# Dark Energy and Spacetime Symmetry

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Vacuum Dark Energy

#### 2.1. Vacuum Dark Fluid

#### 2.2. Spherically Symmetric Vacuum Dark Energy

## 3. Regular Cosmological Models

## 4. Spacetime Singled Out By the Holographic Principle

## 5. Regular Compact Objects with de Sitter Vacuum Interiors

#### 5.1. Regular Black Holes and Vacuum Gravitational Solitons G-Lumps

#### 5.2. Regular Black Hole Remnants

#### 5.3. Graviatoms with the de Sitter Interiors

#### 5.4. Mass and Spacetime Symmetry

## 6. Summary and Discussion

## Conflicts of Interest

## References

- Anderson, L.; Aubourg, E.; Bailey, S.; Beutler, F.; Bhardwaj, V.; Blanton, M.; Bolton, A.S.; Brinkmann, J.; Brownstein, J.R.; Burden, A.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Mon. Not. R. Astron. Soc.
**2014**, 441, 24–62. [Google Scholar] [CrossRef] [Green Version] - Joyce, A.; Lombriser, L.; Schmidt, F. Dark Energy Versus Modified Gravity. Ann. Rev. Nucl. Part. Sci.
**2016**, 66, 95–122. [Google Scholar] [CrossRef] - Rivera, A.B.; Farieta, J.G. Exploring the Dark Universe: Constraint on dynamical dark energy models from CMB, BAO and Growth Rate Measurements. arXiv, 2016; arXiv:1605.01984. [Google Scholar]
- Colepand, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D
**2006**, 15, 1753–1936. [Google Scholar] - Dymnikova, I. Vacuum nonsingular black hole. Gen. Relativ. Gravit.
**1992**, 24, 235–242. [Google Scholar] [CrossRef] - Dymnikova, I. The algebraic structure of a cosmological term in spherically symmetric solutions. Phys. Lett. B
**2000**, 472, 33–38. [Google Scholar] [CrossRef] - Dymnikova, I.; Galaktionov, E. Vacuum dark fluid. Phys. Lett. B
**2007**, 645, 358–364. [Google Scholar] [CrossRef] - Dymnikova, I. The cosmological term as a source of mass. Class. Quantum Gravity
**2002**, 19, 725–740. [Google Scholar] [CrossRef] - Dymnikova, I. Spherically symmetric space-time with the regular de Sitter center. Int. J. Mod. Phys. D
**2003**, 12, 1015–1034. [Google Scholar] [CrossRef] - Bronnikov, K.A.; Dymnikova, I.; Galaktionov, E. Multihorizon spherically symmetric spacetimes with several scales of vacuum energy. Class. Quantum Gravity
**2012**, 29, 095025–095047. [Google Scholar] [CrossRef] - Dymnikova, I.; Soltysek, B. Spherically symmetric space-time with two cosmological constants. Gen. Relativ. Gravit.
**1998**, 30, 1775–1793. [Google Scholar] [CrossRef] - Bronnikov, K.A.; Dobosz, A.; Dymnikova, I. Nonsingular vacuum cosmologies with a variable cosmological term. Class. Quantum Gravity
**2003**, 20, 3797–3814. [Google Scholar] [CrossRef] - Bronnikov, K.A.; Dymnikova, I. Regular homogeneous T-models with vacuum dark fluid. Class. Quantum Gravity
**2007**, 24, 5803–5816. [Google Scholar] [CrossRef] - Gibbons, G.W.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D
**1977**, 15, 2738–2751. [Google Scholar] [CrossRef] - Padmanabhan, T. Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes. Class. Quantum Gravity
**2002**, 19, 5387–5408. [Google Scholar] [CrossRef] - Dymnikova, I.; Korpusik, M. Regular black hole remnants in de Sitter space. Phys. Lett. B
**2010**, 685, 12–18. [Google Scholar] [CrossRef] - ’t Hooft, G. Dimensional reduction in quantum gravity. arXiv, 1999; arXiv:9310026. [Google Scholar]
- Susskind, L. The World as a hologram. J. Math. Phys.
**1995**, 36, 6377–6396. [Google Scholar] [CrossRef] - Dymnikova, I. Triple-horizon spherically symmetric spacetime and holographic principle. Int. J. Mod. Phys. D
**2012**, 21, 1242007. [Google Scholar] [CrossRef] - Dymnikova, I. De Sitter-Schwarzschild black hole: Its particlelike core and thermodynamical properties. Int. J. Mod. Phys. D
**1996**, 5, 529–540. [Google Scholar] [CrossRef] - Poisson, E.; Israel, W. Structure of the black hole nucleus. Class. Quantum Gravity
**1988**, 5, L201–L205. [Google Scholar] [CrossRef] - Frolov, V.P.; Markov, M.A.; Mukhanov, V.F. Black holes as possible sources of closed and semiclosed worlds. Phys. Rev. D
**1990**, 41, 383–394. [Google Scholar] [CrossRef] - Dymnikova, I. Internal structure of nonsingular spherical black holes. In Internal Sructure of Black Holes and Spacetime Singularities; Burko, M., Ori, A., Eds.; Institute of Physics Publishing: Bristol, UK, 1997; Volume 13, pp. 422–440. [Google Scholar]
- Perez, A. Spin foam models for quantum gravity. Class. Quantum Gravity
**2003**, 20, R43–R104. [Google Scholar] [CrossRef] - Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Bonanno, A.; Reuter, M. Spacetime structure of an evaporating black hole in quantum gravity. Phys. Rev. D
**2006**, 73, 083005–083017. [Google Scholar] [CrossRef] - Nicolini, P. Noncommutative black holes, the final appeal to quantum gravity: A review. Int. J. Mod. Phys. A
**2009**, 24, 1229–1308. [Google Scholar] [CrossRef] - Myung, Y.S.; Kim, Y.W.; Park, Y.J. Black hole thermodynamics with generalized uncertainty principle. Phys. Lett. B
**2007**, 645, 393–397. [Google Scholar] [CrossRef] - Dymnikova, I.; Galaktionov, E. Dark ingredients in one drop. Cent. Eur. J. Phys.
**2011**, 9, 644–653. [Google Scholar] [CrossRef] - Polnarev, A.G.; Khlopov, M.Y. Cosmology, primordial black holes, and supermassive particles. Sov. Phys. Uspekhi
**1985**, 28, 213–232. [Google Scholar] [CrossRef] - MacGibbon, J.H. Can Planck-mass relics of evaporating black holes close the Universe? Nature
**1987**, 329, 308–309. [Google Scholar] [CrossRef] - Carr, B.J.; Gilbert, J.H.; Lidsey, J.E. Black hole relics and inflation: Limits on blue perturbation spectra. Phys. Rev. D
**1994**, 50, 4853–4867. [Google Scholar] [CrossRef] - Ellis, G.F.R. Astrophysical black holes may radiate, but they do not evaporate. arXiv, 2013; arXiv:1310.4771. [Google Scholar]
- Dymnikova, I. Regular black hole remnants. In Proceedings of the International Conference on Invisible Universe, Paris, France, 29 June–3 July 2009.
- Dymnikova, I.; Korpusik, M. Thermodynamics of Regular Cosmological Black Holes with the de Sitter Interior. Entropy
**2011**, 13, 1967–1991. [Google Scholar] [CrossRef] - Boyanovsky, D.; de Vega, H.J.; Schwarz, D.J. Phase transitions in the early and present universe. Ann. Rev. Nucl. Part. Sci.
**2006**, 56, 441–500. [Google Scholar] [CrossRef] - Dymnikova, I.; Fil’chenkov, M. Graviatoms with de Sitter interior. Adv. High Energy Phys.
**2013**, 2013, 746894. [Google Scholar] [CrossRef] - Grib, A.A.; Pavlov, Yu.V. Do active galactic nuclei convert dark matter unto visible particles? Mod. Phys. Lett. A
**2008**, 23, 1151–1159. [Google Scholar] [CrossRef] - Dymnikova, I.; Khlopov, M. Regular black hole remnants and graviatoms with de Sitter interior as heavy dark matter candidates probing inhomogeneity of the early universe. Int. J. Mod. Phys. D
**2015**, 24, 1545002. [Google Scholar] [CrossRef] - Kalashev, O.E.; Rubtsov, G.I.; Troitsky, S.V. Sensitivity of cosmic-ray experiments to ultrahigh-energy photons: reconstruction of the spectrum and limits on the superheavy dark matter. Phys. Rev. D
**2009**, 80, 103006. [Google Scholar] [CrossRef] - Ahluwalia, D.V.; Dymnikova, I. A theoretical case for negative mass-square for sub-eV particles. Int. J. Mod. Phys. D
**2003**, 12, 1787–1794. [Google Scholar] [CrossRef] - Dymnikova, I. Space-time symmetry and mass of a lepton. J. Phys. A: Math. Theor.
**2008**, 41, 304033–304053. [Google Scholar] [CrossRef] - Dymnikova, I.; Sakharov, A.; Ulbricht, J. Appearance of a minimal length in e+ e- annihilation. Adv. High Energy Phys.
**2014**, 2014, 707812. [Google Scholar] [CrossRef] - Gürses, M.; Gürsey, F. Lorentz covariant treatment ofthe Kerr-Schild geometry. J. Math. Phys.
**1975**, 16, 2385–2396. [Google Scholar] [CrossRef] - Guendelman, E.I.; Rabinowitz, A.I. Linearity Non Self-Interacting Spherically Symmetric Gravitational Fields, the “Sphereland Equivalence Principle” and Hamiltonian Bubbles. Gen. Relativ. Gravit.
**1996**, 28, 117–128. [Google Scholar] [CrossRef]

**Figure 1.**Typical behavior of the metric function $g\left(r\right)$ for the case of two vacuum scales.

**Figure 5.**Evolution of the Schwarzschild-de Sitter black hole in the case of complete evaporation. (

**a**) Schwarzschild-de Sitter metric function; (

**b**) De Sitter metric function and global structure.

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dymnikova, I.
Dark Energy and Spacetime Symmetry. *Universe* **2017**, *3*, 20.
https://doi.org/10.3390/universe3010020

**AMA Style**

Dymnikova I.
Dark Energy and Spacetime Symmetry. *Universe*. 2017; 3(1):20.
https://doi.org/10.3390/universe3010020

**Chicago/Turabian Style**

Dymnikova, Irina.
2017. "Dark Energy and Spacetime Symmetry" *Universe* 3, no. 1: 20.
https://doi.org/10.3390/universe3010020