# Effects of Scattering of Radiation on Wormholes

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. The Simplest Model of a Wormhole

## 3. Topological Damping of Cosmic Rays

#### 3.1. Boltzmann Equation

#### 3.2. Topological Damping of Cosmic Rays

#### 3.3. Topological Bias of a Point Source

#### 3.4. Dark Matter Halos

## 4. Topological Bias of Discrete Sources

#### 4.1. Scattering of Waves in the Geometrical Optics Approximation

#### 4.2. Lorentz Invariance and the Dispersion Relations

#### 4.3. The Diffuse Halo

#### 4.4. Estimates

## 5. Generation of an Interference Picture

## 6. Distortion of CMB Spectrum by Wormholes

## 7. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Flamm, L. Beiträge zur Einsteinschen Gravitationstheorie. Phys. Z.
**1916**, 17, 448–454. [Google Scholar] - Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev.
**1935**, 48, 73–77. [Google Scholar] [CrossRef] - Lobo, F.S.N. From the Flamm–Einstein–Rosen bridge to the modern renaissance of traversable wormholes. Int. J. Mod. Phys. D
**2016**, 25, 1630017. [Google Scholar] [CrossRef] - Wheeler, J.A. Relativity, Groups, and Topology; Gordan and Breach: New York, NY, USA, 1964. [Google Scholar]
- Savelova, E.P. Gas of wormholes in Euclidean quantum field theory. Grav. Cosmol.
**2015**, 21, 48–56. [Google Scholar] [CrossRef] - Savelova, E.P. On possible origin of an anisotropy in the speed of light in vacuum. Gen. Relativ. Gravit.
**2016**, 48, 85. [Google Scholar] [CrossRef] - Kirillov, A.A.; Savelova, E.P. On the Possible Dynamical Realization of the Pauli–Villars Regularization. Phys. At. Nucl.
**2015**, 78, 1069–1073. [Google Scholar] [CrossRef] - Hochberg, D.; Visser, M. Null Energy Condition in Dynamic Wormholes. Phys. Rev. Lett.
**1998**, 81, 746–749. [Google Scholar] [CrossRef] - Kirillov, A.A.; Savelova, E.P. Cosmological wormholes. Int. J. Mod. Phys. D
**2016**, 25, 1650075. [Google Scholar] [CrossRef] - Kirillov, A.A.; Savelova, E.P. Dark matter from a gas of wormholes. Phys. Lett. B
**2008**, 660, 93–99. [Google Scholar] [CrossRef] - Kirillov, A.A.; Savelova, E.P. Modification of gravity by a spherically symmetric wormhole. Int. J. Mod. Phys. D
**2017**, 26, 1750145. [Google Scholar] - Kirillov, A.A.; Savelova, E.P. Density perturbations in a gas of wormholes. Mon. Not. R. Astron. Soc.
**2011**, 412, 1710–1720. [Google Scholar] [CrossRef] - Diemand, J.; Zemp, M.; Moore, B.; Stadel, J.; Carollo, M. Cusps in cold dark matter haloes. Mon. Not. R. Astron. Soc. Lett.
**2005**, 364, 665–673. [Google Scholar] [CrossRef] - Kirillov, A.A.; Savelova, E.P.; Zolotarev, P.S. Propagation of cosmic rays in the foam-like Universe. Phys. Lett. B
**2008**, 663, 372–376. [Google Scholar] - Kirillov, A.A.; Savelova, E.P.; Shamshutdinova, G.D. On the topological bias of discrete sources in the gas of wormholes. J. Energy Theor. Phys. Lett.
**2009**, 2009, 599–603. [Google Scholar] [CrossRef] - Kirillov, A.A.; Savelova, E.P. On scattering of electromagnetic waves by a wormhole. Phys. Lett. B.
**2012**, 710, 516–518. [Google Scholar] [CrossRef] - Kirillov, A.A.; Savelova, E.P. On scattering of CMB radiation on wormholes: Kinematic SZ-effect. In Proceedings of the MG14 Meeting on General Relativity University of Rome La Sapienza, Rome, Italy, 12–18 July 2015. [Google Scholar]
- Battistelli, E.S.; Burigana, C.; de Bernardis, P.; Kirillov, A.A.; Lima Neto, G.B.; Masi, S.; Norgaard-Nielsen, H.U.; Ostermann, P.; Roman, M.; Rosati, P. Galaxy clusters as probes for cosmology and dark matter. Int. J. Mod. Phys. D
**2016**, 25, 1630023. [Google Scholar] [CrossRef] - Visser, M. Lorentzian wormholes; Springer: New York, NY, USA, 1996. [Google Scholar]
- Stewart, J.M. Non-Equilibrium Relativistic Kinetic Theory; Springer: Berlin, Germany, 1971. [Google Scholar]
- Kachelriess, M.; Tomas, R. High-energy neutrino yields from astrophysical sources: Weakly magnetized sources. Phys. Rev. D
**2006**, 74, 063009. [Google Scholar] [CrossRef] - Kirillov, A.A. The nature of dark matter. Phys. Lett. B.
**2006**, 632, 453–462. [Google Scholar] [CrossRef] - Kirillov, A.A.; Turaev, D. The Universal rotation curve of spiral galaxies. Mon. Not. R. Astron. Soc. Lett.
**2006**, 371, 31–35. [Google Scholar] [CrossRef] - Kirillov, A.A.; Turaev, D. Foam-like structure of the Universe. Phys. Lett. B.
**2007**, 656, 1–8. [Google Scholar] [CrossRef] - Gentile, G.; Salucci, P.; Klein, U.; Vergani, D.; Kalberla, P. The cored distribution of dark matter in spiral galaxies. Mon. Not. R. Astron. Soc.
**2004**, 351, 903–922. [Google Scholar] [CrossRef] - De Blok, W.J.G.; Bosma, A. High-resolution rotation curves of low surface brightness galaxies. Astron. Astrophys.
**2002**, 385, 816. [Google Scholar] [CrossRef] - Weldrake, D.T.F.; de Blok, W.J.G.; Walter, F. A high-resolution rotation curve of NGC 6822: A test-case for cold dark matter. Mon. Not. R. Astron. Soc.
**2003**, 340, 12–28. [Google Scholar] [CrossRef] - Shankar, F.; Lapi, A.; Salucci, P.; De Zotti, G.; Danese, L. New Relationships between Galaxy Properties and Host Halo Mass, and the Role of Feedbacks in Galaxy Formation. Astrophys. J.
**2006**, 643, 14. [Google Scholar] [CrossRef] - Harris, D.E.; Krawczynski, H. X-Ray Emission from Extragalactic Jets. Annu. Rev. Astron. Astrophys.
**2006**, 44, 463–506. [Google Scholar] [CrossRef] - Clowe, D.; Bradač, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.M.; Jones, C.; Zaritsky, D. A Direct Empirical Proof of the Existence of Dark Matter. Astrophys. J. Lett.
**2006**, 648, L109–L113. [Google Scholar] [CrossRef] - Born, M.; Wolf, E. Principles of Optics; Pergamon press: New York, NY, USA, 1968. [Google Scholar]
- Jacobson, T.; Liberati, S.; Mattingly, D. Lorentz violation at high energy: Concepts, phenomena, and astrophysical constraints. Annu. Phys.
**2006**, 321, 150–196. [Google Scholar] [CrossRef] - Bernadotte, S.; Klinkhamer, F.R. Bounds on length scales of classical spacetime foam models. Phys. Rev. D
**2007**, 75, 024028. [Google Scholar] [CrossRef] - Klinkhamer, F.R.; Rupp, C. Spacetime foam and high-energy photons. New Astron. Rev.
**2010**, 54, 211. [Google Scholar] [CrossRef] - Abdo, A.A.; Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; et al. Testing Einstein’s special relativity with Fermi’s short hard gamma-ray burst GRB090510. Nature
**2009**, 462, 331–334. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Jankiewicz, M.; Buniy, R.V.; Kephart, T.W.; Weiler, T.J. Space–time foam and cosmic-ray interactions. Astropart. Phys.
**2004**, 21, 651–666. [Google Scholar] [CrossRef] - Christiansen, W.A.; Jack, N.Y.; van Dam, H. Probing Spacetime Foam with Extragalactic Sources. Phys. Rev. Lett.
**2006**, 96, 051301. [Google Scholar] [CrossRef] [PubMed] - Kirillov, A.A.; Savelova, E.P. Astrophysical Effects of Space-Time Foam. Gravit. Cosmol.
**2008**, 14, 256–261. [Google Scholar] [CrossRef] - Clement, G. Scattering of Klein–Gordon and Maxwell waves by an Ellis geometry. Int. J. Theor. Phys.
**1984**, 23, 335–350. [Google Scholar] [CrossRef] - Jackson, J.D. Classical Electrodynamics; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Sunyaev, R.A.; Zeldovich, Y.B. The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement. Mon. Not. R. Astron. Soc.
**1980**, 190, 413–420. [Google Scholar] [CrossRef] - Sunyaev, R.A.; Zeldovich, Y.B. Microwave background radiation as a probe of the contemporary structure and history of the Universe. Ann. Rev. A
**1980**, 18, 537–560. [Google Scholar] [CrossRef] - Kashlinsky, A.; Atrio-Barandela, F.; Ebeling, H. Measuring the dark flow with public X-ray cluster data. Astrophys. J.
**2011**, 732, 1. [Google Scholar] [CrossRef] - Sayers, J.; Mroczkowski, T.; Czakon, N.G.; Golwala, S.R.; Mantz, A.; Ameglio, A.; Downes, T.P.; Koch, P.M.; Lin, K.-Y.; Molnar, S.M.; et al. The contribution of radio galaxy contamination to measurements of the Sunyaev–Zel’dovich decrement in massive galaxy clusters at 140 GHz with Bolocam. Astrophys. J.
**2013**, 264, 152. [Google Scholar] [CrossRef] - Hand, N.; Addison, G.E.; Aubourg, E.; Battaglia, N.; Battistelli, E.S.; Bizyaev, D.; Bond, J.R.; Brewington, H.; Brinkmann, J.; Brown, B.R.; et al. Evidence of galaxy cluster motions with the kinematic Sunyaev–Zel’dovich effect. Phys. Rev. Lett.
**2012**, 109, 041101. [Google Scholar] [CrossRef] [PubMed] - Ambrosi, G.; An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Cai, M.S.; Chang, J.; Chen, D.Y.; Chen, H.F.; et al. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature
**2017**, 552, 24475. [Google Scholar] [CrossRef] [PubMed] - Savelova, E.P. Gas of Wormholes as a Model for Dark Energy. Grav. Cosmol.
**2013**, 19, 101–105. [Google Scholar] [CrossRef] - Donato, F.; Gentile, G.; Salucci, P. Cores of dark matter haloes correlate with stellar scalelengths. Mon. Not. R. Astron. Soc. Lett.
**2004**, 353, L17–L22. [Google Scholar] [CrossRef]

1 | For the topological damping, the absence of collisions is not essential however, as they merely modify the function $\tilde{f}$ in Equation (11). |

2 | We note that the light side of a throat ${S}_{\pm}$ is turned by the matrix ${U}^{\pm 1}$ with respect to the dark side, so that in general, we have the union ${S}^{R}\cup {S}^{A}\ne S$. |

3 | We recall that wormholes relate to three basic parameters. These are the density of wormholes ${n}^{-1/3}$, the mean throat size b, and the mean distance between throats $d=\left(\right)open="|"\; close="|">{R}_{+}-{R}_{-}$. |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kirillov, A.; Savelova, E.
Effects of Scattering of Radiation on Wormholes. *Universe* **2018**, *4*, 35.
https://doi.org/10.3390/universe4020035

**AMA Style**

Kirillov A, Savelova E.
Effects of Scattering of Radiation on Wormholes. *Universe*. 2018; 4(2):35.
https://doi.org/10.3390/universe4020035

**Chicago/Turabian Style**

Kirillov, Alexander, and Elena Savelova.
2018. "Effects of Scattering of Radiation on Wormholes" *Universe* 4, no. 2: 35.
https://doi.org/10.3390/universe4020035