph Operator, and 4D Loop Quantum Gravity with a Cosmological Constant: Semiclassical Geometry. Nucl. Phys. B
**2015**, 900, 1–79. [Google Scholar] [CrossRef][Green Version] - Haggard, H.M.; Han, M.; Riello, A. Encoding Curved Tetrahedra in Face Holonomies: A Phase Space of Shapes from Group-Valued Moment Maps. Ann. Henri Poincaré
**2015**, 17, 2001–2048. [Google Scholar] [CrossRef] - Charles, C.; Livine, E.R. Closure constraints for hyperbolic tetrahedra. Class. Quant. Grav.
**2015**, 32, 135003. [Google Scholar] [CrossRef][Green Version] - Charles, C.; Livine, E.R. The closure constraint for the hyperbolic tetrahedron as a Bianchi identity. Gen. Relativ. Grav.
**2017**, 49, 92. [Google Scholar] [CrossRef] - Dittrich, B. From the discrete to the continuous: Towards a cylindrically consistent dynamics. New J. Phys.
**2012**, 14, 123004. [Google Scholar] [CrossRef] - Dittrich, B.; Steinhaus, S. Time evolution as refining, coarse graining and entangling. New J. Phys.
**2014**, 16, 123041. [Google Scholar] [CrossRef][Green Version] - Dittrich, B.; Hohn, P.A. From covariant to canonical formulations of discrete gravity. Class. Quant. Grav.
**2010**, 27, 155001. [Google Scholar] [CrossRef][Green Version] - Dittrich, B.; Hohn, P.A. Canonical simplicial gravity. Class. Quant. Grav.
**2012**, 29, 115009. [Google Scholar] [CrossRef][Green Version] - Barrett, J.W. Geometrical measurements in three-dimensional quantum gravity. Int. J. Mod. Phys. A
**2003**, 18, 97–113. [Google Scholar] [CrossRef][Green Version] - Barrett, J.W.; Garcia-Islas, J.M.; Martins, J.F. Observables in the Turaev-Viro and Crane-Yetter models. J. Math. Phys.
**2007**, 48, 093508. [Google Scholar] [CrossRef][Green Version] - Rovelli, C.; Smolin, L. Spin networks and quantum gravity. Phys. Rev. D
**1995**, 52, 5743. [Google Scholar] [CrossRef] - Delcamp, C.; Dittrich, B.; Riello, A. Fusion basis for lattice gauge theory and loop quantum gravity. JHEP
**2017**, 1702, 061. [Google Scholar] [CrossRef] - Gerbert, P.D. On spin and (quantum) gravity in (2+1)-dimensions. Nucl. Phys. B
**1990**, 346, 440–472. [Google Scholar] [CrossRef] - Freidel, L.; Louapre, D. Ponzano-Regge model revisited. I: Gauge fixing, observables and interacting spinning particles. Class. Quant. Grav.
**2004**, 21, 5685–5726. [Google Scholar] [CrossRef] - Freidel, L.; Louapre, D. Ponzano-Regge model revisited II: Equivalence with Chern-Simons. arXiv, 2005; arXiv:gr-qc/0410141. [Google Scholar]
- Noui, K. Three Dimensional Loop Quantum Gravity: Particles and the Quantum Double. J. Math. Phys.
**2006**, 47, 102501. [Google Scholar] [CrossRef] - Meusburger, C.; Noui, K. The Hilbert space of 3d gravity: Quantum group symmetries and observables. Adv. Theor. Math. Phys.
**2010**, 14, 1651–1715. [Google Scholar] [CrossRef] - Bonzom, V. Geometrie quantique dans les mousses de spins: De la theorie topologique BF vers la relativite generale. arXiv, 2010; arXiv:1009.5100. [Google Scholar]
- Barrett, J.W.; Crane, L. An Algebraic interpretation of the Wheeler-DeWitt equation. Class. Quant. Grav.
**1997**, 14, 2113–2121. [Google Scholar] [CrossRef] - Bonzom, V.; Freidel, L. The Hamiltonian constraint in 3d Riemannian loop quantum gravity. Class. Quant. Grav.
**2011**, 28, 195006. [Google Scholar] [CrossRef][Green Version] - Perez, A. On the regularization ambiguities in loop quantum gravity. Phys. Rev. D
**2006**, 73, 044007. [Google Scholar] [CrossRef] - Dittrich, B. (3 + 1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces. JHEP
**2017**, 1705, 123. [Google Scholar] [CrossRef] - Dittrich, B.; Speziale, S. Area-angle variables for general relativity. New J. Phys.
**2008**, 10, 083006. [Google Scholar] [CrossRef] - Dittrich, B.; Ryan, J.P. Phase space descriptions for simplicial 4d geometries. Class. Quant. Grav.
**2011**, 28, 065006. [Google Scholar] [CrossRef] - Dittrich, B.; Ryan, J.P. Simplicity in simplicial phase space. Phys. Rev. D
**2010**, 82, 064026. [Google Scholar] [CrossRef] - Freidel, L.; Speziale, S. Twisted geometries: A geometric parametrisation of SU(2) phase space. Phys. Rev. D
**2010**, 82, 084040. [Google Scholar] [CrossRef] - Asante, S.K.; Dittrich, B.; Haggard, H.M. The Degrees of Freedom of Area Regge Calculus: Dynamics, Non-metricity, and Broken Diffeomorphisms. Class. Quant. Grav.
**2018**, 35, 135009. [Google Scholar] [CrossRef] - Noui, K.; Perez, A.; Pranzetti, D. Canonical quantization of non-commutative holonomies in 2+1 loop quantum gravity. JHEP
**2011**, 1110, 036. [Google Scholar] [CrossRef] - Noui, K.; Perez, A.; Pranzetti, D. Non-commutative holonomies in 2+1 LQG and Kauffman’s brackets. J. Phys. Conf. Ser.
**2012**, 360, 012040. [Google Scholar] [CrossRef] - Bojowald, M. Loop quantum cosmology. Living Rev. Rel.
**2008**, 11, 4. [Google Scholar] [CrossRef] [PubMed] - Bojowald, M. Absence of singularity in loop quantum cosmology. Phys. Rev. Lett.
**2001**, 86, 5227. [Google Scholar] [CrossRef] [PubMed] - Ashtekar, A.; Singh, P. Loop Quantum Cosmology: A Status Report. Class. Quant. Grav.
**2011**, 28, 213001. [Google Scholar] [CrossRef] - Banerjee, K.; Calcagni, G.; Martin-Benito, M. Introduction to loop quantum cosmology. SIGMA
**2012**, 8, 016. [Google Scholar] [CrossRef] - Bojowald, M. Quantum cosmology: A review. Rept. Prog. Phys.
**2015**, 78, 023901. [Google Scholar] [CrossRef] [PubMed] - Bojowald, M.; Kastrup, H.A. Quantum symmetry reduction for diffeomorphism invariant theories of connections. Class. Quant. Grav.
**2000**, 17, 3009–3043. [Google Scholar] [CrossRef] - Bojowald, M. Loop quantum cosmology. I. Kinematics. Class. Quant. Grav.
**2000**, 17, 1489–1508. [Google Scholar] [CrossRef] - Ashtekar, A.; Bojowald, M.; Lewandowski, J. Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys.
**2003**, 7, 233–268. [Google Scholar] [CrossRef][Green Version] - Koslowski, T.A. A Cosmological sector in loop quantum gravity. arXiv, 2007; arXiv:0711.1098. [Google Scholar]
- Brunnemann, J.; Fleischhack, C. Non-almost periodicity of parallel transports for homogeneous connections. Math. Phys. Anal. Geom.
**2012**, 15, 299–315. [Google Scholar] [CrossRef] - Brunnemann, J.; Koslowski, T.A. Symmetry Reduction of Loop Quantum Gravity. Class. Quant. Grav.
**2011**, 28, 245014. [Google Scholar] [CrossRef] - Engle, J. Embedding loop quantum cosmology without piecewise linearity. Class. Quant. Grav.
**2013**, 30, 085001. [Google Scholar] [CrossRef][Green Version] - Fleischhack, C. Kinematical Uniqueness of Loop Quantum Gravity. In Quantum Gravity: Mathematical Models and Experimental Bounds; Fauser, B., Tolksdorf, J., Zeidler, E., Eds.; Birkhäuser: Basel, Switzerland, 2007; pp. 203–219. [Google Scholar]
- Engle, J.; Hanusch, M.; Thiemann, T. Uniqueness of the Representation in Homogeneous Isotropic LQC. Commun. Math. Phys.
**2017**, 354, 231–246. [Google Scholar] [CrossRef] - Alesci, E.; Cianfrani, F. Quantum-Reduced Loop Gravity: Cosmology. Phys. Rev. D
**2013**, 87, 083521. [Google Scholar] [CrossRef] - Alesci, E.; Cianfrani, F. Quantum reduced loop gravity: Universe on a lattice. Phys. Rev. D
**2015**, 92, 084065. [Google Scholar] [CrossRef] - Alesci, E.; Cianfrani, F. Improved regularization from Quantum Reduced Loop Gravity. arXiv, 2016; arXiv:1604.02375. [Google Scholar]
- Alesci, E.; Botta, G.; Stagno, G.V. QRLG effective hamiltonians from a statistical regularization scheme. Phys. Rev. D
**2018**, 97, 046011. [Google Scholar] [CrossRef] - Gielen, S.; Sindoni, L. Quantum Cosmology from Group Field Theory Condensates: A Review. SIGMA
**2016**, 12, 082. [Google Scholar] [CrossRef] - Gielen, S.; Oriti, D.; Sindoni, L. Cosmology from Group Field Theory Formalism for Quantum Gravity. Phys. Rev. Lett.
**2013**, 111, 031301. [Google Scholar] [CrossRef] [PubMed] - Gielen, S.; Oriti, D.; Sindoni, L. Homogeneous cosmologies as group field theory condensates. JHEP
**2014**, 1406, 013. [Google Scholar] [CrossRef] - Oriti, D. Group field theory as the 2nd quantization of Loop Quantum Gravity. Class. Quant. Grav.
**2016**, 33, 085005. [Google Scholar] [CrossRef] - Oriti, D.; Ryan, J.P.; Thrigen, J. Group field theories for all loop quantum gravity. New J. Phys.
**2015**, 17, 023042. [Google Scholar] [CrossRef][Green Version] - Crane, L.; Yetter, D. A Categorical construction of 4-D topological quantum field theories. In Quantum Topology; World Scientific: Singapore, 1992; pp. 120–130. [Google Scholar]
- Crane, L.; Kauffman, L.H.; Yetter, D.N. State Sum Invariants of Four Manifolds. J. Knot Theory Its Ramif.
**1997**, 6, 177. [Google Scholar] [CrossRef] - Beetle, C.; Engle, J.S.; Hogan, M.E.; Mendonca, P. Diffeomorphism invariant cosmological symmetry in full quantum gravity. Int. J. Mod. Phys. D
**2016**, 25, 1642012. [Google Scholar] [CrossRef][Green Version] - Beetle, C.; Engle, J.S.; Hogan, M.E.; Mendona, P. Diffeomorphism invariant cosmological sector in loop quantum gravity. Class. Quant. Grav.
**2017**, 34, 225009. [Google Scholar] [CrossRef][Green Version] - Schulz, M.D.; Dusuel, S.; Schmidt, K.P.; Vidal, J. Topological Phase Transitions in the Golden String-Net Model. Phys. Rev. Lett.
**2013**, 110, 147203. [Google Scholar] [CrossRef] [PubMed] - Schulz, M.D.; Dusuel, S.; Misguich, G.; Schmidt, K.P.; Vidal, J. Ising anyons with a string tension. Phys. Rev. B
**2014**, 89, 201103. [Google Scholar] [CrossRef] - Bais, F.A.; Slingerland, J.K. Condensate-induced transitions between topologically ordered phases. Phys. Rev. B
**2009**, 79, 045316. [Google Scholar] [CrossRef] - Eliëns, I.S.; Romers, J.C.; Bais, F.A. Diagrammatics for Bose condensation in anyon theories. Phys. Rev.
**2014**, 90, 195130. [Google Scholar] [CrossRef] - Burnell, F.J. Anyon condensation and its applications. Ann. Rev. Condens. Matter Phys.
**2018**, 9, 307–327. [Google Scholar] [CrossRef] - Walker, K.; Wang, Z. (3+1)-TQFTs and Topological Insulators. Front. Phys.
**2011**, 7, 150–159. [Google Scholar] [CrossRef] - Tagliacozzo, L.; Celi, A.; Lewenstein, M. Tensor Networks for Lattice Gauge Theories with continuous groups. Phys. Rev. X
**2014**, 4, 041024. [Google Scholar] [CrossRef] - Milsted, A.; Osborne, T.J. Quantum Yang-Mills theory: An overview of a programme. arXiv, 2016; arXiv:1604.01979. [Google Scholar]
- Zohar, E.; Wahl, T.B.; Burrello, M.; Cirac, J.I. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study. Ann. Phys.
**2016**, 374, 84–137. [Google Scholar] [CrossRef][Green Version] - Buyens, B.; Montangero, S.; Haegeman, J.; Verstraete, F.; van Acoleyen, K. Finite-representation approximation of lattice gauge theories at the continuum limit with tensor networks. Phys. Rev. D
**2017**, 95, 094509. [Google Scholar] [CrossRef][Green Version] - Dittrich, B.; Steinhaus, S. Coarse Graining Via Fusion. Unpublished work.
- Kirillov, A.N.; Reshetikhin, N.Y. Representations of the algebra Uq (SU(2)), q-orthogonal polynomials and invariants of links. In Infinite Dimensional Lie Algebras and Groups; Kac, V.G., Ed.; World Scientific: Singapore, 1989; pp. 285–339. [Google Scholar]
- Kauffman, L.H.; Lins, S. Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Carter, J.S.; Flath, D.E.; Saito, M. The Classical and Quantum 6j-Symbols; Princeton University Press: Princeton, NJ, USA, 1995. [Google Scholar]

**Table 1.**Probabilities for (k = 3) anyon excitations (a,a)in the ($\tilde{\mathrm{k}}$ = 2)-vacuum state.

$a$ | $a=\frac{1}{2}$ | $a$ | $a=\frac{3}{2}$ |
---|---|---|---|

0.599 | 0.383 | 0.017 | 0.001 |

**Table 2.**Probabilities to find an (k = 3) anyon ($a,{a}^{\prime}$) for the fusion product of two plaquettes in the ($\tilde{\mathrm{k}}$ = 2)-vacuum state.

$a\u29f9{a}^{\prime}$ | 0 | $\frac{1}{2}$ | 1 | $\frac{3}{2}$ |
---|---|---|---|---|

0 | 0.524 | 0 | 0.0365 | 0 |

$\frac{1}{2}$ | 0 | 0.378 | 0 | 0.00261 |

1 | 0.0365 | 0 | 0.0189 | 0 |

$\frac{3}{2}$ | 0 | 0.00261 | 0 | 0.000693 |

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dittrich, B. Cosmological Constant from Condensation of Defect Excitations. *Universe* **2018**, *4*, 81.
https://doi.org/10.3390/universe4070081

**AMA Style**

Dittrich B. Cosmological Constant from Condensation of Defect Excitations. *Universe*. 2018; 4(7):81.
https://doi.org/10.3390/universe4070081

**Chicago/Turabian Style**

Dittrich, Bianca. 2018. "Cosmological Constant from Condensation of Defect Excitations" *Universe* 4, no. 7: 81.
https://doi.org/10.3390/universe4070081