# Linear Potentials in Galaxy Halos by Asymmetric Wormholes

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Two-Measures Theory

#### 1.2. Diffusive Energy Theory from Action Principle

## 2. The Action

## 3. Spherically Symmetric Space-Time

#### 3.1. General Equations

#### 3.2. Asymmetric Wormholes Triggering Linear Potentials Describing Galaxy Halos

## 4. Centre of Gravity Coordinates

## 5. The Behaviour for the Scalar Potentials

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Rubin, V.C.; Thonnard, N.; Ford, W.K., Jr. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R = 4kpc/to UGC 2885/R = 122 kpc. Astrophys. J.
**1980**, 238, 471–487. [Google Scholar] [CrossRef] - Rubin, V.C.; Ford, W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J.
**1970**, 159, 379. [Google Scholar] [CrossRef] - Kulchoakrungsun, E.; Lam, A.; Lowe, D.A. Effect of the Cosmological Constant on Halo Size. Mod. Phys. Lett. A
**2018**, 33, 1850059. [Google Scholar] [CrossRef] - Lobo, F.S.N. Phantom energy traversable wormholes. Phys. Rev. D
**2005**, 71, 084011. [Google Scholar] [CrossRef] - Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys.
**1988**, 56, 395. [Google Scholar] [CrossRef] - Sushkov, S.V. Wormholes supported by a phantom energy. Phys. Rev. D
**2005**, 71, 043520. [Google Scholar] [CrossRef] - Visser, M. Traversable wormholes: Some simple examples. Phys. Rev. D
**1989**, 39, 3182–3184. [Google Scholar] [CrossRef][Green Version] - Li, Z.; Bambi, C. Distinguishing black holes and wormholes with orbiting hot spots. Phys. Rev. D
**2014**, 90, 024071. [Google Scholar] [CrossRef][Green Version] - Guendelman, E.I. Scale Invariance, New Inflation and Decaying ⋀-Terms. Mod. Phys. Lett. A
**1999**, 14, 1043–1052. [Google Scholar] [CrossRef] - Guendelman, E.I.; Kaganovich, A.B. Principle of nongravitating vacuum energy and some of its consequences. Phys. Rev. D
**1996**, 53, 7020–7025. [Google Scholar] [CrossRef][Green Version] - Gronwald, F.; Muench, U.; Macias, A.; Hehl, F.W. Volume elements of spacetime and a quartet of scalar fields. Phys. Rev. D
**1998**, 58, 084021. [Google Scholar] [CrossRef][Green Version] - Guendelman, E.I.; Kaganovich, A.B. Transition to zero cosmological constant and phantom dark energy as solutions involving change of orientation of spacetime manifold. Class. Quantum Grav.
**2008**, 25, 235015. [Google Scholar] [CrossRef][Green Version] - Nishino, H.; Rajpoot, S. Hodge duality and cosmological constant. Mod. Phys. Lett. A
**2006**, 21, 127–141. [Google Scholar] [CrossRef] - Guendelman, E.I.; Kaganovich, A.B. Absence of the fifth force problem in a model with spontaneously broken dilatation symmetry. Ann. Phys.
**2008**, 323, 866–882. [Google Scholar] [CrossRef][Green Version] - Guendelman, E.I.; Kaganovich, A.B. Fine-tuning free paradigm of two-measures theory: k-essence, absence of initial singularity of the curvature, and inflation with graceful exit to the zero cosmological constant state. Phys. Rev. D
**2007**, 75, 083505. [Google Scholar] [CrossRef] - Guendelman, E.I.; Kaganovich, A.B. Exotic low density fermion states in the two measures field theory: Neutrino dark energy. Int. J. Mod. Phys. A
**2006**, 21, 4373–4406. [Google Scholar] [CrossRef] - Guendelman, E.; Herrera, R.; Labrana, P.; Nissimov, E.; Pacheva, S. Emergent cosmology, inflation and dark energy. Gen. Relat. Gravit.
**2015**, 47, 10. [Google Scholar] [CrossRef] - Benisty, D.; Guendelman, E.I. Unified DE–DM with diffusive interactions scenario from scalar fields. Int. J. Mod. Phys. D
**2017**, 26, 1743021. [Google Scholar] [CrossRef][Green Version] - Guendelman, E.I. Gravitational Theory with a Dynamical Time. Int. J. Mod. Phys. A
**2010**, 25, 4081–4099. [Google Scholar] [CrossRef] - Benisty, D.; Guendelman, E.I. Radiation Like Scalar Field and Gauge Fields in Cosmology for a theory with Dynamical Time. Mod. Phys. Lett. A
**2016**, 31, 1650188. [Google Scholar] [CrossRef] - Calogero, S. A kinetic theory of diffusion in general relativity with cosmological scalar field. J. Cosmol. Astropart. Phys.
**2011**, 2011, 016. [Google Scholar] [CrossRef] - Vulfs, T.O.; Guendelman, E.I. Galileon string measure and other modified measure extended objects. Mod. Phys. Lett. A
**2017**, 32, 1750211. [Google Scholar] [CrossRef][Green Version] - Vulfs, T.O.; Guendelman, E.I. Superstrings with the Galileon Measure. Ann. Phys.
**2018**, 398, 138–145. [Google Scholar] [CrossRef] - Benisty, D.; Guendelman, E.I. Interacting Diffusive Unified Dark Energy and Dark Matter from Scalar Fields. Eur. Phys. J. C
**2017**, 77, 396. [Google Scholar] [CrossRef] - Benisty, D.; Guendelman, E.I. A transition between bouncing hyper-inflation to ⋀CDM from diffusive scalar fields. arXiv, 2017; arXiv:1710.10588. [Google Scholar]
- Bronnikov, K.A.; Fabris, J.C. Regular phantom black holes. Phys. Rev. Lett.
**2006**, 96, 251101. [Google Scholar] [CrossRef] [PubMed] - Wheeler, J.T. Horizons and singularities in static, spherically symmetric spacetimes. Found. Phys.
**1995**, 25, 645–679. [Google Scholar] [CrossRef] - Pound, A. Motion of small objects in curved spacetimes: An introduction to gravitational self-force. Fund. Theor. Phys.
**2015**, 179, 399–486. [Google Scholar] - O’Brien, J.G.; Chiarelli, T.L.; Mannheim, P.D. Universal properties of galactic rotation curves and a first principles derivation of the Tully–Fisher relation. Phys. Lett. B
**2018**, 782, 433–439. [Google Scholar] [CrossRef] - Mannheim, P.D.; O’Brien, J.G. Impact of a global quadratic potential on galactic rotation curves. Phys. Rev. Lett.
**2011**, 106, 121101. [Google Scholar] [CrossRef] [PubMed] - Mannheim, P.D.; O’Brien, J.G. Fitting galactic rotation curves with conformal gravity and a global quadratic potential. Phys. Rev. D
**2012**, 85, 124020. [Google Scholar] [CrossRef] - O’Brien, J.G.; Mannheim, P.D. Fitting dwarf galaxy rotation curves with conformal gravity. Mon. Not. R. Astron. Soc.
**2012**, 421, 1273–1282. [Google Scholar] [CrossRef][Green Version] - Mannheim, P.D. Mass Generation, the Cosmological Constant Problem, Conformal Symmetry, and the Higgs Boson. Prog. Part. Nucl. Phys.
**2017**, 94, 125–183. [Google Scholar] [CrossRef] - Milgrom, M. Dynamics with a non-standard inertia-acceleration relation: An alternative to dark matter. Ann. Phys.
**1994**, 229, 384–415. [Google Scholar] [CrossRef]

**Figure 1.**Plots of the coefficient $A\left(r\right)$ versus r for different values of ${A}_{0}$. The red, blue and black solid lines represent ${A}_{0}=1.3$, ${A}_{0}=1.7$ and ${A}_{0}=5$ respectively. We have chosen the parameters $a=0.001$ and $b={r}_{0}=1$ and ${A}_{0}=1$. Negative values of r are also plotted which represent the other universe.

**Figure 2.**Plot of the potential ${V}_{1}\left(r\right)$ versus r for ${\varphi}_{0}=1$, $b=2.5$, $a=0.001$, $\lambda =0.00001$, ${C}_{2}=0.1$, ${V}_{0}=100$ and ${A}_{0}=-1$.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bahamonde, S.; Benisty, D.; Guendelman, E.I.
Linear Potentials in Galaxy Halos by Asymmetric Wormholes. *Universe* **2018**, *4*, 112.
https://doi.org/10.3390/universe4110112

**AMA Style**

Bahamonde S, Benisty D, Guendelman EI.
Linear Potentials in Galaxy Halos by Asymmetric Wormholes. *Universe*. 2018; 4(11):112.
https://doi.org/10.3390/universe4110112

**Chicago/Turabian Style**

Bahamonde, Sebastian, David Benisty, and Eduardo I. Guendelman.
2018. "Linear Potentials in Galaxy Halos by Asymmetric Wormholes" *Universe* 4, no. 11: 112.
https://doi.org/10.3390/universe4110112