A Comparison Study of Collisions at Relativistic Energies Involving Light Nuclei
Abstract
1. Introduction
2. Theoretical Framework
3. Results and Discussion
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Jia, J.; Giacalone, G.; Bally, B.; Brandenburg, J.D.; Heinz, U.; Huang, S.; Lee, D.; Lee, Y.J.; Loizides, C.; Li, W.; et al. Imaging the initial condition of heavy-ion collisions and nuclear structure across the nuclide chart. Nucl. Sci. Tech. 2024, 35, 220. [Google Scholar] [CrossRef]
- Jia, J. Shape of atomic nuclei in heavy ion collisions. Phys. Rev. C 2022, 105, 014905. [Google Scholar] [CrossRef]
- Jia, J. Probing triaxial deformation of atomic nuclei in high-energy heavy ion collisions. Phys. Rev. C 2022, 105, 044905. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, J. Evidence of Quadrupole and Octupole Deformations in Zr96+Zr96 and Ru96+Ru96 Collisions at Ultrarelativistic Energies. Phys. Rev. Lett. 2022, 128, 022301. [Google Scholar] [CrossRef]
- Giacalone, G.; Jia, J.; Zhang, C. Impact of Nuclear Deformation on Relativistic Heavy-Ion Collisions: Assessing Consistency in Nuclear Physics across Energy Scales. Phys. Rev. Lett. 2021, 127, 242301. [Google Scholar] [CrossRef]
- STAR Collaboration. Imaging shapes of atomic nuclei in high-energy nuclear collisions. Nature 2024, 635, 67–72. [Google Scholar] [CrossRef]
- Bally, B.; Bender, M.; Giacalone, G.; Somà, V. Evidence of the triaxial structure of 129Xe at the Large Hadron Collider. Phys. Rev. Lett. 2022, 128, 082301. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abeling, K.; Abidi, S.H.; Aboulhorma, A.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Hoffman, A.C.A.; et al. Correlations between flow and transverse momentum in Xe+Xe and Pb+Pb collisions at the LHC with the ATLAS detector: A probe of the heavy-ion initial state and nuclear deformation. Phys. Rev. C 2023, 107, 054910. [Google Scholar] [CrossRef]
- Acharya, S.; Agarwal, A.; AglieriRinella, G.; Aglietta, L.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S.U.; Ahuja, I.; et al. Exploring nuclear structure with multiparticle azimuthal correlations at the LHC. arXiv 2024, arXiv:2409.04343. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Cao, B.; Xu, H.j.; Song, H. Exploring the compactness of α clusters in O16 nuclei with relativistic O16+O16 collisions. Phys. Rev. C 2024, 109, L051904. [Google Scholar] [CrossRef]
- Giacalone, G.; Bally, B.; Nijs, G.; Shen, S.; Duguet, T.; Ebran, J.P.; Elhatisari, S.; Frosini, M.; Lahde, T.A.; Lee, D.; et al. The unexpected uses of a bowling pin: Exploiting 20Ne isotopes for precision characterizations of collectivity in small systems. arXiv 2024, arXiv:2402.05995. [Google Scholar]
- Giacalone, G.; Zhao, W.; Bally, B.; Shen, S.; Duguet, T.; Ebran, J.P.; Elhatisari, S.; Frosini, M.; Lahde, T.A.; Lee, D.; et al. Anisotropic Flow in Fixed-Target Pb208+Ne20 Collisions as a Probe of Quark-Gluon Plasma. Phys. Rev. Lett. 2025, 134, 082301. [Google Scholar] [CrossRef]
- Prasad, S.; Mallick, N.; Sahoo, R.; Barnaföldi, G.G. Anisotropic flow fluctuation as a possible signature of clustered nuclear geometry in O–O collisions at the Large Hadron Collider. Phys. Lett. B 2025, 860, 139145. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, M.; Nielsen, E.G.D.; Li, X.; Zhou, Y. Signature of the α-clustering structure of Light Nuclei in Relativistic Nuclear Collisions. arXiv 2025, arXiv:2501.14852. [Google Scholar]
- Zhao, X.L.; Ma, G.L.; Zhou, Y.; Lin, Z.W.; Zhang, C. Nuclear cluster structure effect in 16O+16O collisions at the top RHIC energy. arXiv 2024, arXiv:2404.09780. [Google Scholar]
- Zhang, C.; Chen, J.; Giacalone, G.; Huang, S.; Jia, J.; Ma, Y.G. Ab-initio nucleon-nucleon correlations and their impact on high energy 16O+16O collisions. Phys. Lett. B 2025, 862, 139322. [Google Scholar] [CrossRef]
- Freer, M.; Horiuchi, H.; Kanada-En’yo, Y.; Lee, D.; Meißner, U.G. Microscopic Clustering in Light Nuclei. Rev. Mod. Phys. 2018, 90, 035004. [Google Scholar] [CrossRef]
- Bijker, R.; Iachello, F. Cluster structure of light nuclei. Prog. Part. Nucl. Phys. 2020, 110, 103735. [Google Scholar] [CrossRef]
- Tohsaki, A.; Horiuchi, H.; Schuck, P.; Roepke, G. Status of α-particle condensate structure of the Hoyle state. Rev. Mod. Phys. 2017, 89, 011002. [Google Scholar] [CrossRef]
- Zhou, B.; Funaki, Y.; Horiuchi, H.; Ma, Y.G.; Röpke, G.; Schuck, P.; Tohsaki, A.; Yamada, T. The 5α condensate state in 20Ne. Nature Commun. 2023, 14, 8206. [Google Scholar] [CrossRef]
- Röpke, G.; Xu, C.; Zhou, B.; Ren, Z.Z.; Funaki, Y.; Horiuchi, H.; Lyu, M.; Tohsaki, A.; Yamada, T. Alpha-like correlations in Ne, comparison of quartetting wave function and THSR approaches. Eur. Phys. J. A 2024, 60, 89. [Google Scholar] [CrossRef]
- Wang, H.C.; Li, S.J.; Liu, L.M.; Xu, J.; Ren, Z.Z. Deformation probes for light nuclei in their collisions at relativistic energies. Phys. Rev. C 2024, 110, 034909. [Google Scholar] [CrossRef]
- Liu, L.M.; Wang, H.C.; Li, S.J.; Zhang, C.; Xu, J.; Ren, Z.Z.; Jia, J.; Huang, X.G. Directly probing existence of α-cluster structure in Ne20 by relativistic heavy-ion collisions. Phys. Rev. C 2025, 111, L021901. [Google Scholar] [CrossRef]
- Huang, S. Measurements of azimuthal anisotropies in 16O+16O and γ+Au collisions from STAR. arXiv 2023, arXiv:2312.12167. [Google Scholar]
- Mariani, S. Fixed-Target Physics with the LHCb Experiment at CERN. Ph.D. Thesis, University of Florence, Florence, Italy, 1 December 2021. [Google Scholar]
- Aaij, R.; Abdelmotteleb, A.S.W.; Beteta, C.A.; Abudinen, F.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Agapopoulou, C.; Aidala, C.A.; et al. J/ψ and D0 production in sNN=68.5GeV PbNe collisions. Eur. Phys. J. C 2023, 83, 658. [Google Scholar] [CrossRef]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Centrality determination in heavy-ion collisions with the LHCb detector. J. Instrum. 2022, 17, P05009. [Google Scholar] [CrossRef]
- Liu, L.M.; Li, S.J.; Wang, Z.; Xu, J.; Ren, Z.Z.; Huang, X.G. Probing configuration of α clusters with spectator particles in relativistic heavy-ion collisions. Phys. Lett. B 2024, 854, 138724. [Google Scholar] [CrossRef]
- Wang, X.N.; Gyulassy, M. HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions. Phys. Rev. D 1991, 44, 3501–3516. [Google Scholar] [CrossRef]
- Xu, J.; Ko, C.M. Pb-Pb collisions at sNN=2.76 TeV in a multiphase transport model. Phys. Rev. C 2011, 83, 034904. [Google Scholar] [CrossRef]
- Xu, J.; Ko, C.M. Triangular flow in heavy ion collisions in a multiphase transport model. Phys. Rev. C 2011, 84, 014903. [Google Scholar] [CrossRef]
- Mäntysaari, H.; Schenke, B.; Shen, C.; Tribedy, P. Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC. Phys. Lett. B 2017, 772, 681–686. [Google Scholar] [CrossRef]
- Welsh, K.; Singer, J.; Heinz, U.W. Initial state fluctuations in collisions between light and heavy ions. Phys. Rev. C 2016, 94, 024919. [Google Scholar] [CrossRef]
- Schenke, B.; Venugopalan, R. Eccentric protons? Sensitivity of flow to system size and shape in p + p, p + Pb and Pb + Pb collisions. Phys. Rev. Lett. 2014, 113, 102301. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, G.H.; Liu, Y.F.; Lin, Z.W.; Shou, Q.Y.; Yin, Z.B. Investigating high energy proton proton collisions with a multi-phase transport model approach based on PYTHIA8 initial conditions. Eur. Phys. J. C 2021, 81, 755. [Google Scholar] [CrossRef]
- Zhao, X.L.; Lin, Z.W.; Zheng, L.; Ma, G.L. A transport model study of multiparticle cumulants in p + p collisions at 13 TeV. Phys. Lett. B 2023, 839, 137799. [Google Scholar] [CrossRef]
- Wang, Q.; Pang, L.G.; Wang, X.N. Impact of Initial-State Nuclear and Sub-Nucleon Structures on Ultra-Central Puzzle in Heavy Ion Collisions. arXiv 2025, arXiv:2504.19208. [Google Scholar]
- Wang, H.C.; Li, S.J.; Xu, J.; Ren, Z.Z. Disentangling effects of nucleon size and nucleus structure in relativistic heavy-ion collisions. Phys. Lett. B 2025, 866, 139516. [Google Scholar] [CrossRef]
- Giacalone, G.; Schenke, B.; Shen, C. Constraining the Nucleon Size with Relativistic Nuclear Collisions. Phys. Rev. Lett. 2022, 128, 042301. [Google Scholar] [CrossRef]
- Alvioli, M.; Strikman, M. Color fluctuation effects in proton-nucleus collisions. Phys. Lett. B 2013, 722, 347–354. [Google Scholar] [CrossRef]
- Uzhinsky, V.; Galoyan, A. Gribov’s inelastic screening in high energy nucleus-nucleus interaction. Phys. Lett. B 2013, 721, 68–73. [Google Scholar] [CrossRef]
- Alvioli, M.; Frankfurt, L.; Perepelitsa, D.; Strikman, M. Global analysis of color fluctuation effects in proton– and deuteron–nucleus collisions at RHIC and the LHC. Phys. Rev. D 2018, 98, 071502. [Google Scholar] [CrossRef]
- Zhang, B. ZPC 1.0.1: A Parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 1998, 109, 193–206. [Google Scholar] [CrossRef]
- Li, B.A.; Ko, C.M. Formation of superdense hadronic matter in high-energy heavy ion collisions. Phys. Rev. C 1995, 52, 2037–2063. [Google Scholar] [CrossRef]
- Lin, Z.W.; Ko, C.M.; Li, B.A.; Zhang, B.; Pal, S. A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 2005, 72, 064901. [Google Scholar] [CrossRef]
- Schenke, B.; Shen, C.; Teaney, D. Transverse momentum fluctuations and their correlation with elliptic flow in nuclear collisions. Phys. Rev. C 2020, 102, 034905. [Google Scholar] [CrossRef]
- Hu, J.Y.; Xu, H.j.; Wang, X.; Pu, S. Probing the tetrahedral α clusters in relativistic 16O + 16O collisions. arXiv 2025, arXiv:2507.01493. [Google Scholar]






| (fm) | d (fm) | |||
|---|---|---|---|---|
| 16O | 1.973 | 0.507 | 0 | 0.223 |
| 20Ne | 2.160 | 0.580 | 0.666 | 0.250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-C.; Li, S.-J.; Xu, J.; Ren, Z.-Z. A Comparison Study of Collisions at Relativistic Energies Involving Light Nuclei. Universe 2025, 11, 296. https://doi.org/10.3390/universe11090296
Wang H-C, Li S-J, Xu J, Ren Z-Z. A Comparison Study of Collisions at Relativistic Energies Involving Light Nuclei. Universe. 2025; 11(9):296. https://doi.org/10.3390/universe11090296
Chicago/Turabian StyleWang, Hai-Cheng, Song-Jie Li, Jun Xu, and Zhong-Zhou Ren. 2025. "A Comparison Study of Collisions at Relativistic Energies Involving Light Nuclei" Universe 11, no. 9: 296. https://doi.org/10.3390/universe11090296
APA StyleWang, H.-C., Li, S.-J., Xu, J., & Ren, Z.-Z. (2025). A Comparison Study of Collisions at Relativistic Energies Involving Light Nuclei. Universe, 11(9), 296. https://doi.org/10.3390/universe11090296

