Study on the Gamma-Ray Radiation Properties of High-Redshift Blazars at z > 2.5
Abstract
1. Introduction
2. High-Energy Emission of High-Redshift Blazars
2.1. Sample and Data Reduction
2.2. High-Energy Spectra
3. Broadband Spectral Energy Distribution Modeling
3.1. Modeling the Broadband Emission
3.2. Spectral Energy Distribution Modeling Results
4. Discussion and Conclusions
4.1. High-Energy Radiation Properties
4.2. Disk–Jet Connection
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Most high-redshift blazars in the 4LAC-DR3 catalog have a Variability Index > 100 [41]. |
2 | The spectral shapes during the flaring and quiescent states differ significantly. However, we directly modeled the averaged state over a 17-year period. As a result, the total spectrum represents a superposition of different spectral states rather than a single-state spectrum. This blending complicates the characterization of the spectral curvature and makes it more difficult to constrain. |
3 | http://tools.ssdc.asi.it/SED/ (accessed on 5 August 2025). |
4 |
References
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef]
- Stickel, M.; Padovani, P.; Urry, C.M.; Fried, J.W.; Kuehr, H. The Complete Sample of 1 Jansky BL Lacertae Objects. I. Summary Properties. Astrophys. J. 1991, 374, 431. [Google Scholar] [CrossRef]
- Landau, R.; Golisch, B.; Jones, T.J.; Jones, T.W.; Pedelty, J.; Rudnick, L.; Sitko, M.L.; Kenney, J.; Roellig, T.; Salonen, E.; et al. Active Extragalactic Sources: Nearly Simultaneous Observations from 20 Centimeters to 1400 Angstrom. Astrophys. J. 1986, 308, 78. [Google Scholar] [CrossRef]
- Ghisellini, G.; George, I.M.; Done, C. Frequency-dependent variability in synchrotron self-Compton models. Mon. Not. R. Astron. Soc. 1989, 241, 43P–49P. [Google Scholar] [CrossRef]
- Bloom, S.D.; Marscher, A.P. An Analysis of the Synchrotron Self-Compton Model for the Multi–Wave Band Spectra of Blazars. Astrophys. J. 1996, 461, 657. [Google Scholar] [CrossRef]
- Ghisellini, G.; Maraschi, L.; Treves, A. Inhomogeneous synchrotron-self-compton models and the problem of relativistic beaming of BL Lac objects. Astron. Astrophys. 1985, 146, 204–212. [Google Scholar]
- Błażejowski, M.; Sikora, M.; Moderski, R.; Madejski, G.M. Comptonization of Infrared Radiation from Hot Dust by Relativistic Jets in Quasars. Astrophys. J. 2000, 545, 107–116. [Google Scholar] [CrossRef]
- Sikora, M.; Begelman, M.C.; Rees, M.J. Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? Astrophys. J. 1994, 421, 153. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F. Canonical high-power blazars. Mon. Not. R. Astron. Soc. 2009, 397, 985–1002. [Google Scholar] [CrossRef]
- Costamante, L.; Cutini, S.; Tosti, G.; Antolini, E.; Tramacere, A. On the origin of gamma-rays in Fermi blazars: Beyondthe broad-line region. Mon. Not. R. Astron. Soc. 2018, 477, 4749–4767. [Google Scholar] [CrossRef]
- Wu, F.; Hu, W.; Dai, B. The Nature of the High-energy γ-Ray Radiation Associated with the High-redshift Blazar B3 1343+451. Astrophys. J. 2024, 972, 183. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tagliaferri, G.; Foschini, L.; Ghirlanda, G.; Tavecchio, F.; Della Ceca, R.; Haardt, F.; Volonteri, M.; Gehrels, N. High-redshift Fermi blazars. Mon. Not. R. Astron. Soc. 2011, 411, 901–914. [Google Scholar] [CrossRef]
- Sahakyan, N.; Israyelyan, D.; Harutyunyan, G.; Khachatryan, M.; Gasparyan, S. Multiwavelength study of high-redshift blazars. Mon. Not. R. Astron. Soc. 2020, 498, 2594–2613. [Google Scholar] [CrossRef]
- Sahakyan, N.; Harutyunyan, G.; Gasparyan, S.; Israyelyan, D. Broad-band study of gamma-ray blazars at redshifts z = 2.0-2.5. Mon. Not. R. Astron. Soc. 2024, 528, 5990–6009. [Google Scholar] [CrossRef]
- Ghisellini, G.; Della Ceca, R.; Volonteri, M.; Ghirlanda, G.; Tavecchio, F.; Foschini, L.; Tagliaferri, G.; Haardt, F.; Pareschi, G.; Grindlay, J. Chasing the heaviest black holes of jetted active galactic nuclei. Mon. Not. R. Astron. Soc. 2010, 405, 387–400. [Google Scholar] [CrossRef]
- Wu, J.; Brandt, W.N.; Miller, B.P.; Garmire, G.P.; Schneider, D.P.; Vignali, C. An X-Ray and Multiwavelength Survey of Highly Radio-loud Quasars at z > 4: Jet-linked Emission in the Brightest Radio Beacons of the Early Universe. Astrophys. J. 2013, 763, 109. [Google Scholar] [CrossRef]
- Zhu, S.F.; Brandt, W.N.; Wu, J.; Garmire, G.P.; Miller, B.P. Investigating the X-ray enhancements of highly radio-loud quasars at z > 4. Mon. Not. R. Astron. Soc. 2019, 482, 2016–2038. [Google Scholar] [CrossRef]
- Paliya, V.S.; Ajello, M.; Cao, H.M.; Giroletti, M.; Kaur, A.; Madejski, G.; Lott, B.; Hartmann, D. Blazars at the Cosmic Dawn. Astrophys. J. 2020, 897, 177. [Google Scholar] [CrossRef]
- Marcotulli, L.; Paliya, V.; Ajello, M.; Kaur, A.; Marchesi, S.; Rajagopal, M.; Hartmann, D.; Gasparrini, D.; Ojha, R.; Madejski, G. NuSTAR Perspective on High-redshift MeV Blazars. Astrophys. J. 2020, 889, 164. [Google Scholar] [CrossRef]
- Mannheim, K. The proton blazar. Astron. Astrophys. 1993, 269, 67–76. [Google Scholar] [CrossRef]
- Mücke, A.; Protheroe, R.J.; Engel, R.; Rachen, J.P.; Stanev, T. BL Lac objects in the synchrotron proton blazar model. Astropart. Phys. 2003, 18, 593–613. [Google Scholar] [CrossRef]
- Böttcher, M.; Reimer, A.; Marscher, A.P. Implications of the very High Energy Gamma-Ray Detection of the Quasar 3C279. Astrophys. J. 2009, 703, 1168–1175. [Google Scholar] [CrossRef]
- Mastichiadis, A.; Petropoulou, M. Hadronic X-Ray Flares from Blazars. Astrophys. J. 2021, 906, 131. [Google Scholar] [CrossRef]
- Yuan, F.; Narayan, R. On the Nature of X-Ray-Bright, Optically Normal Galaxies. Astrophys. J. 2004, 612, 724–728. [Google Scholar] [CrossRef]
- Rees, M.J.; Begelman, M.C.; Blandford, R.D.; Phinney, E.S. Ion-supported tori and the origin of radio jets. Nature 1982, 295, 17–21. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Marziani, P.; Dultzin-Hacyan, D. Phenomenology of Broad Emission Lines in Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2000, 38, 521–571. [Google Scholar] [CrossRef]
- Taam, R.E.; Liu, B.F.; Yuan, W.; Qiao, E. Disk Corona Interaction: Mechanism for the Disk Truncation and Spectrum Change in Low-luminosity Active Galactic Nuclei. Astrophys. J. 2012, 759, 65. [Google Scholar] [CrossRef]
- Wielgus, M.; Lančová, D.; Straub, O.; Kluźniak, W.; Narayan, R.; Abarca, D.; Różańska, A.; Vincent, F.; Török, G.; Abramowicz, M. Observational properties of puffy discs: Radiative GRMHD spectra of mildly sub-Eddington accretion. Mon. Not. R. Astron. Soc. 2022, 514, 780–789. [Google Scholar] [CrossRef]
- Narayan, R.; Sa̧dowski, A.; Soria, R. Spectra of black hole accretion models of ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 2017, 469, 2997–3014. [Google Scholar] [CrossRef]
- Narayan, R.; Raymond, J. Thermal X-Ray Line Emission from Accreting Black Holes. Astrophys. J. 1999, 515, L69–L72. [Google Scholar] [CrossRef][Green Version]
- Chiang, C.Y.; Done, C.; Still, M.; Godet, O. An additional soft X-ray component in the dim low/hard state of black hole binaries. Mon. Not. R. Astron. Soc. 2010, 403, 1102–1112. [Google Scholar] [CrossRef][Green Version]
- Ghisellini, G.; Haardt, F.; Della Ceca, R.; Volonteri, M.; Sbarrato, T. The role of relativistic jets in the heaviest and most active supermassive black holes at high redshift. Mon. Not. R. Astron. Soc. 2013, 432, 2818–2823. [Google Scholar] [CrossRef]
- Volonteri, M.; Haardt, F.; Ghisellini, G.; Della Ceca, R. Blazars in the early Universe. Mon. Not. R. Astron. Soc. 2011, 416, 216–224. [Google Scholar] [CrossRef]
- Marscher, A.P.; Jorstad, S.G.; Gómez, J.L.; Aller, M.F.; Teräsranta, H.; Lister, M.L.; Stirling, A.M. Observational evidence for the accretion-disk origin for a radio jet in an active galaxy. Nature 2002, 417, 625–627. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F.; Maraschi, L.; Celotti, A.; Sbarrato, T. The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 2014, 515, 376–378. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhang, X.; Zhang, H.J.; Yu, X.L. Core-dominance parameter, black hole mass and jet-disc connection for Fermi blazars. Mon. Not. R. Astron. Soc. 2015, 451, 4193–4206. [Google Scholar] [CrossRef]
- Inoue, Y.; Doi, A.; Tanaka, Y.T.; Sikora, M.; Madejski, G.M. Disk-Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime. Astrophys. J. 2017, 840, 46. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, Q.; Fan, J.; Yu, X.; Ding, N.; Guo, X.; Xiong, D. Jet power extracted from ADAFs and the application to Fermi BL Lacertae objects. Mon. Not. R. Astron. Soc. 2023, 526, 4079–4092. [Google Scholar] [CrossRef]
- Ajello, M.; Baldini, L.; Ballet, J.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Berretta, A.; Bissaldi, E.; Bonino, R.; Brill, A.; et al. The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope: Data Release 3. Astrophys. J. Suppl. Ser. 2022, 263, 24. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, Q.; Fan, J.; Yu, X.; Zhong, X.; Liu, H.; Ding, N.; Xiong, D.; Guo, X. General Physical Properties of Fermi Blazars. Astrophys. J. Suppl. Ser. 2023, 268, 6. [Google Scholar] [CrossRef]
- Paliya, V.S.; Domínguez, A.; Ajello, M.; Olmo-García, A.; Hartmann, D. The Central Engines of Fermi Blazars. Astrophys. J. Suppl. Ser. 2021, 253, 46. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F. The blazar sequence: A new perspective. Mon. Not. R. Astron. Soc. 2008, 387, 1669–1680. [Google Scholar] [CrossRef]
- Harutyunyan, G. Multiwavelength Properties of Selected High Redshift Blazars. Astrophysics 2023, 66, 181–193. [Google Scholar] [CrossRef]
- Vercellone, S.; Donnarumma, I.; Pittori, C.; Capitanio, F.; De Rosa, A.; Di Gesu, L.; Kiehlmann, S.; Iacolina, M.N.; Pellizzoni, P.A.; Egron, E.; et al. Multiwavelength observations of the lensed quasar PKS 1830-211 during the 2019 γ-ray flare. Mon. Not. R. Astron. Soc. 2024, 527, 5717–5731. [Google Scholar] [CrossRef]
- Zhu, S.F.; Brandt, W.N.; Luo, B.; Wu, J.; Xue, Y.Q.; Yang, G. The LX-Luv-Lradio relation and corona-disc-jet connection in optically selected radio-loud quasars. Mon. Not. R. Astron. Soc. 2020, 496, 245–268. [Google Scholar] [CrossRef]
- Massaro, E.; Tramacere, A.; Perri, M.; Giommi, P.; Tosti, G. Log-parabolic spectra and particle acceleration in blazars. III. SSC emission in the TeV band from Mkn501. Astron. Astrophys. 2006, 448, 861–871. [Google Scholar] [CrossRef]
- Tramacere, A.; Massaro, E.; Taylor, A.M. Stochastic Acceleration and the Evolution of Spectral Distributions in Synchro-Self-Compton Sources: A Self-consistent Modeling of Blazars’ Flares. Astrophys. J. 2011, 739, 66. [Google Scholar] [CrossRef]
- Marconi, A.; Risaliti, G.; Gilli, R.; Hunt, L.K.; Maiolino, R.; Salvati, M. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Mon. Not. R. Astron. Soc. 2004, 351, 169–185. [Google Scholar] [CrossRef]
- Shankar, F.; Weinberg, D.H.; Miralda-Escudé, J. Self-Consistent Models of the AGN and Black Hole Populations: Duty Cycles, Accretion Rates, and the Mean Radiative Efficiency. Astrophys. J. 2009, 690, 20–41. [Google Scholar] [CrossRef]
- Davis, S.W.; Laor, A. The Radiative Efficiency of Accretion Flows in Individual Active Galactic Nuclei. Astrophys. J. 2011, 728, 98. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Yuan, F.; Narayan, R. Hot Accretion Flows Around Black Holes. Annu. Rev. Astron. Astrophys. 2014, 52, 529–588. [Google Scholar] [CrossRef]
- Jones, F.C. Calculated Spectrum of Inverse-Compton-Scattered Photons. Phys. Rev. 1968, 167, 1159–1169. [Google Scholar] [CrossRef]
- Dermer, C.D.; Schlickeiser, R. Transformation Properties of External Radiation Fields, Energy-Loss Rates and Scattered Spectra, and a Model for Blazar Variability. Astrophys. J. 2002, 575, 667–686. [Google Scholar] [CrossRef]
- Finke, J.D.; Razzaque, S.; Dermer, C.D. Modeling the Extragalactic Background Light from Stars and Dust. Astrophys. J. 2010, 712, 238–249. [Google Scholar] [CrossRef]
- Sikora, M.; Stawarz, Ł.; Moderski, R.; Nalewajko, K.; Madejski, G.M. Constraining Emission Models of Luminous Blazar Sources. Astrophys. J. 2009, 704, 38–50. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F.; Foschini, L.; Ghirlanda, G.; Maraschi, L.; Celotti, A. General physical properties of bright Fermi blazars. Mon. Not. R. Astron. Soc. 2010, 402, 497–518. [Google Scholar] [CrossRef]
- Tramacere, A.; Giommi, P.; Perri, M.; Verrecchia, F.; Tosti, G. Swift observations of the very intense flaring activity of Mrk 421 during 2006. I. Phenomenological picture of electron acceleration and predictions for MeV/GeV emission. Astron. Astrophys. 2009, 501, 879–898. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef]
- Abdollahi, S.; Acero, F.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Berretta, A.; Bissaldi, E.; Blandford, R.D.; et al. Incremental Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 2022, 260, 53. [Google Scholar] [CrossRef]
- Xiao, H.; Ouyang, Z.; Zhang, L.; Fu, L.; Zhang, S.; Zeng, X.; Fan, J. The Relativistic Jet and Central Engine of Fermi Blazars. Astrophys. J. 2022, 925, 40. [Google Scholar] [CrossRef]
- Celotti, A.; Ghisellini, G. The power of blazar jets. Mon. Not. R. Astron. Soc. 2008, 385, 283–300. [Google Scholar] [CrossRef]
- Fan, J.; Xiao, H.; Yang, W.; Zhang, L.; Strigachev, A.A.; Bachev, R.S.; Yang, J. Characterizing the Emission Region Properties of Blazars. Astrophys. J. Suppl. Ser. 2023, 268, 23. [Google Scholar] [CrossRef]
- Sahakyan, N. Broad-band study of high-synchrotron-peaked BL Lac object 1ES 1218+304. Mon. Not. R. Astron. Soc. 2020, 496, 5518–5527. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, Y.K.; Jiang, X.; Kiehlmann, S.; Readhead, A.C.S.; Chen, L.; Liao, N.H.; An, T. A γ-Ray-emitting Blazar at Redshift 3.64: Fermi-LAT and OVRO Observations of PKS 0201+113. Astrophys. J. 2024, 970, 185. [Google Scholar] [CrossRef]
- Zhu, K.R.; Chen, J.M.; Zhang, L. The Statistical Analysis of GeV Spectral Breaks in Bright Gamma-Ray Flat-spectrum Radio Quasars. Astrophys. J. Suppl. Ser. 2024, 275, 41. [Google Scholar] [CrossRef]
- Potter, W.J.; Cotter, G. Synchrotron and inverse-Compton emission from blazar jets—III. Compton-dominant blazars. Mon. Not. R. Astron. Soc. 2013, 431, 1840–1852. [Google Scholar] [CrossRef][Green Version]
- Xie, S.; Ouyang, Z.; Wu, J.; Xiao, H.; Zhang, S.; Chen, Y.; Luo, Z.; Fan, J. The Study of Jet Formation Mechanism in Fermi Blazars. Astrophys. J. 2024, 976, 78. [Google Scholar] [CrossRef]
- Böttcher, M.; Reimer, A.; Sweeney, K.; Prakash, A. Leptonic and Hadronic Modeling of Fermi-detected Blazars. Astrophys. J. 2013, 768, 54. [Google Scholar] [CrossRef]
- Keshet, U.; Waxman, E. Energy Spectrum of Particles Accelerated in Relativistic Collisionless Shocks. Phys. Rev. Lett. 2005, 94, 111102. [Google Scholar] [CrossRef]
- Summerlin, E.J.; Baring, M.G. Diffusive Acceleration of Particles at Oblique, Relativistic, Magnetohydrodynamic Shocks. Astrophys. J. 2012, 745, 63. [Google Scholar] [CrossRef]
- Achterberg, A.; Gallant, Y.A.; Kirk, J.G.; Guthmann, A.W. Particle acceleration by ultrarelativistic shocks: Theory and simulations. Mon. Not. R. Astron. Soc. 2001, 328, 393–408. [Google Scholar] [CrossRef]
- Ostrowski, M.; Bednarz, J. Comment on the first-order Fermi acceleration at ultra-relativistic shocks. Astron. Astrophys. 2002, 394, 1141–1144. [Google Scholar] [CrossRef]
- Virtanen, J.J.P.; Vainio, R. Stochastic Acceleration in Relativistic Parallel Shocks. Astrophys. J. 2005, 621, 313–323. [Google Scholar] [CrossRef]
- Chen, G.; Zheng, Z.; Zeng, X.; Zhang, L.; Xiao, H.; Liu, X.; Cui, L.; Fan, J. A Study of Broad Emission Line and Doppler Factor Estimation for Fermi Blazars. Astrophys. J. Suppl. Ser. 2024, 271, 20. [Google Scholar] [CrossRef]
- Tan, C.; Xue, R.; Du, L.M.; Xi, S.Q.; Wang, Z.R.; Xie, Z.H. The Physical Properties of Fermi-4LAC Flat Spectrum Radio Quasars. Astrophys. J. Suppl. Ser. 2020, 248, 27. [Google Scholar] [CrossRef]
- Rawlings, S.; Saunders, R. Evidence for a common central-engine mechanism in all extragalactic radio sources. Nature 1991, 349, 138–140. [Google Scholar] [CrossRef]
- Maraschi, L.; Tavecchio, F. The Jet-Disk Connection and Blazar Unification. Astrophys. J. 2003, 593, 667–675. [Google Scholar] [CrossRef]
- Xiong, D.R.; Zhang, X. Intrinsic γ-ray luminosity, black hole mass, jet and accretion in Fermi blazars. Mon. Not. R. Astron. Soc. 2014, 441, 3375–3395. [Google Scholar] [CrossRef][Green Version]
- Luna-Cervantes, J.; Tramacere, A.; Benítez, E. Exploring the nature of the jetted hybrid AGNs: PKS 2004-447, 3C 286, and PKS 0440-00 through the SED modeling. Mon. Not. R. Astron. Soc. 2024, 532, 3729–3746. [Google Scholar] [CrossRef]
- Sikora, M.; Madejski, G. On Pair Content and Variability of Subparsec Jets in Quasars. Astrophys. J. 2000, 534, 109–113. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79–L83. [Google Scholar] [CrossRef]
- Zamaninasab, M.; Clausen-Brown, E.; Savolainen, T.; Tchekhovskoy, A. Dynamically important magnetic fields near accreting supermassive black holes. Nature 2014, 510, 126–128. [Google Scholar] [CrossRef]
- Gardner, E.; Done, C. What powers the most relativistic jets?—II. Flat-spectrum radio quasars. Mon. Not. R. Astron. Soc. 2018, 473, 2639–2654. [Google Scholar] [CrossRef]
- Pjanka, P.; Zdziarski, A.A.; Sikora, M. The power and production efficiency of blazar jets. Mon. Not. R. Astron. Soc. 2017, 465, 3506–3514. [Google Scholar] [CrossRef]
Fermi Name | Source Name | R.A. | Dec. | z | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hz | Hz | (cm) | (cm) | (erg s−1) | |||||||||
J1510.1+5702 | GB 1508+5714 | 227.54 | 57.04 | 12.07 | −12.21 | 20.65 | −11.72 | 8.56 | 46.80 | 7.94 | 1.99 | 0.46 | 4.314 |
J1354.3-0206 | PKS 1351-018 | 208.60 | −2.11 | 11.99 | −12.37 | 20.84 | −11.28 | 9.06 | 46.50 | 5.62 | 1.41 | 1.45 | 3.716 |
J1635.6-3628 | MG3 J163554+3629 | 248.92 | 36.48 | 13.22 | −12.88 | 21.60 | −11.82 | 9.08 | 46.25 | 4.22 | 1.05 | 1.51 | 3.648 |
J1219.0+3653 | NVSS J121915+365718 | 184.77 | 36.89 | * | − * | * | − * | * | * | * | * | * | 3.528 |
J0833.4-0458 | PMN J0833-0454 | 128.37 | −4.97 | 12.80 | −12.62 | 21.12 | −11.82 | 9.77 | 47.17 | 12.20 | 3.04 | 7.42 | 3.450 |
J0337.8-1157 | PKS 0335-122 | 54.47 | −11.96 | 12.37 | −12.53 | 21.64 | −12.14 | 8.99 | 46.21 | 4.03 | 1.01 | 1.23 | 3.442 |
J2320.8-0823 | PKS 2318-087 | 350.22 | −8.39 | 12.76 | −12.99 | 20.65 | −11.69 | 9.47 | 46.48 | 5.50 | 1.37 | 3.72 | 3.164 |
J0539.9-2839 | PKS 0537-286 | 84.99 | −28.66 | 11.99 | −11.99 | 20.76 | −10.64 | 10.12 | 47.04 | 10.50 | 2.62 | 16.61 | 3.104 |
J0805.4+6147 | TXS 0800+618 | 121.36 | 61.79 | 12.20 | −12.24 | 20.84 | −10.80 | 9.47 | 46.69 | 7.00 | 1.75 | 3.72 | 3.033 |
J1428.9+5406 | S4 1427+543 | 217.23 | 54.11 | 12.38 | −12.64 | 21.00 | −11.87 | 9.33 | 46.19 | 3.94 | 0.98 | 2.69 | 3.013 |
J0733.8+0455 | GB6 J0733+0456 | 113.47 | 4.93 | * | − * | * | − * | * | * | * | * | * | 3.010 |
J0746.4+2546 | B2 0743+25 | 116.60 | 25.77 | 12.26 | −12.31 | 20.45 | −10.60 | 9.37 | 46.61 | 6.38 | 1.60 | 2.95 | 2.987 |
J0349.8-2103 | PKS 0347-211 | 57.47 | −21.06 | * | − * | * | − * | * | * | * | * | * | 2.944 |
J1127.4+5648 | S4 1124+57 | 171.86 | 56.80 | 12.17 | −12.64 | 20.95 | −11.67 | 8.72 | 46.80 | 7.94 | 1.99 | 0.66 | 2.893 |
J2313.9-4501 | PKS 2311-452 | 348.49 | −45.02 | 12.08 | −12.50 | 20.48 | −11.82 | 8.76 | 46.25 | 4.22 | 1.05 | 0.73 | 2.884 |
J0440.3-4332 | PKS 0438-43 | 70.09 | −43.55 | 11.66 | −12.11 | 20.50 | −11.70 | 9.41 | 46.59 | 6.24 | 1.56 | 3.24 | 2.863 |
J2015.4+6556 | S4 2015+65 | 303.86 | 65.95 | 12.59 | −12.23 | 20.75 | −11.75 | 8.82 | 46.47 | 5.43 | 1.36 | 0.83 | 2.845 |
J2145.5+1006 | 87GB 214302.1+095227 | 326.38 | 10.12 | * | * | * | * | * | * | * | * | * | 2.826 |
J1748.0+3403 | MG2 J174803+3403 | 267.01 | 34.06 | * | − * | * | − * | * | * | * | * | * | 2.763 |
J0836.5-2026 | PKS 0834-20 | 129.13 | −20.45 | 11.90 | −11.90 | 20.85 | −10.89 | 9.48 | 46.53 | 5.82 | 1.46 | 3.81 | 2.752 |
J0224.9+1843 | TXS 0222+185 | 36.23 | 18.72 | 12.56 | −12.15 | 20.08 | −10.78 | 9.66 | 46.73 | 7.33 | 1.83 | 5.76 | 2.690 |
J0539.6+1432 | TXS 0536+145 | 84.91 | 14.54 | 12.44 | −11.94 | 21.63 | −11.33 | 10.01 | 46.14 | 3.72 | 0.93 | 12.89 | 2.690 |
J0242.3+1102 | OD 166 | 40.6 | 11.05 | 12.45 | −11.89 | 21.18 | −11.44 | 8.81 | 46.77 | 7.67 | 1.92 | 0.81 | 2.680 |
J2339.6+0242 | CRATES J233930+024420 | 354.90 | 2.71 | 13.09 | −12.53 | 21.38 | −11.12 | 9.05 | 46.19 | 3.94 | 0.98 | 1.41 | 2.666 |
J0910.6+2247 | TXS 0907+230 | 137.67 | 22.80 | 12.62 | −12.24 | 21.64 | −11.34 | 8.30 | 45.93 | 2.92 | 0.73 | 0.25 | 2.661 |
J1441.6-1522 | PMN J1441-1523 | 220.41 | −15.38 | 13.00 | −12.43 | 22.28 | −11.46 | 8.39 | 46.38 | 4.90 | 1.22 | 0.31 | 2.638 |
J1054.2+3926 | CRATES J105433+392803 | 163.56 | 39.43 | 12.60 | −12.98 | 22.52 | −12.38 | 8.59 | 45.78 | 2.45 | 0.61 | 0.49 | 2.634 |
J1549.6+1710 | MG1 J154930+1708 | 237.41 | 17.18 | * | − * | * | − * | * | * | * | * | * | 2.625 |
J1450.4+0910 | TXS 1448+093 | 222.62 | 9.18 | 12.97 | −12.13 | 21.60 | −11.83 | 9.15 | 46.33 | 4.62 | 1.16 | 1.78 | 2.611 |
J0226.5+0938 | NVSS J022634+093843 | 36.63 | 9.64 | 13.05 | −12.10 | 22.06 | −11.57 | 10.09 | 46.61 | 6.38 | 1.60 | 15.50 | 2.605 |
J1628.8-6149 | LQAC 247-061 | 247.22 | −61.83 | 11.96 | −12.12 | 21.21 | −10.80 | 9.23 | 46.04 | 3.31 | 0.83 | 2.14 | 2.578 |
J0453.1-2806 | PKS 0451-28 | 73.29 | −28.11 | 12.50 | −11.44 | 20.95 | −10.53 | 9.21 | 46.88 | 8.71 | 2.18 | 2.04 | 2.564 |
J0912.2+4127 | B3 0908+416B | 138.06 | 41.46 | 12.77 | −12.23 | 21.69 | −11.58 | 9.42 | 45.85 | 2.66 | 0.67 | 3.31 | 2.563 |
J1618.0+5139 | TXS 1616+517 | 244.52 | 51.67 | 13.60 | −12.84 | 21.27 | −11.45 | 8.78 | 46.21 | 4.03 | 1.01 | 0.76 | 2.556 |
J1625.7+4134 | 4C+41.32 | 246.45 | 41.57 | 12.03 | −12.36 | 21.21 | −11.48 | 7.85 | 45.94 | 2.95 | 0.74 | 0.09 | 2.550 |
J1345.5+4453 | B3 1343+451 | 206.39 | 44.88 | 12.73 | −12.59 | 22.24 | −10.84 | 9.06 | 46.06 | 3.39 | 0.85 | 1.45 | 2.534 |
J1833.6-2103 | PKS 1830-211 | 278.41 | −21.06 | * | − * | * | − * | * | * | * | * | * | 2.507 |
J2110.2-1021 | PKS 2107-105 | 317.56 | −10.36 | 12.35 | −12.27 | 21.10 | −11.54 | 9.04 | 46.99 | 9.89 | 2.47 | 1.38 | 2.500 |
Fermi Name | Class | ||||||
---|---|---|---|---|---|---|---|
MeV | |||||||
J1510.1+5702 | − | 524 | 391 | FSRQ | |||
J1354.3-0206 | − | 577 | 75 | FSRQ | |||
J1635.6-3628 | − | − | 938 | 156 | FSRQ | ||
J1219.0+3653 | − | 1950 | 50 | BLL | |||
J0833.4-0458 | − | 1605 | 130 | FSRQ | |||
J0337.8-1157 | − | − | 978 | 51 | FSRQ | ||
J2320.8-0823 | − | 786 | 36 | FSRQ | |||
J0539.9-2839 | − | 426 | 5246 | FSRQ | |||
J0805.4+6147 | − | 523 | 366 | FSRQ | |||
J1428.9+5406 | − | − | 1078 | 75 | FSRQ | ||
J0733.8+0455 | − | 787 | 133 | FSRQ | |||
J0746.4+2546 | − | 437 | 480 | FSRQ | |||
J0349.8-2103 | − | 504 | 1704 | FSRQ | |||
J1127.4+5648 | − | 567 | 418 | FSRQ | |||
J2313.9-4501 | − | 814 | 97 | BCU | |||
J0440.3-4332 | − | 601 | 10,430 | FSRQ | |||
J2015.4+6556 | − | − | 1249 | 28 | FSRQ | ||
J2145.5+1006 | − | − | 7893 | 76 | BLL | ||
J1748.0+3403 | − | 1160 | 258 | FSRQ | |||
J0836.5-2026 | − | 326 | 168 | FSRQ | |||
J0224.9+1843 | − | − | 293 | 77 | FSRQ | ||
J0539.6+1432 | − | 722 | 323 | FSRQ | |||
J0242.3+1102 | − | 560 | 702 | FSRQ | |||
J2339.6+0242 | − | 1333 | 133 | BCU | |||
J0910.6+2247 | − | − | 963 | 398 | FSRQ | ||
J1441.6-1522 | − | 2192 | 91 | FSRQ | |||
J1054.2+3926 | − | − | 1011 | 44 | BCU | ||
J1549.6+1710 | − | − | 3904 | 40 | BLL | ||
J1450.4+0910 | − | 1074 | 480 | FSRQ | |||
J0226.5+0938 | − | − | 1992 | 78 | FSRQ | ||
J1628.8-6149 | − | 1050 | 630 | FSRQ | |||
J0453.1-2806 | − | 341 | 5157 | FSRQ | |||
J0912.2+4127 | − | − | 884 | 703 | FSRQ | ||
J1618.0+5139 | − | − | 598 | 110 | FSRQ | ||
J1625.7+4134 | − | 637 | 408 | FSRQ | |||
J1345.5+4453 | − | 535 | 45,448 | FSRQ | |||
J1833.6-2103 | − | 698 | 124,150 | FSRQ | |||
J2110.2-1021 | − | − | 780 | 99 | FSRQ |
Fermi Name | s | r | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1/cm3) | (G) | (cm) | (erg s−1) | (erg s−1) | (erg s−1) | (erg s−1) | (erg s−1) | |||||||
J1510.1+5702 | ||||||||||||||
J1354.3-0206 | ||||||||||||||
J1635.6-3628 | ||||||||||||||
J1219.0+3653 | ||||||||||||||
J0833.4-0458 | ||||||||||||||
J0337.8-1157 | ||||||||||||||
J2320.8-0823 | ||||||||||||||
J0539.9-2839 | ||||||||||||||
J0805.4+6147 | ||||||||||||||
J1428.9+5406 | ||||||||||||||
J0733.8+0455 | ||||||||||||||
J0746.4+2546 | ||||||||||||||
J0349.8-2103 | ||||||||||||||
J1127.4+5648 | ||||||||||||||
J2313.9-4501 | ||||||||||||||
J0440.3-4332 | ||||||||||||||
J2015.4+6556 | ||||||||||||||
J2145.5+1006 | ||||||||||||||
J1748.0+3403 | ||||||||||||||
J0836.5-2026 | ||||||||||||||
J0224.9+1843 | ||||||||||||||
J0539.6+1432 | ||||||||||||||
J0242.3+1102 | ||||||||||||||
J2339.6+0242 | ||||||||||||||
J0910.6+2247 | ||||||||||||||
J1441.6-1522 | ||||||||||||||
J1054.2+3926 | ||||||||||||||
J1549.6+1710 | ||||||||||||||
J1450.4+0910 | ||||||||||||||
J0226.5+0938 | ||||||||||||||
J1628.8-6149 | ||||||||||||||
J0453.1-2806 | ||||||||||||||
J0912.2+4127 | ||||||||||||||
J1618.0+5139 | ||||||||||||||
J1625.7+4134 | ||||||||||||||
J1345.5+4453 | ||||||||||||||
J1833.6-2103 | ||||||||||||||
J2110.2-1021 | ||||||||||||||
geometric mean (log) | 2.91 | 3.19 | 1.66 | 41.42 | 2.92 | 0.44 | 16.67 | 45.77 | 44.69 | 47.40 | 44.73 | 47.69 | 1.08 | |
geometric mean | 8.07 × 102 | 3.19 × 100 | 1.66 × 100 | 4.14 × 101 | 8.32 × 102 | 4.40× 10−1 | 4.72 × 1016 | 5.88 × 1045 | 4.87 × 1044 | 2.51 × 1046 | 5.33 × 1044 | 4.90 × 1047 | 1.21 × 101 |
Fermi Name | s | r | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1/cm3) | (G) | (cm) | (erg s−1) | (erg s−1) | (erg s−1) | (erg s−1) | (erg s−1) | |||||||
J1510.1+5702 | ||||||||||||||
J1354.3-0206 | ||||||||||||||
J1635.6-3628 | ||||||||||||||
J1219.0+3653 | ||||||||||||||
J0833.4-0458 | ||||||||||||||
J0337.8-1157 | ||||||||||||||
J2320.8-0823 | ||||||||||||||
J0539.9-2839 | ||||||||||||||
J0805.4+6147 | ||||||||||||||
J1428.9+5406 | ||||||||||||||
J0733.8+0455 | ||||||||||||||
J0746.4+2546 | ||||||||||||||
J0349.8-2103 | ||||||||||||||
J1127.4+5648 | ||||||||||||||
J2313.9-4501 | ||||||||||||||
J0440.3-4332 | ||||||||||||||
J2015.4+6556 | ||||||||||||||
J2145.5+1006 | ||||||||||||||
J1748.0+3403 | ||||||||||||||
J0836.5-2026 | ||||||||||||||
J0224.9+1843 | ||||||||||||||
J0539.6+1432 | ||||||||||||||
J0242.3+1102 | ||||||||||||||
J2339.6+0242 | ||||||||||||||
J0910.6+2247 | ||||||||||||||
J1441.6-1522 | ||||||||||||||
J1054.2+3926 | ||||||||||||||
J1549.6+1710 | ||||||||||||||
J1450.4+0910 | ||||||||||||||
J0226.5+0938 | ||||||||||||||
J1628.8-6149 | ||||||||||||||
J0453.1-2806 | ||||||||||||||
J0912.2+4127 | ||||||||||||||
J1618.0+5139 | ||||||||||||||
J1625.7+4134 | ||||||||||||||
J1345.5+4453 | ||||||||||||||
J1833.6-2103 | ||||||||||||||
J2110.2-1021 | ||||||||||||||
geometric mean (log) | 3.09 | 4.52 | 1.84 | 15.48 | 3.90 | 6.56 | 16.15 | 44.36 | 45.02 | 45.59 | 45.49 | 46.48 | ||
geometric mean | 1.23 × 103 | 4.52 × 100 | 1.84 × 100 | 1.55 × 101 | 7.95 × 103 | 6.56 × 100 | 1.41 × 1016 | 2.31 × 1044 | 1.05 × 1045 | 3.89 × 1045 | 3.08 × 1045 | 3.01 × 1046 | 2.19 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Zhang, L.; Dai, B. Study on the Gamma-Ray Radiation Properties of High-Redshift Blazars at z > 2.5. Universe 2025, 11, 320. https://doi.org/10.3390/universe11090320
Wu F, Zhang L, Dai B. Study on the Gamma-Ray Radiation Properties of High-Redshift Blazars at z > 2.5. Universe. 2025; 11(9):320. https://doi.org/10.3390/universe11090320
Chicago/Turabian StyleWu, Fan, Li Zhang, and Benzhong Dai. 2025. "Study on the Gamma-Ray Radiation Properties of High-Redshift Blazars at z > 2.5" Universe 11, no. 9: 320. https://doi.org/10.3390/universe11090320
APA StyleWu, F., Zhang, L., & Dai, B. (2025). Study on the Gamma-Ray Radiation Properties of High-Redshift Blazars at z > 2.5. Universe, 11(9), 320. https://doi.org/10.3390/universe11090320