
universe

Article

Cosmological Constant from Condensation of
Defect Excitations

Bianca Dittrich
Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada;
bdittrich@perimeterinstitute.ca

Received: 30 May 2018; Accepted: 11 July 2018; Published: 19 July 2018
����������
�������

Abstract: A key challenge for many quantum gravity approaches is to construct states that describe
smooth geometries on large scales. Here we define a family of (2 + 1)-dimensional quantum
gravity states which arise from curvature excitations concentrated at point like defects and describe
homogeneously curved geometries on large scales. These states represent therefore vacua for
three-dimensional gravity with different values of the cosmological constant. They can be described
by an anomaly-free first class constraint algebra quantized on one and the same Hilbert space for
different values of the cosmological constant. A similar construction is possible in four dimensions,
in this case the curvature is concentrated along string-like defects and the states are vacua of the
Crane-Yetter model. We will sketch applications for quantum cosmology and condensed matter.

Keywords: quantum gravity; loop quantum gravity; loop quantum cosmology; cosmological
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1. Introduction

Three-dimensional gravity with Euclidean signature and positive cosmological constant can be
described by the Turaev-Viro partition function [1,2] with a quantum deformed structure group SU(2)k.
The Turaev-Viro models are defined for triangulated three-dimensional manifolds, the partition
function is however invariant under changes of the (bulk) triangulation. Here k ∈ N is the so-called
level which determines the quantum deformation parameter q = exp(2πi/(k + 2)). The value of the
cosmological constant Λ is encoded in the level k

k =
1

Gh̄
√

Λ
(1)

with G the three-dimensional Newton’s constant. We thus have a quantized cosmological constant
Λ = 1/(G2h̄2k2).

An earlier variant of the Turaev-Viro model is the Ponzano-Regge model [3], which describes
Euclidean three-dimensional gravity without a cosmological constant. The Ponzano-Regge model
can also be understood as a zero-coupling limit of three-dimensional lattice gauge theory with SU(2)
structure group.

That these models do in fact describe gravity can be shown by a semi-classical analysis of their
amplitudes [4–7]. This analysis reproduces the Regge action, which describes discretized gravity based
on flat [8] or homogeneously curved tetrahedra [9,10]. Furthermore, both the Ponzano-Regge and
Turaev-Viro (henceforth TV) models are topological theories, as is three-dimensional gravity. This is
also the case for three-dimensional Regge gravity, if one uses homogeneously curved tetrahedra for
the theory with cosmological constant [9].

The dynamics of the Turaev-Viro model can also be described in a canonical form, e.g., with loop
quantum gravity techniques [11–14] or within the string net formalism [15–20]. By choosing a Λ
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adapted vacuum state for the loop quantum gravity Hilbert space—instead of a vacuum peaked
on flat geometries [21–23] or a totally degenerate geometry [24–26]—one can bring these two
formulations together [20].

In the canonical formalism one distinguishes between the kinematics and dynamics. In the
works cited above, the cosmological constant is already built into the kinematics, simplifying indeed
enormously the imposition of the dynamics.

In this paper we show that one can separate kinematics and dynamics, that is express the dynamics
and solutions for different cosmological constants in the same kinematical Hilbert space. This does in
particular allow to express solutions for different cosmological constant, which are peaked on different
values of the homogeneous curvature, in the same Hilbert space. A solution with a cosmological
constant Λ̃ > Λ can then be analyzed with regard to the curvature excitations on top of a Λ-vacuum.
These are excitations which are also induced by massive (here spin-less) point particles. The Λ̃ vacuum
can thus be understood to arise from a very particular superposition of such excited states.

This work does pick up on a research direction to derive the quantum group deformation from the
imposition of the cosmological constant [9,27–30]. One main difficulty here is that as one is involving a
discretization to define a diffeomorphism invariant dynamics, one encounters generically anomalies in
the diffeomorphism constraint algebra [27,28] or covariantly, breaks diffeomorphism symmetry [31–33].
Here we will present an anomaly free quantization of the constraints defining the Λ̃ dynamics (for one
of the allowed discrete values) in a kinematical Hilbert space associated to any allowed Λ < Λ̃.

An alternative way to construct such quantizations which preserve diffeomorphism symmetry
is to subject a given, not necessarily diffeomorphism invariant discrete theory, to a coarse graining
flow. Each coarse graining step constructs an effective dynamics for a coarser lattice which reflects the
dynamics of the finer lattice. Iterating the procedure, one is performing a refinement limit and thus
reaches a fixed point of the coarse graining flow. One can then hope that diffeomorphism symmetry is
restored in this limit [9,34–39].

This strategy has been proposed in [9] and has also been demonstrated to work for classical Regge
calculus with a cosmological constant. It would be of course very useful to see that this can be extended
to the quantum level, and this does indeed seem to be in reach [40]. This current work can be seen as a
set–up for considering this coarse graining flow in a given Hilbert space. More generally, we could
consider a microscopic gravitational Hamiltonian and subject it to a renormalization flow. The end
points of these flows are fixed points that typically describe a topological phase. Depending on our
initial choice of Hilbert space, given by the level k, the possible fixed points do include 3D general
relativity with positive discrete values for the cosmological constant described by levels k with k̃ ≤ k.
We can also consider a flow of the gravitational Hamiltonian driven by some external agent, e.g.,
matter content. In this context note that inside a fixed Hilbert space described by k, we can consider
the flow from k̃1 to k̃2, but also the flow from k2 to k1, as long as k̃1, k̃2 ≤ k̃.

In the discussion session we will further comment on possible phase transitions connected with
this flow as well as describe further application of the framework presented here.

Outline of the paper: In the next Section 2 we will give a definition of the Turaev-Viro (TV) model
and a related family of models. We will then follow up with a Hamiltonian description in Section 3.
We will first introduce the string net framework that defines a physical Hilbert space associated to
the TV model. We then define a kinematical Hilbert space by introducing punctures that can carry
defect excitations and thus allow for a dynamics different from the TV model. The kinematical Hilbert
spaces still carry a k-dependent structure, but we will define an embedding of the k̃-Hilbert space
into the k-Hilbert space for k̃ < k. Using the simplest example, namely the two-punctured sphere,
we then give a detailed description of the framework in Section 4. In Section 5 we will consider
general triangulations and show how to construct the various Hamiltonians, ribbon operators and k-
and k̃-vacua in this case. This will also allow us to analyze the k-vacua in terms of the k excitations.
We close with a discussion and outlook in Section 6. The Appendices A–C collect various more
technical background material, in particular some essential definitions related to SU(2)k.



Universe 2018, 4, 81 3 of 34

2. The Turaev-Viro Partition Function and Related Models

The TV model based on SU(2)k defines a partition function for 3D triangulations. The partition
functions sums tetrahedral weights over labels associated to edges. These labels are given by SU(2)k
irreducible representations (irreps) je ∈ {0, 1

2 , 1, . . . k
2}:

Zk =
1
N ∑
{je}

∏
e

v2
je ∏

τ

Aτ({je}). (2)

Here the amplitudes associated to the tetrahedra are given by

Aτ({je}) = ∏
e⊂τ

G({je}) (3)

and G(j1, . . . , j6) is (one version of) the 6j recoupling symbol (See Appendix A). The six irreps je are
associated to the six edges of the tetrahedron as shown in in Figure 1.

j1

j2

j3

j4

j5

j6

Figure 1. The labelling of the edges of the tetrahedron with irreducible representations.

The v2
j = (−1)2jdj are the signed quantum dimension associated to the irreps j and appear in (2)

as measure factors. Furthermore, the normalization N in (2) depends only on the number of vertices
N = DT

2]v where DT is the total quantum dimension of SU(2)k and ]v is the number of vertices in
the triangulation.

Note that as the tetrahedral amplitude is being given by an SU(2)k recoupling symbol it
will only be non-vanishing if the following coupling conditions are satisfied for any of the triples
(je, je′ , je′′)e,e′ ,e′′∈t of irreps labelling a triangle:

je ≤ je′ + je′′ , je′ ≤ je + je′′ , je′′ ≤ je + je′ , je + je′ + je′′ ∈ N, je + je′ + je′′ ≤ k . (4)

The TV partition function can also be defined for a triangulation with boundary—in this case the
sum is only over the j’s associated to bulk edges. For boundary edges, one uses a measure factor vje
(instead of v2

je ) and the normalization changes to

N = D−2]◦v−]∂v (5)

with ]◦v the number of bulk vertices and ]∂v the number of vertices in the boundary.
The partition function (2) is invariant under changes of the bulk triangulation and thus defines for

closed manifolds a topological invariant. From this bulk invariance it also follows that for manifolds
with boundary which are homomorphic to Σ× [0, 1] the partition function can be understood to act as
a projector on the so-called kinematical boundary Hilbert space, which we will define in Section 3.2.
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Thus, the partition function (2) has very special properties. We can consider this partition function as
a very particular example of a family of models, which are of the same form as (2), e.g., can be written as

Z =
1
N ′ ∑

{je}
∏

e
(v′(je))2 ∏

τ

A′τ({je}) (6)

with some normalization factor N ′, possibly depending on the number of vertices, tetrahedral
amplitudes A′τ({je}), which are functions of SU(2)k irreps assigned to the edges of this tetrahedron
and weight factors (v′(je)) associated to the edges. Here we will assume that the amplitude A′τ
vanishes if the coupling conditions (4) are not satisfied. This will allow us to express these amplitudes
as states in the kinematical boundary Hilbert space associated to the SU(2)k models.

We can now consider a renormalization flow of partition functions of the type (6). That is we
glue the tetrahedra (or more general building blocks) to larger building blocks, integrate out the
resulting bulk variables and obtain effective amplitudes for these new building blocks. These effective
amplitudes will depend on a larger set of boundary data than the initial ones. For this reason one
includes a truncation procedure: the boundary data are separated into relevant and irrelevant sets
according to some criteria and only the relevant part is kept. This allows one to consider the coarse
graining flow in a fixed space of amplitudes, that is functions, that depend on a certain fixed number
of variables that encode the allowed boundary data.

Such coarse graining flows can be realized via tensor network algorithms [41–45], whose various
incarnations differ in particular in the criteria that separate relevant and irrelevant data. See in
particular [46–50] for algorithms involving 2D models with a quantum group symmetry and [51,52]
for algorithms for 3D (generalized) lattice gauge models. Let us note that for non-Abelian lattice
gauge models as well as the models considered here one has to generally expect that the flow does
not preserve the coupling conditions (4), see ref. [22,53]. The crucial point here is the truncation
step—this can be actually chosen such that it always does project back onto amplitudes satisfying
the coupling conditions [52]. However, whether this only discards irrelevant data or not depends
on the dynamics, i.e., the amplitudes, of the initial model. For gravitational models one might
be in particular concerned if the dynamics described in the initial model is expected to describe
non-vanishing homogeneous curvature—as curvature leads to torsion excitations that lead to the
violation of the coupling conditions. The coupling conditions result from the Gauss constraints—which
are non-Abelian versions of the Gauss law for electro-magnetism. In particular, if one is interested
in flowing to a phase describing states peaked on a homogeneous curvature one would expect
a deformation of these Gauß constraints [54–57], and thus a corresponding deformation of the
coupling conditions.

Assume we have a model of the form (6), that is actually triangulation invariant in the same
way as (2) is. Such models can appear as exact fixed points of the coarse graining flow—that is the
models are invariant under the coarse graining procedure even if one does not employ a truncation.
More precisely the truncation maps, which are projectors, agree with the amplitudes of certain building
blocks, see [58,59].

Such a fixed point will be the end point of coarse graining flows which start with some subset
of models of the form (6). This subset of models is referred to as phase which is characterized by the
fixed points the models flow to.

To understand the coarse graining flow of a space of models as defined in (6), it is helpful to know
which fixed points one can expect. Here we will discuss one family of such fixed points—given by the
TV amplitudes for SU(2)k̃, where k̃ < k.

The key point here is that the TV amplitudes for SU(2)k can be described within the k-kinematical
structure. To this end, one sets the amplitudes A′τ to zero if any of its arguments is j > k̃/2 and defines

A′τ({je}) = G̃({je}) , v′(je) = ṽje (7)
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otherwise. Here G̃ and ṽ2
j are the 6j symbol and the signed quantum dimensions for SU(2)k. We set

the amplitude to vanish if any of the k̃-coupling conditions are violated. These conditions do coincide
with this for level k except for the last requirement in (4), which however is just stronger for level k̃
than for level k, as k̃ < k. Thus, the amplitudes vanish also if the k-coupling conditions are satisfied
and we can therefore express the k̃-model within the k-kinematical structure. We can say that we
indeed encounter deformed Gauss constraints but that this deformation just leads to a stronger version
of the original constraints.

In the following we will give a Hamiltonian description of the TV models. More precisely we
will define Hilbert spaces and Hamiltonians for which the TV amplitudes arise as ground or vacuum
states [58,59]. The important point is that we can use a k kinematical structure, i.e., a Hilbert space
based on SU(2)k and construct a Hamiltonian that has the k̃ amplitude as ground state. This allows to
consider quantum phase transitions between phases characterized by different values for the level
k. Another application is that the k̃ vacuum states define an interesting family of states peaked on
different values for the homogeneous curvature. Describing homogeneous quantum geometries such
states are very suitable for deriving cosmological predictions from quantum gravity.

3. Hamiltonian Description

We will now define two different Hilbert spaces, a physical k Hilbert space and a kinematical k
Hilbert space. These can both be understood to be Hilbert spaces associated to the TVk model in the
following sense: The TVk partition function (with a boundary) can be defined to act as an operator on
the kinematical Hilbert space. This operator will be a projector and the image of this projector defines
the physical Hilbert space.

3.1. Physical Hilbert Space

We will define the physical k Hilbert space via the string net description [15,16,18–20]. Given
a (for now closed) surface Σ this Hilbert space Hk is spanned by states which are represented by
three-valent graphs embedded into the surface Σ and whose strands are labeled by SU(2)k irreps. The
labeling should be such that the coupling conditions (4) are satisfied for the triple of irreps associated
to the three-valent nodes.

Readers familiar with loop quantum gravity will notice that these states bear some resemblance
to the (q-deformed) spin network basis states [11]. In loop quantum gravity, one would proceed by
defining diffeomorphism and Hamiltonian constraints and find solutions to these constraints. The span
of these solutions, equipped with an inner product, would then define the physical Hilbert space.

Following the string net description, we will however proceed in a different way. The physical
Hilbert space is constructed by imposing equivalence relations on the graph states. We will see
that these equivalence relations do equate states that are related by a time evolution, which in
diffeomorphism invariant theories such as gravity is a gauge transformation.

Two graph states are equivalent if they can be connected by the following operations:

• The strands of a graph can be deformed isotopically within Σ:

j = j . (8)

• Strands with representation j = 0 can be added or removed:

0

jj

= j . (9)
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• The local connectivity of a graph can be changed by 2–2 (also referred to as F-move) and 3–1
moves and their inverses:

i
m

k

l

j

= ∑
n

Fijm
kln

i

n

k

l

j

, (10)

i

k

jl

m n =
vnvl

vj
Fikj

nlm

i

k

j

. (11)

The F-symbol Fijm
kln as well as the square roots of the signed quantum dimensions vj are defined in

Appendix A. The consistency of this set of equivalence relations follows from certain properties of the
F-symbol listed in Appendix A. Furthermore, one can derive from the Equations (10) and (11) other
equivalences which will be very handy for the manipulation of graph states, as we will do below.

These equivalences do impose the diffeomorphism symmetry of general relativity as well as the
independence of states of the underlying graphs. The relation (8) leads to an independence of the states
from the precise embeddings of the underlying graphs into Σ. It can be seen as ensuring invariance
under spatial diffeomorphisms. The next relation (9) enforces that links labeled with spin j = 0 have
no physical meaning. Hence the action (and spectrum) of physical observables should be the same
before and after such spin zero links have been added or removed.

The relations (10) and (11) can be understood to arise from an equivalence under time evolutions,
which in general relativity can be seen as diffeomorphsms that induce a change of the equal time
hypersurfaces, in the following way: As the graphs are three-valent we can interpret their duals as
triangulations. The edges of these triangulations carry the irreps induced from their dual strands.
Thus we have now states given by superpositions of two-dimensional labeled triangulations. These can
serve as initial states for a time evolution via the dynamics imposed by the TVk partition function.
In this context the 2–2, 3–1 and 1–3 moves are the basic time evolution moves for a two-dimensional
triangulation, resulting from gluing tetrahedra in different ways to the surface [60,61].

A two-dimensional triangulation of a given surface Σ can be changed via the 2–2, 3–1 and 1–3
moves into any other triangulation of this surface. That is the equivalence classes of states do not
depend in any way on a choice of triangulation. In this way the physical Hilbert space is not associated
to any given triangulation, but only depends on the topology of Σ.

To complete the definition of the physical Hilbert space we need to give an inner product. This can
be defined by choosing an independent (with respect to the equivalence relation) and complete set of
states and by declaring these states to form an orthonormal basis. Alternatively, if Σ is a (punctured)
sphere we can use the trace inner product [18,20].

Any triangulation of the sphere can be transformed via the Pachner moves to a triangulation with
only two triangles whose edges are pairwise identified. The corresponding dual graph is given by
two nodes connected to each other by three strands. The equivalences (11) and (9) allow to reduce this
graph even to an empty graph—corresponding to a totally degenerate triangulation:
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i

j

m =
i

j

m 0

= Fii0
mmjv

2
m

i
0

= Fii0
mmjv

2
m

i
0

0

(12)

= Fii0
mmjv

2
mF000

iii v2
i

0

0

0

= δmij vmvivj.

In the first line we added a zero strand, in the second line we used a 3–1 move and then added
again a zero strand, and in the third line we used again the 3–1 move. We remain with a graph which
has only strands labelled by j = 0 representations. According to (9) such a graph is equivalent to the
empty graph. We remain with the coefficient of this empty graph Fii0

mmjv
2
mF000

iii v2
i , which due to (A11e)

gives the last line of (12). Here the so-called fusion coefficients δmij are equal to 1 if the triple (m, i, j) is
admissible, i.e., satisfies the coupling conditions (4) and vanish if this is not the case.

Thus, any labelled graph on the sphere (without any punctures) is equivalent to a C-number
times the empty graph. This C-number is called the evaluation of the labelled graph. Indeed, there is
only one physical state for the sphere and the physical Hilbert space is thus equivalent to C. As we will
discuss in the next section, one can introduce punctures on the sphere which will lead to a larger Hilbert
space. The reason is that one does allow the equivalences (8)–(11) only away from the punctures.
In particular one is not allowed to move a strand across a puncture (without having a vacuum loop
around it) and is also not allowed to use the 3–1 move (11) if a puncture is located in the triangular
face appearing in the graph on the left hand side of (11).

We will also employ the following formulas for joining two parallel strands and resolving bubbles:

i j = i j
0

= ∑
l

Fii0
jjl

i j

i j

l = ∑
l

vl
vivj

i j

i j

l . (13)

After the 2–2—move we used a special value for the F-symbol, see (A11e). For resolving the
bubble we use the same special value for the F-symbol, which this time arises from a 3–1 move:

i j

m

n

=
i j

m

n

0 = Fnm0
iij v2

i

m

= δmnδijm
vivj

vm

m

. (14)

For the efficient manipulation of graph states, it will be very useful to introduce two further concepts:

• We will allow for the crossing of two strands but have to denote which strand is over-crossing
and which is under-crossing. Certain types of double crossings can be resolved by isotopic
deformation of the strands, e.g.,

= . (15)
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In general a crossing is resolved with the R-matrix (detailed in Appendix A) by using the
following equivalences between graph states:

ij

k

= Rij
k

j

k

i

,

i

k

j

=
(

Rij
k
)∗ i

k

j

. (16)

From these relations one can show that crossings can be resolved as follows

i

j

j

= ∑
k

vk
vivj

Rij
k i

k
i

j

j

,

(17)

i

j

j

= ∑
k

vk
vivj

(
Rij

k
)∗

i
k

i

j

j

.

This allows to consider a strand encircling another strand

j

j

i =
sij

s0j

j

j

. (18)

Here we have the (rescaled) S-matrix appearing which is defined as the evaluation of the following
planar graph

DT Sij := sij := i j . (19)

Its explicit value is given in Appendix A. DT =
√

∑j v4
j is the total quantum dimension.

• We furthermore define a short-hand notation for a certain weighted sum over strands labelled by
admissible irreps. We will refer to this combination as a vacuum strand and it is defined as

j

j

:=
1

DT
∑
k

v2
k

k

l

. (20)

The vacuum strand will actually only appear as vacuum loop. These vacuum loops enjoy the
so-called sliding property: We can slide a strand over any region (here indicated by a black dot
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which can stand for an arbitrary complicated graph or a puncture or other topological feature)
that is enclosed by a vacuum strand:

j

j

=

j

j

. (21)

This identity can be proven by using the definition (20) for the vacuum strands and the 2–2 move
identity (10). It shows that the vacuum loop enforces flatness for the (integrated) curvature of the
enclosed region in the sense that Wilson lines—represented by the strands—can be freely moved
over this region.

One can also define operators on the physical Hilbert space, that is operators which are consistent
with the equivalence relations (8)–(11). For a surface without punctures, a generating basis of such
operators is given by closed ribbon operators. In the gravitational context these operators describe
Dirac observables. These closed ribbon operators insert an over-crossing and an under-crossing
strand along a closed path into the graph state and are therefore labelled by a pair (a, b) of irreps.
The operators can be understood as a product of two parallel Wilson loop operators associated to the
two connections A+ and A−, which we discussed in the introduction.

For surfaces with punctures, one can also define open ribbon operators, which describe
(exponentiated) electric flux operators, see ref. [20] for details. Related observables can also be
defined in the covariant framework [62,63].

3.2. Kinematical Hilbert Space Via Introduction of Punctures

As we have discussed, the physical Hilbert space for the sphere is one-dimensional. We can
however enlarge the Hilbert space associated to a surface Σ by introducing punctures into Σ, that is by
removing disks from Σ. The equivalence relations (8)–(11) are only allowed away from the punctures.
This prevents the reduction of certain graphs, in particular if there are punctures situated inside the
faces of a graph. One is thus left with a larger set of independent (with respect to the equivalence
relations) states and thus a larger Hilbert space.

Let us note that one usually also allows strands to end at the punctures. To this end, one introduces
a marked point on the boundary of the puncture which specifies the location where the strand can
end. A puncture with such a strand (carrying a non-trivial irrep) represents a torsion excitation in
the sense that the Gauß constraints, here in the form of the coupling rules (4) are not satisfied at the
one-valent node given by the marked point. Here we will only consider punctures without torsion,
that is strands are not allowed to end at the punctures. (See e.g., [20] for the generalization to torsion
excitations). We will however consider in Section 5 surfaces with boundary (beside the punctures).
As part of the boundary conditions we will allow strands to end at a number of specified marked
points. This will define a Hilbert space for surfaces with an ‘extended’ boundary, see ref. [20] for the
general construction of such Hilbert spaces.

Besides torsion, the punctures can also carry curvature excitations. The presence of curvature
comes from the fact that we cannot deform strands across the punctures—if this puncture is not
surrounded by a vacuum loop. Inserting a vacuum loop around the puncture will project out the
curvature excitation and thus impose the flatness (here understood as homogeneous curvature)
constraint for this puncture.

A two-dimensional piecewise homogeneously curved triangulation can carry curvature at its
vertices. Given a triangulation ∆ of Σ, we adopt all the vertices of ∆ as punctures of Σ. We will refer to
the resulting string net Hilbert space (for which the equivalence relations (8)–(11) hold away from the
punctures) as kinematical Hilbert space associated to the triangulation ∆. Note that the Hilbert space
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only depends on the (embedding of the) vertices of the triangulation and not on the connectivity of
its edges.

We can nevertheless consider the graph Γ∆ dual to the triangulation ∆ as a canonical choice.
The set of all admissible labelings of this graph Γδ gives a set of independent states and defines the
spin network basis. We use this term as this basis is very similar to the spin network basis [64] used in
loop quantum gravity. Note however that the Hilbert space considered here is based on a different
vacuum state [20,21,23] as compared to the usual Ashtekar-Lewandowski vacuum [24–26]. Due to
this change of vacuum one has to use a different version of the flux operators [21,23], which appear
moreover in exponentiated form. These fluxes are realized via the open ribbon operators, see ref. [20].

As an example we will have for the tetrahedron the following spin network basis

W j1 j2 j3
j4 j5 j6

=
j1

j2
j3

j4

j5 j6
, (22)

where the punctures are indicated with black dots. For a regular triangulation of the torus which has
only six-valent vertices we have a graph

, (23)

where we have to identify the vertical sides and the horizontal sides of the bounding rectangle to
obtain a torus.

We noted above that the Hilbert space will only depend on the number (and positioning) of the
punctures, that is the vertices of the triangulation, not on the triangulation itself. We can thus have
spin network bases associated to different triangulations as long as these have the same number of
punctures. The basis transformation will be given by the F moves (10).

A different type of basis, which is actually dual to the spin network one, is the so-called fusion
basis [18,20] (Such a fusion basis can be also defined for undeformed groups [65]). See Appendix C for
the definition of the fusion basis for a tetrahedron. The fusion basis is an excitation basis in the sense
that a part of the quantum numbers do specify the (curvature or magnetic) excitations of the punctures.
These quantum numbers determine the eigenvalues of closed ribbon operators around the punctures.
This set of quantum numbers is however not complete. Equivalently the set of closed ribbon operators
around (single) punctures do not form a maximal set of commuting operators. One has rather to add
also ribbons around pairs of punctures and pairs of these pairs and so on. This defines a fusion scheme
which can be encoded in a three-valent tree graph whose leaves match the punctures. The eigenvalues
for the closed ribbon operators are characterized by two quantum numbers given by a pair of irreps
(a, b). In our case we do not allow for torsion excitations, that is for strands ending at the punctures.
For this reason we will have a = b for ribbons around single punctures. However, one will find in
general a 6= b for ribbons around pairs of punctures, showing that torsion can be induced by curvature
excitations [23,53].

We have so far defined (ribbon) operators via the tools of graphical calculus. Having chosen a
basis, we can also define operators by giving their matrix elements in a basis. We will make use of this
fact for the ‘lifting’ of operators from the kinematical k̃-Hilbert space to the k-Hilbert space.
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3.2.1. Embedding the Kinematical k̃-Hilbert Space Into the Kinematical k-Hilbert Space

Given a surface Σ fix a triangulation ∆ which determines a dual graph Γ∆. The spin network basis
in the k Hilbert space consists of all k-admissible labelingsW{j} of the dual graph Γ∆. We can also
consider a spin network basis in the k̃ Hilbert space—this basis includes all k̃-admissible labelings
W̃{j} of the dual graph. A k̃-admissible labeling is also k-admissible. We can therefore define an
embedding of the kinematical k̃ Hilbert spaceHk̃ into the kinematical k Hilbert spaceHk defined by

E∆ : Hk̃ → Hk

W̃{j} 7→ W{j}. (24)

That is we identify a spin net basis state inHk̃ labelled with the set of irreps {j}link∈Γ∆
with the

spin net basis state inHk which has the same labeling {j}link∈Γ∆
. We extend this embedding from the

spin network basis states to the full Hilbert spaceHk̃ by linearity.
Note that this embedding does depend on the choice of triangulation, that is in particular on the

connectivity of the edges. (In contrast the Hilbert spaceHk̃ andHk only depend on the number and
position of the vertices of the triangulation.)

Having such an embedding we can also map operators k̃Õ on Hk̃ to operators kÕ on Hk.
The operator kÕ is defined to have the same matrix elements with respect to the k̃-admissible subset
of the spin network basis as the operators k̃Õ. Matrix elements of kÕ involving a k̃-non-admissible
spin network are defined to be zero. This mapping of operators from theHk̃ Hilbert space to theHk
Hilbert space does depend again on the choice of triangulation.

With these definitions, fixing a choice of triangulation, we realize Hk̃ (where each state is
represented on the graph dual to the chosen triangulation), as a subspace of Hk. Any operator
inHk̃ can be lifted to an operator inHk using the above description. Its action on the subspace ofHk
defined by the image of the embedding, agrees with its action onHk̃. The operator annihilates states
orthogonal to this subspace. Thus, the spectrum of the operator will—apart from a possible addition
of zero—not change under this lifting procedure.

4. Example: The Two-Punctured Sphere

To illustrate the main points, we discuss the simplest possible example—the two-punctured
sphere. Note that this two-punctured sphere can be associated to a (very degenerate) triangulation
given by one triangle. Two edges of this triangle are glued together—and can carry any SU(2)k irrep j.
The third edge is assigned a vanishing length and thus carries the trivial representation.

Accordingly, an independent basis of states is given by

W j := j . (25)

These states form an independent set and can thus be adopted as orthonormal basis. (The states
are also orthonormal with respect to the trace inner product [18,20].) Note that it does not matter
around which puncture we draw the j-loop as we can slide the loop from one to the other puncture on
the sphere.

As mentioned, we can use the TVk partition function to define a projection operator whose
(here one-dimensional) image would define the physical state for the sphere. Such projection operators
can be even defined locally for a given puncture using so-called tent moves [20,60,61]. The resulting
projection operator associated to a puncture p is given by:

B . =
1

DT
, (26)
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that is, we introduce a (normalized) vacuum loop around the puncture p. We then demand for physical states

B . ψphys = ψphys (27)

for all punctures.
The projection operator B has a simple action on the states (25) for the two-punctured sphere

B .W j =
1

D2
T

∑
l

v2
l j l

=
1

DT
2 ∑

ml
v2

l δjlm m

=
1

DT
2 ∑

ml
v2

l δjlm Wm. (28)

where we merged two parallel strands into one strand using (13) and removed a bubble using (14).
The one dimensional physical Hilbert space for the two-punctured sphere, which results from

applying this projection operator to one of the punctures (as this also imposes the projection for the
other puncture) is spanned by the k-vacuum state

O0 = =
1

DT
∑

l
v2

l W
l . (29)

This state is one member of an alternative basis—the fusion or Ocneanu basis—{O j}k/2
j=0

O j =

j

= ∑
l

SjlW l , W l = ∑
j

SmjO j. (30)

The matrix Sjl is unitary and referred to as S-matrix, see Appendix A for its explicit definition.
This basis diagonalizes the operators Bl , defined as inserting a Wilson loop in the representation l

around the puncture p:

Bm .O j =

j

l =

j

l

=
Smj

S0j

j

=
Smj

S0j
O j. (31)

(To see this, use the sliding property (21) and then the graphical identity (18)).
Let us confirm with an algebraic calculation that the Ocneanu states, given in (30) as linear

combination of theW states, diagonalize the Wilson loop operators, which in theW basis act as

Bj .Wm = ∑
l

δjmlW l . (32)
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Thus the W-basis matrix elements of the Wilson loop operator Bj are given by (Bj)ml = δjml .
The statement then follows from applying the Verlinde formula

δjml = ∑
n

Smn
Sjn

S0n
Snl , (33)

which can be also read as giving the diagonalization of theW-basis matrix elements of the Wilson loop
operator. (We remind the reader that the S-matrix for SU(2)k is real and symmetric as well as unitary).

Comparing the explicit value of the S-matrix in the limit of large k with the eigenvalues of the
SU(2) Wilson loop operator one sees that one can interpret the label j in O j as (excess) curvature
angle ε ∼ π(2j + 1)/(k + 2), see [20]. In the gravitational interpretation, such states arise from
having a point particle with mass at the puncture. The relation between mass and induced deficit
angle is given by m = ε/8πG [66,67]. Allowing also for violation of the coupling conditions (that is
the Gauß constraints), point particles are characterized by two labels, mass and spin. These labels
also arise as representation labels for the irreps of the Drinfel’d Double of SU(2). (See [68–70] for
discussions relating the Drinfel’d Double to point particle excitations in the 3D quantum gravity
context). For SU(2)k the Drinfel’d Double is indeed a double, that is given by a tensor product of
fusion categories SU(2)k ⊗ (SU(2)k)

?, where the ? indicates that one uses as R matrix the complex
conjugate of the usual SU(2)k R-matrix. Correspondingly, the defect excitations, also referred to as
anyons, are labelled by a pair of SU(2)k irreps (j, j′). For a non-spinning particle we have j = j′ and
the states O j define such excitations. That is the states O j provide an excitation basis for the Hilbert
space of gauge invariant states for the two-punctured sphere.

We now discuss how to simulate the k̃ system on this k Hilbert space. In the k̃ Hilbert space we
have also a spin network basis of states

W̃ j = j . (34)

where j ∈ {0, 1
2 , . . . , k̃

2}. The basic idea is to express operators k̃Õ on the k̃ Hilbert space in this spin
network basis and to adopt its matrix elements Õij as the matrix elements of an operator kÕ on the k
Hilbert space. For the latter operator matrix, elements Õmn with either m > k̃/2 or n > k̃/2 are set to
zero. (As we are typically working on the k Hilbert space, we omit in the following the pre-subindex k).

We thus define the k̃ projection operator as

B̃ .W l =
1

D̃T
2 ∑

n,m
ṽ2

n δ̃lnm Wm. (35)

with the understanding that δ̃lnm = 0 for either l, n or m > k̃/2. It is defined to vanish for l + n+m > k̃.
We also define ṽn = 0 for n > k̃/2. In general we will set the entries of tilde symbols, such as F̃ and S̃,
to be vanishing for spin configurations which are not allowed by the k̃ coupling rules.

Similarly to the k̃ projection operator, we can define k̃ Wilson loop operators as

B̃j .W l = ∑
m

δ̃jlm Wm (36)

for j ≤ k̃
2 .

Note that B̃j—due to the appearance of δ̃jlm instead of δjlm—is not given by a Wilson loop insertion
on this k Hilbert space, and thus is also not diagonalized by the fusion basis {Ol}. (Indeed the B̃j

operators rather measure the curvature with respect to a redefined connection Ã± as discussed in
the introduction).
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Instead, we can define the set of states (for m ≤ k̃
2 )

Õm = ∑
n

S̃mnWn (37)

which satisfy

B̃j . Õm =
S̃jm

S̃0m
Õm. (38)

As before this follows from the Verlinde formula (33), but now for the k̃-fusion rule and S̃-matrix.
The states {Õm}k̃/2

m=0, completed with the set {Wn}k
n=k̃+1/2

, form an (orthonormal) basis for the k

Hilbert space. In this sense we can simulate the k̃ excitation on the k Hilbert space.
We can now understand the k̃ vacuum and the k̃ anyons in terms of the k anyons and k vacuum:

Õl = ∑
n,m

S̃ln Snm Om =: ∑
m

Mlm Om. (39)

The matrix entry Mlm gives the coefficient of the k-anyon (m, m) in the superposition which
describes a k̃-anyon (l, l), e.g., for k = 3 and k̃ = 2 we have

M =

 0.912 −0.378 −0.148 −0.0613
0.162 0.688 −0.688 −0.162

0.0613 0.148 0.378 −0.912

 , (40)

and for k = 10 and k̃ = 5

M =


0.70 −0.68 0.17 0.10 −0.019 −0.053 −0.011 0.029 0.021 −0.013 −0.024
0.24 0.18 −0.72 0.60 −0.061 −0.14 −0.025 0.066 0.045 −0.029 −0.052
0.14 0.083 −0.16 −0.33 0.76 −0.48 −0.057 0.13 0.081 −0.049 −0.086
0.086 0.049 −0.081 −0.13 0.057 0.48 −0.76 0.33 0.16 −0.083 −0.14
0.052 0.029 −0.045 −0.066 0.025 0.14 0.061 −0.60 0.72 −0.18 −0.24
0.024 0.013 −0.021 −0.029 0.011 0.053 0.019 −0.10 −0.17 0.68 −0.70

. (41)

From this and other examples one can see that in general the k̃ vacuum and the k̃ excitations are
superpositions with non-vanishing coefficients for all k anyons.

The set of sates {Õl}k̃/2
l=0 can be completed to an orthonormal basis in the k Hilbert space by

adding the states {Wm}k/2
m=(k̃+1)/2

. The transformation matrix between the k fusion basis and this new
basis is then provided by the unitary matrix:

Mmn =

{
Mmn = ∑k̃/2

l=0 S̃mlSln for m ≤ k̃/2,

Smn for k̃/2 < m ≤ k/2.
(42)

The matrix M encodes also to which extend the B̃j operators (and therefore the k-projection B̃)
fail to be diagonal in the k-fusion basis

B̃j .Om = ∑
l,n
(MT)ml

S̃jl

S̃l0
Mln On. (43)

In particular we have for the B̃ projection operator

B̃ .Om = ∑
j,l,n

(MT)ml
ṽ2

j

D̃2

S̃jl

S̃l0
Mln On = ∑

n
(MT)m0 M0n On, (44)
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where as the B projector is given in the O-basis as

B .Om = ∑
n

δm0δ0n On. (45)

Indeed B̃ projects onto the k̃-vacuum state Õ0 = M0nOn. For (k − k̃) << k we will have
M0n ≈ δ0n with small corrections, which are decaying with growing n. Thus the set of states Ol with
small l provides a good truncation for the diagonalization of B̃ or of any combinations of B and B̃.

On the other hand, for k̃ = 0 we have M0n = v2
n/DT and B projects ontoW0, which is maximally

disordered in terms of anyon degrees of freedom. The level k̃ = 0 does represent a cosmological
constant of infinite value, and the associated Hilbert space allows only one state, where all links are
labelled with j = 0. This can be interpreted as the cosmological constant curving space so much that
one has a vanishing curvature radius and thus all lengths are forced to be vanishing.

In fact, the transformation between the spin network basis and the fusion basis constitutes a
duality transform. The reason is that the B̃ projector in theW-basis for k̃ = 0

B̃ .Wm =
k̃=0

∑
n

δm0δ0n Wn (46)

has the same matrix elements as the B projector in the O-basis (45). At the same time, the B projector
in theW-basis is given as

B .Wm = ∑
n

Sm0S0n Wn (47)

which is of the same form as the B̃ projector (44) for k̃ = 0 in the O-basis.
This represents a self-duality similar to the well-known self-duality of the two-dimensional

Ising model.
Thus, if we consider a Hamiltonian which interpolates between the two projectors

Hk,k̃=0(α) = −αB − (1− α)B̃ (48)

(with α ∈ [0, 1]) we will find the same spectrum for Hk,k̃=0(α) and Hk,k̃=0(1− α).
This property holds however for any Hamiltonian which interpolates in this way between

two projectors on one-dimensional subspaces. (This form of the Hamiltonians will only appear
for the case of the two-punctured sphere, in more general cases we will have sums over projectors
associated to the different plaquettes and moreover ground state degeneracy for non-trivial topologies).
For such effectively two-dimensional Hamiltonians, one can compute the eigenvalues as function of the
parameter α and as function of the overlap of the two normalized vectors onto which the Hamiltonian
projects for α = 0 and α = 1 respectively. In our case this overlap is given by M00. The non-vanishing
eigenvalues are then given as

λ±(α) = −1
2
± 1

2

√
4α(α− 1)(1−M00(M00)∗) + 1. (49)

The minimal gap is reached for α = 1/2

λ+(
1
2 )− λ−(

1
2 ) =

√
M00(M00)∗. (50)

Thus the gap is proportional to the overlap of the k̃ ground state with the k ground state. It will be
relatively small for (k− k̃) large and nearly one for (k− k̃) << k. The following table lists M00 for
different values of k and k̃:
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k �k̃ 0 1 2 3 4 5 6 7 8 9

1 0.707 1
2 0.500 0.854 1
3 0.372 0.688 0.912 1
4 0.289 0.558 0.787 0.941 1
5 0.232 0.459 0.672 0.845 0.958 1
6 0.191 0.385 0.577 0.748 0.882 0.968 1
7 0.161 0.328 0.499 0.660 0.800 0.907 0.975 1
8 0.138 0.284 0.436 0.585 0.722 0.838 0.925 0.980 1
9 0.120 0.248 0.384 0.521 0.652 0.769 0.866 0.939 0.984 1
10 0.106 0.219 0.342 0.467 0.590 0.704 0.804 0.887 0.949 0.987



. (51)

Remark. In the quantum gravity context, one rather works with Hamiltonian constraints instead of a proper
Hamiltonian. These Hamiltonian constraints generate infinitesimal time evolution—which is however a gauge
transformation. The constraints can be also derived from the tent moves [60,61,71]. (See also [72,73] for a
derivation of the Hamiltonian using the three-dimensional 3–2 Pachner move). However, instead of summing
over the length of the tent pole (which gives the sum defining the vacuum loop) one gauge fixes it lengths—often
to its smallest possible value given by j = 1

2 . In general one has a j-‘ambiguity’ for the definition of the
Hamiltonian [74], but we see here that this j-parameter has a straightforward interpretation. The constraints are
then given as

Cj := v−2
j Bj − I (52)

and are also known as (quantum deformed) flatness constraints. The condition for physical states is then

Cjψ = 0 ∀ j. (53)

These Hamiltonian constraints can also be defined for the k̃-dynamics:

C̃j := ṽ−2
j B̃j

p − I. (54)

Here we need however to add the k̃-admissibility conditions as constraints, that is the k̃-deformed
Gauss constraints.

5. General Triangulations

5.1. Local Considerations

Let us consider a general lattice with three-valent nodes and the state around one puncture. If we identify
the spin network basis with the lattice, this is equivalent to considering the state around one plaquette.

To this end we can consider the Hilbert space of states defined on a one-punctured disk,
which represents the state on and around this plaquette. If we want to represent a plaquette with N
links in its boundary, we introduce N marked points on the boundary of the disk and allow strands to
end on these points. We then consider the family of states:

W{j}
{l} =

lN j1

l1

j2
l2

j3

l3lN−1

jN
(55)
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Assuming that the set {{jA}, {lB}}N
A,B=1 includes all possible labelings that satisfy the coupling

conditions at the nodes, the corresponding states are independent (with respect to the equivalence
relations (8)–(11)) and thus we can define an inner product by declaring this set of states to be a
orthonormal basis. We can also define a trace inner product [18,20] for this disk Hilbert space—and
the states (55) are also orthonormal with respect to this definition.

In the following we will only consider the subspace of states with fixed labels l1, · · · , lN . The
usual string net projector for such a plaquette is given by

B =
1
D2 ∑

t
v2

t Bt (56)

with

Bt . W j1···jN
l1···lN

= ∑
m1,...,mN

(
N

∏
A=1

FmA+1lAmA
jAtjA+1

)
Wm1···mN

l1···lN
, (57)

where the index A = N + 1 is identified with A = 1.
As in the previous section, we can ask for eigenstates of the Bt operators. These are given by

generalized fusion bases states [20]

O j
l1···lN ,r1···rN−1

=

lN

j

l1

l2

r1

lN−1

rN−1
(58)

which also form an orthonormal basis. The image of the projector B is spanned by the statesO0
l1···lN ,r1···rN−1

.
That is, taking into account the coupling conditions the projector can be written as

B = ∑
r1···rN−1

δr1l1 δrN−1lN

(
N−2

∏
A=1

δrA lA+1rA+1

)
|O0

l1···lN ,r1···rN−1
〉〈O0

l1···lN ,r1···rN−1
| (59)

To show that B in (56) and (59) coincide, one needs to change the bulk of the piece of the
triangulation that is glued in the tent move defined by B and then use the triangulation invariance
of the Turaev-Viro partition function. For N = 3 this amounts to using the pentagon identity (A11f),
for larger N it defines a generalization thereof. A similar factorization property holds for the projectors
onto the anyon states O j

l1···lN ,r1···rN−1
with j > 0.

We see that for N ≥ 4 the vacuum state around one plaquette is not unique, even if we fix the l
labels of the links ending in the marked points. We will rather have (N − 3) r-labels which we can
choose freely, as long as the coupling conditions are satisfied. In a phase space analysis for N-valent
tent moves, this corresponds to the fact that one has (N − 3) physical degrees of freedom, given by the
lengths of the edges adjacent to the N-valent vertex minus the three gauge parameters associated to
the vertex [60,61].

As in the previous section, we can now easily define the projectors and solutions thereof for the k̃
dynamics. To this end we put a tilde over all level-dependent entities, e.g., we define

B̃t . W j1···jN
l1···lN

= ∑
m1,...,mN

(
N

∏
A=1

F̃mA+1lAmA
jAtjA+1

)
Wm1···mN

l1···lN
. (60)

The image of the corresponding projector

B̃ =
1

D̃T
2 ∑

t
ṽ2

t B̃t (61)
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is spanned by states

Õ0
l1···lN ,r1,r2··· ,rN−2,rN−1

= δr1l1 δrN−1lN ∑
t,k1,...,kN−1

ṽ2
t

D̃T

(
N−2

∏
A=1

F̃kA+1lA+1kA
rA t rA+2

)
F̃tlN kN−1

rs−1t0 W
tk1k2···kN−1
l1···lN

(62)

keeping in mind that we now have t, lA, rA ≤ k̃
2 .

In a similar manner we can consider the k and k̃ vacuum states around a cluster of adjacent
plaquettes. In this case one considers a projector

Bcluster = ∏
p

Bp (63)

where the product is over all plaquettes included in the cluster. Alternatively one defines the Hamiltonian

Hcluster = −∑
p

Bp, (64)

and looks for its ground states. Here one considers as boundary condition fixed spins lA associated to
the links which end transversally on the boundary around the cluster of plaquettes. (Similar definitions
apply for the corresponding k̃-operators). The solutions can again be given in terms of generalized
fusion bases states. E.g. for two neighbouring plaquettes we have

jA jB

jAB j0AB
l1

l2

r1rN�1

lN

lN�1

, (65)

which form a basis for the Hilbert space on the two-punctured disk with N marked points on the
boundary. Here we encounter quantum numbers that describe the fusion of the anyons (jA, jA) on one
plaquette and (jB, jB) on the other plaquette to a fused anyon pair (jAB, j′AB) where we can now have
jAB 6= j′AB. These representation labels determine the eigenvalues of ribbon operators going around
the two plaquettes. We will discuss such ribbon operators in the next section.

5.2. Ribbon Operators

Here we will discuss how to analyze the k anyon content of a given state, e.g., the k̃ vacuum
state. This can be done by expanding the global k̃ solution into the fusion basis, but this will be
very cumbersome for larger lattices. Alternatively we can use (projective) ribbon operators. For one
plaquette, these will be basically Wilson loops. We can then use the expectation value of these Wilson
loops (or of the projective ribbon operators) as an order parameter to distinguish the k and k̃ phase.

Closed ribbon operators can be understood as a generalization of Wilson loop operators.
The ribbon operator Raa′ acts by inserting an over-crossing a strand and a parallel under-crossing a′

strand along a closed loop, e.g.,

Raa′ . =
a

a
0 (66)
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The operator is invariant under isotopic deformation of the underlying loop, i.e., we only need to
know how the loop winds around the various punctures.

The ribbon operators are diagonalized by an appropriately chosen fusion basis and thus allow us
to understand a given state as a linear combination of anyon excitations. Projective ribbon operators
project onto the subset of the fusion basis with the appropriate anyon labels. They are defined as

Paa′ =
1
D2 v2

av2
a′ ∑

bb′
SabSa′b′ Rbb′ (67)

and are indeed projectors, i.e., Paa′Pbb′ = δabδa′b′Paa′ .
If we can deform the loop underlying a projective ribbon Pab such that it does not cross any strand

of a state, the projective ribbon does reduce to the insertion of one Wilson loop

Paa′ . =
1

DT
2 v2

av2
a′ ∑

bb′
SabSa′b′ b

0
b = δaa′

v2
a

DT
∑

c
Sac

c (68)

We have thus for the projective ribbon around one puncture—or around one plaquette

Paa′ .W
j1···jN
l1···lN

= δaa′
v2

a
DT

∑
C

Sac ∑
mA

(
N

∏
A=1

FmA+1lAmA
jAcjA+1

)
Wm1···mN

l1···lN
(69)

In Table 1 we give for k = 3 the expectation values for the operator Paa around one puncture for the
(k̃ = 2)-vacuum state on a tetrahedral lattice. We thus have a plaquette with three links. These expectation
values give the probabilities to find an anyon excitation (a, a) at a given puncture.

Table 1. Probabilities for (k = 3) anyon excitations (a, a) in the (k̃ = 2)-vacuum state.

a = 0 a = 1
2 a = 1 a = 3

2
0.599 0.383 0.017 0.001

Note that these differ from the probabilities for the two-punctured sphere, which are given by the
square of the entries in the first row of the matrix (40).

Next we consider the projective ribbon operators around more punctures. Using the spin network
basis, the ribbon will cross a number of strands—and thus we cannot exclude that (fused) anyons
(a, a′) with a 6= a′ will appear.

The crossing of a ribbon with a strand can be computed using the definitions (17) for the R-matrix
and by reducing any closed face without a puncture using the equivalences in Section 3.1. One obtains
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Raa′ .

l1
i1

j1

t1

l2

i2
j2

t2

l3

i3

j3t3

jN

iN tN
: : :

= ∑
rA ,qA ,mA ,nA

vi1 · · · viN

vj1 · · · vjN
vt1 · · · vtN Ωr1r2

q1t1,aa′Ω
r2r3
q2t2,aa′ · · ·Ω

rNr1
qN tN ,aa′ FnN l1m1

i1rN jN
Fn1l2m2

i2r1 j1
· · · FnN−1lN mN

iNrN−1 jN−1
(70)

Fn1i1q1
t1r2 j1

Fn2i2q2
t2r3 j2

· · · FnN iN qN
tNr1 jN

Fm1t1n1
q1i1r1

Fm2t2n2
q2i2r2

· · · FmN tN nN
qN iNrN

l1
m1

n1

t1

l2

m2

n2

t2

l3

m3

n3t3

nN

mN tN
: : :

where

Ωrp
ql,ij = ∑

mn

vmvn

vrv2
l

Ril
mRl j

n Fnmr
ijl Fqlp

ijm Frlq
jmn =

1
vivjvrv2

l

q

j

i

l pr
(71)

is the so-called half braiding tensor. (The projective ribbon is then defined by (67)). Equation (70)
covers the most general case of a ribbon operator around a number of plaquettes. Special cases can be
obtained by setting some labels to the trivial representation, e.g., tB = 0 for some index B ∈ 1, . . . , N,
in which case one has iB = jB and the sum also restricts to mB = nB.

Table 2 shows the expectation values for a projective ribbon Paa′ around two neighbouring
plaquettes in a tetrahedral lattice for (k = 3, k̃ = 2).

Table 2. Probabilities to find an (k = 3) anyon (a, a′) for the fusion product of two plaquettes in the
(k̃ = 2)-vacuum state.

a�a’ 0 1
2 1 3

2

0 0.524 0 0.0365 0
1
2 0 0.378 0 0.00261
1 0.0365 0 0.0189 0
3
2 0 0.00261 0 0.000693

As one can see, fused anyons (a, a′) with a 6= a′ indeed appear.
Equation (70) shows that the action of the ribbon operator will only depend on the state in a

tubular neighbourhood around the ribbon. Now the k̃ vacuum states on different lattices can be
also related by Pachner moves, similarly to the usual string net equivalence relations in Section 3.1.
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It follows that one will find the same expectation values for ribbons which go around a region that has
been changed by such Pachner moves, e.g.,

∼ , ∼ (72)

Here the ∼ sign stands for having the same expectation value for the shown k ribbon operators in
the k vacua based on the two different graphs shown on the left and right hand side of the equations
respectively. Thus the k̃ vacuum states as expressed in the k Hilbert space enjoy a certain notion of
triangulation independence.

5.3. Global Solutions

For a general lattice dual to a triangulation we can define the k̃-Hamiltonian

H̃ = −∑
p

B̃p − clink ∑
l

Ãl − cnode ∑
n

Ãn (73)

with clink > 0 and cnode > 0. Here we have also introduced operators Ãl which act on the links
and are equal to the identity if the link carries a spin j ≤ k̃/2 and give vanishing values otherwise.
Likewise Ãn are operators on the nodes which project onto states satisfying the coupling condition
j1 + j2 + j3 ≤ k̃ for this node. If we are only interested in the ground state we can set clink and cnode to
zero as already the B̃p are annihilating states which do not satisfy the k̃ coupling condition. Introducing
a non-vanishing cnode does however change the excitation spectrum by making the violations of the
coupling conditions more expensive.

The Hamiltonian has a unique ground state for planar lattices, but has degenerate ground states
for non-trivial topology. E.g. for the torus we will have (k̃ + 1)2 ground states.

The ground states can be constructed with a similar strategy as in Section 4. That is one expresses
first the k vacua into the spin network basis using the lattice under consideration. One then obtains
the k̃ vacua by putting a tilde over every term that appears in this expansion.

E.g. for a tetrahedral lattice we obtain

ψ0 = =
1

DT
3 vj1 vj2 vj4 vj5 Fj1 j2 j3

j4 j5 j6
j1

j2
j3

j4

j5 j6
(74)

and thus for the k̃-vacuum

ψ̃0 =
1

D̃T
3 ṽj1 ṽj2 ṽj4 ṽj5 F̃j1 j2 j3

j4 j5 j6
j1

j2
j3

j4

j5 j6
. (75)

For a more general planar lattice, the expansion coefficients coincide with the Turaev-Viro amplitude
for a spherical building block with boundary data defined by the spin network state, see Section 2.
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Let us also discuss the case of a torus. Allowing for one puncture on the torus we choose a spin
network basis

W pqk =

k

q

k

p
p

. (76)

Here we have to identity the horizontal and vertical sides of the (dotted) rectangle to obtain a torus.
This torus has one puncture which in the rectangle representation appears in the corners. Note that
this puncture is situated in a six-valent plaquette. The set of spin network states defined in (76) can
be also used for the torus without a puncture. The set is, however, in this case over-complete—one
has one closed plaquette without a puncture inside. Inserting a (normalized) vacuum loop inside this
plaquette will therefore not change the states. However, by reducing this vacuum loop in the same way
as for the plaquette Hamiltonian one obtains an combination of spin network states which describe a
state equivalent to the original one.

For the torus the vacua are degenerate—there are (k + 1)2 ground states. The k vacua for the
torus without punctures are given by (see [18,75])

ψ
(0)
ab =

a b

. (77)

We thus have for the one-punctured torus

ψ
(1)
ab =

a b

= DT
a b

= DT ∑
k

vk
vavb

a b

k

k

= ∑
k,p,q

v2
pΩkk

qp,ab

k

q

k

p
p

. (78)

Here we used in the first equation of (78) the sliding property: the vacuum loop around the
puncture is slid across the ‘torus hole’ using the remaining vacuum loop. The result is that one has two
vacuum loops in parallel, which reduce to one vacuum loop and a factor of DT. The resulting state
can then be rewritten into a linear combination of fusion basis states (in this case, we allow also for
strands to end at the punctures) for the two-punctured sphere, which we obtain by identifying the
two vertical sides of the rectangle. These fusion basis can be expanded into spin network states on
the same two-punctured sphere and in this correspondence we have again the half-braiding tensor
appearing, see e.g., [20].

Similarly, we have for the two-punctured torus

ψ
(2)
ab =

a b

= ∑
k,p,q

v2
pΩkk

qp,ab

k

q

k

p

p

=
1

DT
∑

k,p,q,j2,j3

Ωkk
qp,ab

vj2 vj1
vk

Fj1 pj5
qj2k Fj5kj4

pj2q Fj2 j4 p
j5 j1 j3

kj2

j4 j3

j1 j2

j5
k

j4
. (79)

Here we expanded the vacuum loop around the additional puncture into j2-loops and merged
part of these loops with the k, p and q strands. The resulting configuration allows for two 3–1 moves
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which leads to two of the F-symbols. A final 2–2 move leads to a spin network state for which both
punctures sit in 6-valent plaquettes.

To obtain the solution for a torus with more punctures, one proceeds similarly as in going
from the one-punctured torus to the two-punctured torus. This can be understood as a refinement
operation which can be interpreted as gluing tetrahedra-coming with the corresponding F-symbols
and v-factors—to the triangulation of the torus.

To obtain the k̃-vacuum states, we replace all k dependent expressions in (78) and (79) with the
corresponding k̃-expressions.

For small lattices it is also feasible to expand the k̃-vacua into the k-fusion basis states,
see Appendix C for such an expansion for the tetrahedron. The expansion coefficients encode the
anyon content at all the fundamental plaquettes and at the fused plaquettes.

6. Discussion

A key difficulty in extracting large scale dynamics from quantum gravity models such as
loop quantum gravity is to construct states which approximate well smooth geometries. In this
work we defined a family of states that are peaked on homogeneous curvature and analyzed the
excitation content of these states. The states appear as solutions of anomaly-free first class constraints.
These constraints describe the dynamics of three-dimensional gravity with a cosmological constant.

The same strategy can be applied to the (3 + 1)-dimensional theory. In this case the states
are vacua of the Crane-Yetter model for SU(2)k̃ and one can also define a set of anomaly free first
class constraints which describe these solutions. The states are peaked on homogeneous geometries.
These geometries are however generalized in the same way as the standard loop quantum gravity
geometries are, if understood in terms of piecewise flat simplicial building blocks [76–80].

The transition from the k vacuum to a k̃ vacuum can be seen as a condensation of curvature
excitations. A related concept led to the definition of the ‘new’ vacua and associated new Hilbert space
constructions for loop quantum gravity peaked on flat connections [21–23] and homogeneously curved
geometries [20,75]. Fixing a triangulation we showed that different vacua can be also expressed in one
and the same Hilbert space associated to this triangulation. The states do however enjoy a certain
notion of triangulation independence, as explained at the end of Section 5.2.

Let us mention a number of applications of this work both inside and outside quantum gravity.
Quantum groups in quantum gravity: As mentioned in the introduction, it would be highly

interesting to derive a quantum group structure, and in particular the braiding in a quantum group, by
imposing the dynamics of 3D gravity with a cosmological constant. To this end, one uses a first order
formulation of 3D gravity with triads e and a (su(2) valued) spin connection A. The constraints are
then given by the curvature constraints F−Λe ∧ e = 0 where F is the curvature of the spin connection.
One also has the Gauß constraint (or no-torsion condition) dAe = 0. The curvature constraints are
relatively simple to impose for Λ = 0 as in this case the constraints only involve the connection and
one can work in a connection polarization. For non-vanishing Λ however the constraints involve
canonically conjugated variables. The constraints can be however rewritten into C = 1

2 (F+ + F−) and
G = 1

2 (F+ − F−) for the curvature and Gauß constraints respectively. This uses the curvatures F± of
two Poincare connections A±(Λ) = A±

√
Λe. The price to pay is that the components of the redefined

connections become non-commutative.
For the quantization of the theory, one works with holonomies or Wilson lines. Noui, Perez and

Pranzetti [81,82] constructed the holonomy for A±(Λ) in terms of the holonomy of the spin connection
and triad operators. The non-commutativity of the connection A± does result in a braiding structure for
the Wilson lines that reproduces thus of the quantum group deformation SU(2)k [81,82]. It was pointed
out however that the Wilson loops do not reproduce the quantum dimension due to the fact that one does
not evaluate these on a solution of the constraints (which have not been constructed in [81,82]).

Here we rather worked with the case of having two different cosmological constants Λ̃ < Λ.
Apart from the constraints we can express the Wilson loop operators (which are here ribbon operators
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describing both the A+ and the A− connection) associated to A±(Λ̃) within the kinematical Hilbert
space based on Λ. By construction, these Wilson loop operators reproduce the braiding associated to
the level k̃ = 1/(Gh̄

√
Λ̃). These Wilson loop operators also do reproduce the k̃-quantum dimensions,

but only if considered on k̃-vacuum states.
Quantum cosmology: One strategy for deriving a cosmological dynamics from quantum gravity

is to consider states which are in a certain sense homogeneous. This approach has been taken in
loop quantum cosmology [83–87] based on a notion of homogeneous connection [88–90]. Although
there are a number of works which made this notion more precise in the quantum realm [91–96],
the construction of loop quantum cosmology does rather start with a symmetry reduced classical
phase space and does not consider a notion of quantum homogeneous states inside the full theory.
A first step in this direction was taken in [97,98], where the homogeneity is based on conditions on the
triads. The eigenvalues of the triads characterize the size of a fundamental cell and this can be seen as
a discretization ambiguity, see also the discussion in [99,100]. An alternative framework is group field
theory cosmology [101–103]. Group field theory is based on similar constructions as loop quantum
gravity [104,105] but in a certain sense includes a sum over discretizations.

Here we construct a family of states peaked on homogeneous curvature. These states enjoy a
certain discretization independence and therefore also diffeomorphism symmetry. As mentioned
before the construction, which we presented here for the three-dimensional case, can be also done
for the four-dimensional theory. In this case we can express the vacua state of the (topological)
Crane-Yetter model [106,107] for different levels k̃ using the same kinematical Hilbert space based on
the Crane-Yetter vacuum with some larger k-level. This kinematical Hilbert space has been recently
constructed in [75] and can be understood as a quantum deformation of the Hilbert space for loop
quantum gravity based on a flat curvature vacuum [21–23]. Thus a notion of homogeneous states is
also available in (3 + 1) dimensions.

A related proposal for the (3 + 1) dimensional case has been recently put forward in [108,109],
but employing a complexified (Poincare like) connection. A detailed quantization of the constraints
defining the homogeneous states is not yet available and solutions have not been constructed. In our
work we present a simple strategy to construct a consistent set of homogeneity constraints on the
quantum level and also the solutions to these constraints. These steps can be generalized in a
straightforward way to (3 + 1) dimensions [75]. We expect furthermore that the constructions can be
generalized to Lorentzian signature which would imply a complexified connection.

Having a family of homogeneous states ψk̃ available one can ask for a superposition φ of such
states which would satisfy

〈ψk̃ |H | φ〉 = 0, (80)

where H is the Hamiltonian constraint with constant lapse. The solution φ would represent an
approximation to the solution of the full theory, in the sense that we consider only a subset of the
conditions that a full solution would have to satisfy.

Allowing different patches or domains of the spatial hypersurface to carry different values of the
homogeneous curvature we would need to consider domain walls, which we will discuss in the next
point. Such domain walls will also appear in time direction if there is a non-trivial dynamics for the
constant curvature value.

Going back to the (2 + 1)-dimensional theory, we would need to include a matter coupling to
have a non-trivial dynamics. One would thus also need a homogeneity condition for the matter field.
Such a set-up can be used to study a matter-induced change of the cosmological constant.

Here we have discrete values for the cosmological constant—changes in its value could therefore
show up as phase transitions. Such phase transitions are also of interest in condensed matter.

Condensed matter: Being able to separate kinematics and dynamics we can define
k̃-Hamiltonians Hk̃ whose ground states are given by the k̃-vacua. We can thus consider linear
combinations of two such Hamiltonians H(α) = αHk + (1− α)Hk̃. Varying the coupling constant α
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we will obtain quantum phase transitions between the two phases characterized by k̃ and k. That
is we expect to see that in the limit of large lattices, the gap between the energies for the ground
state(s) and the first excited state(s) vanishes for a certain α. A phase transition has to occur as the
degeneracy for non-trivial topologies changes if we change the level, e.g., for the torus we have a
degeneracy (k + 1)2 and (k̃ + 1)2 respectively. We have furthermore order parameters—e.g., the k or
k̃ Wilson loops—which indicate such transitions by taking on a vanishing value in one phase and a
non-vanishing value in the other phase.

If these phase transitions are of second or higher order we expect that the corresponding phase
transition points define a (2+ 1)-dimensional conformal field theory with propagating degrees of freedom.
Generally there does not yet seem to be much known about these transitions and their order, but as there
are many of these transitions they could turn out to be a valuable source of such conformal field theories.

Let us consider some special cases. Transitions from k̃ = 0 to k > 0 would correspond to the
transition from strong to weak coupling of a q-deformed lattice gauge theory. For k = 1 the system is
equivalent to the gauge Ising model (which is dual to the Ising model) and there the transition from
strong to weak coupling is of second order. Two non-Abelian examples, that have been considered
with different techniques [110,111], are the golden string net (For the golden string net model only
integer spin representations j = 0 and j = 1 are allowed and the admissible triples are (0, 0, 0), (0, 1, 1)
and permutations as well as (1, 1, 1)), which is based on SO(3)3, and the SU(2)2 string net model.
There are strong indications [110] that the transition from the k = 3 phase for the golden string net to
the k̃ = 0 phase and the transition from the k = 2 phase of the SU(2)2 string net to the k̃ = 0 phase,
are both of second order.

The (numerical) investigations of these phase transitions will get very involved with growing k.
For small differences (k− k̃) it might be however profitable to transform to the fusion basis and apply
a truncation in this basis. This case might be also treatable with analytical tools by using an expansion
of q̃ around q, which is discussed in [29,30] for the case q = 1, that is k = ∞.

There is another process, that leads to phases for such SU(2)k systems as considered here, known
as anyon condensation [112–114]. The transitions between k and k̃ are however (generically) different
from anyon condensation. In the case of anyon condensation one has a ‘sharply’ defined subset of anyonic
excitations (that is curvature and torsion excitations characterized by certain eigenvalues of the Wilson
loop operators) that condense into a new vacuum state. Here we can analyze the k̃ vacuum with respect to
the k vacuum and it will (in general) include a superposition of all (purely magnetic) anyonic excitations.
With this said we can of course also consider such anyon condensation processes for varying levels k̃.

As the set–up is generalizable to (3 + 1) dimensions [75,115], we can expect similar phase
transitions there. Although the ground states are unique even for non-trivial topology, one has
also in this case an order parameter that distinguishes the k and k̃ phases.

One can also realize different phases in different regions or domains (of the spatial hypersurface).
In this case the domain wall, which separates two phases, consists at least of a row of plaquettes.
The reason is that the plaquette projectors which make up the Hamiltonian, do not commute for
different levels k. There are thus degrees of freedom associated to the domain wall.

Such a set–up could also be interesting for quantum cosmology. Firstly a domain wall, if seen as
transversal to a time direction would describe a (time) transition between states peaked on different
homogeneous curvature values. Secondly, patches with different homogeneous curvature can be used
as a way to introduce inhomogeneities.

Lattice gauge theory and tensor networks: The kinematical Hilbert space we construct can be
also interpreted as a Hilbert space for (2 + 1)-dimensional lattice gauge theory, where the structure
group is q-deformed to SU(2)k. The k̃ vacua can in this sense also be understood as phases of lattice
gauge theory, which are characterized by non-vanishing expectations values of the curvature.

The q-deformation at the root of unity provides furthermore a cut-off, in the sense that it reduces
the infinite-dimensional Hilbert space for SU(2) to a finite-dimensional one. This is important
for numerical coarse graining techniques, such as tensor network algorithms for lattice gauge
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theories [51,52,116–119]. The finiteness of such q-deformed models has also been used to investigate
certain two-dimensional models, designed to reproduce key dynamical mechanisms of spin
foams [46–50]. The fusion basis [18,65], which we will also make use of here, is a useful tool for
canonical and covariant coarse graining schemes [120].

From a lattice gauge theory perspective, one is in particular interested in the transition from k̃ = 0
to some large k. The k̃ = 0 vacuum coincides with the strong coupling limit of lattice gauge theory,
the k-vacuum for k large represents a small deformation of the weak coupling limit. One can thus study the
transition from the weak to the strong coupling regime as a function of k. This has the advantage of working
with manifestly finite Hilbert spaces for finite k. As the dynamics is also adjusted to the k-level, it presents a
far more elegant cut-off than truncating away all representation labels larger than some jmax [116–119].
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Appendix A. Essentials on SU(2)k

Here we will give some basic facts about the fusion category SU(2)k. More background
can be found in [121–123]. SU(2)k can also be understood as a quantum deformation of SU(2).
The deformation parameter is given by a root of unity

q = e2πi/(k+2). (A1)

where k is a positive integer. With this deformation parameter, we define the quantum numbers

[n] :=
qn/2 − q−n/2

q1/2 − q−1/2 =
sin
(

π
k+2 n

)
sin
(

π
k+2

) , ∀ n ∈ N− {0}, (A2)

with [0] = 1.
The objects of the fusion category SU(2)k are given by the admissible irreducible and unitary

representations of the corresponding quantum deformed group. These admissible irreps are labeled
by ‘spins’ j ∈ {0, 1/2, 1, . . . , k/2}.

The quantum dimensions are given by dj = [2j + 1]. Admissible representations, that is irreps j ∈
{0, 1/2, 1, . . . , k/2} have positive, non-vanishing quantum dimensions. It is convenient to introduce
the signed quantum dimensions

v2
j := (−1)2jdj (A3)

and their square roots vj (fixing once and for all one root). The total quantum dimension is defined as

DT :=
√

∑
j

v4
j =

√
k + 2

2
1

sin
(

π
k+2

) . (A4)

We can now proceed to the recoupling theory for SU(2)k. As in the group case we can tensor
representations (although with a deformed co-product). In terms of the fusion category this defines a
‘fusion’ product. Admissible triples are triples (i, j, l) of irreps that include the trivial representation in
their tensor product. Such triples (i, j, l) are defined by the conditions:

i ≤ j + l, j ≤ i + l, l ≤ i + j, i + j + l ∈ N, i + j + l ≤ k. (A5)
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The fusion symbol δijl is equal to one if (i, j, l) is an admissible triple and vanishes otherwise.
The F-symbols transform between different bracketings for the tensor product. To define the

F-symbols we introduce first for any admissible triple (i, j, k) the quantity

∆(i, j, k) := δijk

√
[i + j− k]![i− j + k]![−i + j + k]!

[i + j + k + 1]!
, (A6)

where [n]! := [n][n− 1] . . . [2][1].
The (Racah–Wigner) quantum {6j} symbol is then given by the formula{

i j m
k l n

}
:= ∆(i, j, m)∆(i, l, n)∆(k, j, n)∆(k, l, m)∑

z
(−1)z[z + 1]!

×

(
[i + j + k + l − z]![i + k + m + n− z]![j + l + m + n− z]!

)−1

[z− i− j−m]![z− i− l − n]![z− k− j− n]![z− k− l −m]!
, (A7)

where the sum runs over

max(i+ j+m, i+l+n, k+ j+n, k+l+m) ≤ z ≤ min(i+ j+k+l, i+k+m+n, j+l+m+n). (A8)

The F-symbols can then be defined as

Fijm
kln := (−1)i+j+k+l

√
[2m + 1][2n + 1]

{
i j m
k l n

}
. (A9)

We will also use the G-symbol

Gijm
kln :=

1
vmvn

Fijm
kln = (−1)i+j+k+l+m+n

{
i j m
k l n

}
. (A10)

The F symbol satisfies a number of consistency conditions and properties

Physicality: Fijm
kln = Fijm

kln δijmδilnδkjnδklm, (A11a)

Tetrahedral symmetry: Fijm
kln = Fjim

lkn = Flkm
jin = Fimj

knl
vmvn
vjvl

, (A11b)

Orthogonality: ∑n Fijm
kln Fijp

kln = δmpδijmδklm, (A11c)

Reality:
(

Fijm
kln
)∗

= Fijm
kln , (A11d)

Normalization: Fii0
jjk = vk

vivj
δijk, (A11e)

Pentagon identity: ∑n Fijm
kln Fpql

nir Frqn
kjs = Fijm

spr Fpql
kms. (A11f)

We furthermore need the R-matrix which for SU(2)k is given by

Rij
k = (−1)k−i−j

(
qk(k+1)−i(i+1)−j(j+1)

)1/2
. (A12)

The R-matrix is subject to the hexagon identity:

Hexagon identity: Rki
mFkim

ljp Rkj
p = ∑n Fikm

ljn Rkn
l Fjin

lkp . (A13)
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The S-matrix is defined as evaluation of the Hopf knot, see (19). Explicitly we have

Sij =
1

DT
sij =

1
DT

∑
l

v2
l Rij

l Rji
l =

(−1)2(i+j)

DT
[(2i + 1)(2j + 1)]. (A14)

The S-matrix for SU(2)k is invertible and unitary, making SU(2)k into a modular fusion category.
Note that the S-matrix is also real and symmetric:

Sij = Sji, ∑
l

SilSl j = δij . (A15)

Appendix B. Diagonalization of a Sum of Two Projectors onto One–Dimensional Subspaces

Consider a Hamiltonian operator

H = −α|v〉〈v| − (1− α)|w〉〈w| (A16)

which is built from two projectors onto the normalized vectors |v〉 and w〉 respectively. With α ∈
[0, 1] the subspace where this Hamiltonian has non-vanishing (negative) eigenvalues is maximally
two-dimensional. We represent this Hamiltonian in a basis of two orthonormal states |v〉, |v⊥〉 which
span this subspace. That is, we have

|w〉 = β|v〉+ γ|v⊥〉 (A17)

where |β|2 + |γ|2 = 1 and β = 〈v|w〉. The matrix elements of H restricted to this subspace are given by

H|2D =

(
α + (1− α)ββ∗ (1− α)β∗γ

(1− α)βγ∗ (1− α)γγ∗

)
. (A18)

The eigenvalues for this matrix are given by

λ± = −1
2
±
√

4α(α− 1)(1− ββ∗) + 1. (A19)

Appendix C. Transformation for a Tetrahedral Lattice

Here we will consider the transformation between the spin network basis and the fusion basis for
a tetrahedral lattice.

The spin network basis states are given by

W j1 j2 j3
j4 j5 j6

=
j1

j2
j3

j4

j5 j6
A

B

C

D

(A20)

where here we labelled the punctures with capital latin letters. For the fusion basis we use

OkAkBkCkD
kABk′AB

=

A B C

D

kA kB kC

kD

kAB k0AB

. (A21)
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One can then find the basis transformation by computing the inner product between these states:

〈W j1 j2 j3
j4 j5 j6
| OkAkBkCkD

kABk′AB
〉 =

1
DT

3 ∑
l4,l5,l6

β(j5, kA, l5)β(j4, kB, l4)β(j6, kC, l6)δl4l5l6(
∑
m5

vj1 vj3 vj4 vj6 Fm5l5 j4
l4 j4l6

Fj5l5 j5
j4 j3m5

Fj6m5 j2
j3 j1 j5

Fj4l5m5
j6 j2 j6

)
(

∑
m4m6

vkA vkB vkC

vkAB

vm4

(
RkCk′AB

m4

)∗ vm6

(
RkBkA

m6

)∗
Fm6l5kAB

kAkBkA
Fk′AB l4m6

kBkAkB
FkD l6m4

kCk′ABkC
Fl5l6l4

k′ABm6kAB
FkAB l6k′AB

m4kCkD

)
(A22)

where

β(j, k, l) =
1

v2
kv2

j

k
j

l

=
vl

v2
kv2

j
∑
m

v2
m
(

Rjk
m
)∗(Rjk

m
)∗Fklk

jmj. (A23)

Note that the transformation factorizes into a sum over (l4, l5, l6):

〈W j1 j2 j3
j4 j5 j6
| OkAkBkCkD

kABk′AB
〉 = ∑

l4,l5,l6

A(l4, l5, l6; j4, j5, j6; kA, kB, kC)

B(l4, l5, l6; j1, j2, j3, j4, j5, j6) C(l4, l5, l6; kA, kB, kC, kD, kAB, k′AB) . (A24)
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