Spacetime Continuity and Quantum Information Loss
Abstract
:1. Introduction
2. Asymptotic Null Origin
3. Asymptotic Timelike Origin
4. How Discontinuous?
5. Restriction on Entropy
6. Restriction on Energy
7. Mass of the Remnant
8. Constant Energy Flux and Equilibrium Temperature
9. Particle Spectrum
10. No Restriction on Total Particle Count: Soft Hair
11. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Fulling, S.A.; Davies, P.C.W. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A 1976, 348, 393–414. [Google Scholar] [CrossRef]
- Davies, P.C.W.; Fulling, S.A. Radiation from moving mirrors and from black holes. Proc. R. Soc. Lond. A 1977, 356, 237–257. [Google Scholar] [CrossRef]
- Fulling, S.A.; Wilson, J.H. The Equivalence Principle at Work in Radiation from Unaccelerated Atoms and Mirrors. arXiv, 2018; arXiv:1805.01013. [Google Scholar] [CrossRef]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Mirror Reflections of a Black Hole. Phys. Rev. D 2016, 94, 065010. [Google Scholar] [CrossRef]
- Good, M.R.R.; Yelshibekov, K.; Ong, Y.C. On Horizonless Temperature with an Accelerating Mirror. J. High Energy Phys. 2017, 2017, 13. [Google Scholar] [CrossRef]
- Good, M.R.R.; Ong, Y.C.; Myrzakul, A.; Yelshibekov, K. Giant Tortoise Coordinate. arXiv, 2018; arXiv:1801.08020. [Google Scholar]
- Myrzakul, A.; Good, M.R.R. Unitary evaporation via modified Regge-Wheeler coordinate. arXiv, 2018; arXiv:1807.10627. [Google Scholar]
- Wilczek, F. Quantum purity at a small price: Easing a black hole paradox. In Proceedings of the International Symposium on Black Holes, Membranes, Wormholes and Superstrings, Woodlands, TX, USA, 16–18 January 1992; pp. 306–377. [Google Scholar]
- Chen, P.; Ong, Y.C.; Yeom, D.H. Black Hole Remnants and the Information Loss Paradox. Phys. Rep. 2015, 603, 1–45. [Google Scholar] [CrossRef]
- Xiong, C.; Good, M.R.R.; Guo, Y.; Liu, X.; Huang, K. Relativistic superfluidity and vorticity from the nonlinear Klein-Gordon equation. Phys. Rev. D 2014, 90, 125019. [Google Scholar] [CrossRef]
- Waldron, O.; Van Gorder, R.A. A nonlinear Klein–Gordon equation for relativistic superfluidity. Phys. Scr. 2017, 92, 105001. [Google Scholar] [CrossRef]
- Good, M.R.R.; Xiong, C.; Chua, A.J.K.; Huang, K. Geometric creation of quantum vorticity. New J. Phys. 2016, 18, 113018. [Google Scholar] [CrossRef] [Green Version]
- Liberati, S.; Schuster, S.; Tricella, G.; Visser, M. Vorticity in analogue spacetimes. arXiv, 2018; arXiv:1802.04785. [Google Scholar]
- Good, M.R.R.; Ong, Y.C. Are black holes springlike? Phys. Rev. D 2015, 91, 044031. [Google Scholar] [CrossRef]
- Fabbri, A.; Navarro-Salas, J. Modeling Black Hole Evaporation; World Scientific: Singapore, 2005. [Google Scholar]
- Good, M.R.R. On Spin-Statistics and Bogoliubov Transformations in Flat Spacetime With Acceleration Conditions. Int. J. Mod. Phys. A 2013, 28, 1350008. [Google Scholar] [CrossRef]
- Carlitz, R.D.; Willey, R.S. Reflections on Moving Mirrors. Phys. Rev. D 1987, 36, 2327. [Google Scholar] [CrossRef]
- Cong, W.; Tjoa, E.; Mann, R.B. Entanglement Harvesting with Moving Mirrors in (1 + 1) Dimensions. arXiv, 2018; arXiv:1810.07359. [Google Scholar]
- Anderson, P.R.; Good, M.R.R.; Evans, C.R. Black Hole—Moving Mirror I: An Exact Correspondence. In Proceedings of the 14th Marcel Grossmann Meeting, Rome, Italy, 12–18 July 2015. [Google Scholar]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Black Hole—Moving Mirror II: Particle Creation. arXiv, 2015; arXiv:1507.05048. [Google Scholar]
- Good, M.R.R. Reflections on a Black Mirror. In Everything about Gravity: Proceedings of the Second LeCosPA International Symposium; World Scientific: Singapore, 2017. [Google Scholar] [Green Version]
- Good, M.R.R. Reflecting at the Speed of Light. In Memorial Volume for Kerson Huang; Phua, K.K., Low, H.B., Xiong, C., Eds.; World Scientific: Singapore, 2018; Chapter 14; pp. 113–116. [Google Scholar] [CrossRef]
- Mann, R.B.; Nagle, I.; Terno, D.R. Transition to Light-Like trajectories in Thin Shell Dynamics. Nucl. Phys. B 2018, 936, 19–35. [Google Scholar] [CrossRef]
- Good, M.R.R.; Linder, E.V. Slicing the Vacuum: New Accelerating Mirror Solutions of the Dynamical Casimir Effect. Phys. Rev. D 2017, 96, 125010. [Google Scholar] [CrossRef]
- Good, M.R.R.; Linder, E.V. Eternal and evanescent black holes and accelerating mirror analogs. Phys. Rev. D 2018, 97, 065006. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Yeom, D.H. Entropy evolution of moving mirrors and the information loss problem. Phys. Rev. D 2017, 96, 025016. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Linder, E.V. Finite Energy but Infinite Entropy Production from Moving Mirrors. arXiv, 2018; arXiv:1807.08632. [Google Scholar]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Time Dependence of Particle Creation from Accelerating Mirrors. Phys. Rev. D 2013, 88, 025023. [Google Scholar] [CrossRef]
- Hawking, S.W.; Perry, M.J.; Strominger, A. Soft Hair on Black Holes. Phys. Rev. Lett. 2016, 116, 231301. [Google Scholar] [CrossRef] [PubMed]
1. | |
2. | |
3. | Interestingly, the speed of light can be timelike approached if the acceleration asymptotes to zero sufficiently fast (see [23]). |
4. |
Quantity | Continuity | Unitarity |
---|---|---|
u | ||
∞ | ||
E | ∞ | |
T | ||
N | ∞ | ∞ |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Good, M.R.R. Spacetime Continuity and Quantum Information Loss. Universe 2018, 4, 122. https://doi.org/10.3390/universe4110122
Good MRR. Spacetime Continuity and Quantum Information Loss. Universe. 2018; 4(11):122. https://doi.org/10.3390/universe4110122
Chicago/Turabian StyleGood, Michael R. R. 2018. "Spacetime Continuity and Quantum Information Loss" Universe 4, no. 11: 122. https://doi.org/10.3390/universe4110122
APA StyleGood, M. R. R. (2018). Spacetime Continuity and Quantum Information Loss. Universe, 4(11), 122. https://doi.org/10.3390/universe4110122