Nonlinear Gravitational Waves as Dark Energy in Warped Spacetimes
Abstract
:1. Introduction
2. The Multiple-Scale Approximation on a Warped Brane World Spacetime
3. The Metric Perturbations up to Second Order
4. The Matter Field Equations and the Energy-Momentum Tensor Expansion
5. The Warp Factor as Local Conformal Symmetry
6. Conclusions
Conflicts of Interest
Appendix A. The Background and First Order Perturbation Equations
Appendix B. The Second Order Perturbation Equations
Appendix C. The Energy Momentum Tensor Components
References
- Shiromizu, T.; Maeda, K.; Sasaki, M. The Einstein equations on the 3-brane world. Phys. Rev. D 2000, 62, 024012. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370–3373. [Google Scholar] [CrossRef]
- Maartens, R. Dark energy from brane-world gravity. Lect. Notes Phys. 2007, 720, 323–328. [Google Scholar]
- Hutsemekers, D.; Braibant, L.; Pelgrims, V.; Sluse, D. Alignment of quasar polarizations with large-scale structures. Astron. Astrophys. 2014, 572, A18. [Google Scholar] [CrossRef]
- Slagter, R.J.; Pan, S. New fate of a warped 5D FLRW model with a U(1) scalar gauge field. Found. Phys. 2016, 46, 1075–1089. [Google Scholar] [CrossRef]
- Slagter, R.J. Alignment of quasar polarizations on large scales explained by warped cosmic strings. J. Mod. Phys. 2016, 7, 501–509. [Google Scholar] [CrossRef]
- Slagter, R.J. Evidence of cosmic strings by observation of the alignment of quasar polarization axes. arXiv, 2016; arXiv:1609.05068. [Google Scholar]
- Vilenkin, A.; Shellard, E.P.S. Cosmic Strings and Other Topological Defects; Lanshoff, P.V., Ed.; Cambridge Univiversity Press: Cambrigde, UK, 1994. [Google Scholar]
- Garfinkle, D. General relativistic strings. Phys. Rev. D 1985, 32, 1323–1329. [Google Scholar] [CrossRef]
- Laguna-Castilo, P.; Matzner, R.A. Coupled field solutions for U(1)-gauge cosmic strings. Phys. Rev D 1987, 36, 3663–3673. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Searching for cosmic strings in new observational windows. Nucl. Phys. B Proc. Suppl. 2014, 246–247, 45–57. [Google Scholar] [CrossRef]
- Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R.X.; et al. Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. Phys. Rev. Lett. 2014, 112, 131101. [Google Scholar]
- Dvali, G.; Vilenkin, A. Formation and evolution of cosmic D strings. J. Cosmol. Astropart. Phys. 2004, 2004, 010. [Google Scholar] [CrossRef]
- Slagter, R.J. Time evolution of a warped cosmic string. Int. J. Mod. Phys. D 2014, 23, 1450066. [Google Scholar] [CrossRef]
- Choquet-Bruhat, Y. Construction de solutions radiatives approchees des equations d’Einstein. Commun. Math. Phys. 1969, 12, 16–35. [Google Scholar] [CrossRef]
- Choquet-Bruhat, Y. High-frequency, self-gravitating, charged scalar fields. Gen. Relat. Grav. 1977, 8, 561–571. [Google Scholar] [CrossRef]
- Slagter, R.J. High frequency perturbations and gravitational collapse in gravity theory coupled with a Higgs field. Astrophys. J. 1986, 307, 20–29. [Google Scholar] [CrossRef]
- Choquet-Bruhat, Y. General Relativity and the Einstein Equations; Oxford Science Publications: Oxford, UK, 2009. [Google Scholar]
- Bogomol’nyi, E. The stability of classical solutions. Sov. J. Nucl. Phys. 1976, 24, 449–454. [Google Scholar]
- Choquet-Bruhat, Y. The Cauchy problem for stringy gravity. J. Math. Phys. 1988, 29, 1891–1895. [Google Scholar] [CrossRef]
- Felsager, B. Geometry, Particles and Fields; Odense University Press: Odense, Denmark, 1987. [Google Scholar]
- Chandrasekhar, S.; Lebovitz, N.R. On a criterion for the occurrence of a Dedekind-like point of bifurcation along a sequence of axisymmetric systems. II. Newtonian theory for differentially rotating configurations. Astrophys. J. 1973, 185, 19–30. [Google Scholar] [CrossRef]
- ’T Hooft, G. Local conformal symmetry: The missing symmetry component for space and time. arXiv, 2015; arXiv:1410.6675. [Google Scholar]
- Wald, R.W. General Relativity; The University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Maldacena, J. Einstein gravity from conformal gravity. arXiv, 2011; arXiv:1105.5632. [Google Scholar]
- 1The interested reader can obtain the computer-algebra program from the author.
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slagter, R.J. Nonlinear Gravitational Waves as Dark Energy in Warped Spacetimes. Universe 2017, 3, 11. https://doi.org/10.3390/universe3010011
Slagter RJ. Nonlinear Gravitational Waves as Dark Energy in Warped Spacetimes. Universe. 2017; 3(1):11. https://doi.org/10.3390/universe3010011
Chicago/Turabian StyleSlagter, Reinoud Jan. 2017. "Nonlinear Gravitational Waves as Dark Energy in Warped Spacetimes" Universe 3, no. 1: 11. https://doi.org/10.3390/universe3010011
APA StyleSlagter, R. J. (2017). Nonlinear Gravitational Waves as Dark Energy in Warped Spacetimes. Universe, 3(1), 11. https://doi.org/10.3390/universe3010011