What Do Radio Emission Constraints Tell Us About Little Red Dots as Tidal Disruption Events?
Abstract
1. Introduction
2. Methodology
2.1. Rest-Frame Luminosity Estimation of LRDs
2.2. Flux Density Estimation of ‘High-Redshift’ TDEs
2.3. Volumetric Number Density Estimation
3. Results and Discussion
3.1. Luminosities of LRDs
3.2. Flux Densities of TDEs
3.3. Number Densities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AGN | active galactic nuclei |
JWST | James Webb Space Telescope |
LRD | little red dot |
RL | radio-loud |
RQ | radio-quiet |
TDE | tidal disruption event |
UV | ultraviolet |
VLASS | Very Large Array Sky Survey |
References
- Furtak, L.J.; Zitrin, A.; Plat, A.; Fujimoto, S.; Wang, B.; Nelson, E.J.; Labbé, I.; Bezanson, R.; Brammer, G.B.; van Dokkum, P.; et al. JWST UNCOVER: Extremely Red and Compact Object at zphot = 7.6 Triply Imaged by A2744. Astrophys. J. 2023, 952, 142. [Google Scholar] [CrossRef]
- Labbé, I.; van Dokkum, P.; Nelson, E.; Bezanson, R.; Suess, K.A.; Leja, J.; Brammer, G.; Whitaker, K.; Mathews, E.; Stefanon, M.; et al. A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 2023, 616, 266–269. [Google Scholar] [CrossRef]
- Barro, G.; Pérez-González, P.G.; Kocevski, D.D.; McGrath, E.J.; Trump, J.R.; Simons, R.C.; Somerville, R.S.; Yung, L.Y.A.; Arrabal Haro, P.; Akins, H.B.; et al. Extremely Red Galaxies at z = 5–9 with MIRI and NIRSpec: Dusty Galaxies or Obscured Active Galactic Nuclei? Astrophys. J. 2024, 963, 128. [Google Scholar] [CrossRef]
- Greene, J.E.; Labbe, I.; Goulding, A.D.; Furtak, L.J.; Chemerynska, I.; Kokorev, V.; Dayal, P.; Volonteri, M.; Williams, C.C.; Wang, B.; et al. UNCOVER Spectroscopy Confirms the Surprising Ubiquity of Active Galactic Nuclei in Red Sources at z > 5. Astrophys. J. 2024, 964, 39. [Google Scholar] [CrossRef]
- Kocevski, D.D.; Finkelstein, S.L.; Barro, G.; Taylor, A.J.; Calabrò, A.; Laloux, B.; Buchner, J.; Trump, J.R.; Leung, G.C.K.; Yang, G.; et al. The Rise of Faint, Red Active Galactic Nuclei at z > 4: A Sample of Little Red Dots in the JWST Extragalactic Legacy Fields. Astrophys. J. 2025, 986, 126. [Google Scholar] [CrossRef]
- Matthee, J.; Naidu, R.P.; Brammer, G.; Chisholm, J.; Eilers, A.C.; Goulding, A.; Greene, J.; Kashino, D.; Labbe, I.; Lilly, S.J.; et al. Little Red Dots: An Abundant Population of Faint Active Galactic Nuclei at z ∼ 5 Revealed by the EIGER and FRESCO JWST Surveys. Astrophys. J. 2024, 963, 129. [Google Scholar] [CrossRef]
- Labbe, I.; Greene, J.E.; Bezanson, R.; Fujimoto, S.; Furtak, L.J.; Goulding, A.D.; Matthee, J.; Naidu, R.P.; Oesch, P.A.; Atek, H.; et al. UNCOVER: Candidate Red Active Galactic Nuclei at 3 < z < 7 with JWST and ALMA. Astrophys. J. 2025, 978, 92. [Google Scholar] [CrossRef]
- Kocevski, D.D.; Onoue, M.; Inayoshi, K.; Trump, J.R.; Arrabal Haro, P.; Grazian, A.; Dickinson, M.; Finkelstein, S.L.; Kartaltepe, J.S.; Hirschmann, M.; et al. Hidden Little Monsters: Spectroscopic Identification of Low-mass, Broad-line AGNs at z > 5 with CEERS. Astrophys. J. Lett. 2023, 954, L4. [Google Scholar] [CrossRef]
- Durodola, E.; Pacucci, F.; Hickox, R.C. Exploring the Active Galactic Nucleus Fraction of a Sample of JWST’s Little Red Dots at 4 < z < 8: Overmassive Black Holes Are Strongly Favored. Astrophys. J. 2025, 985, 169. [Google Scholar] [CrossRef]
- Baggen, J.F.W.; van Dokkum, P.; Brammer, G.; de Graaff, A.; Franx, M.; Greene, J.; Labbé, I.; Leja, J.; Maseda, M.V.; Nelson, E.J.; et al. The Small Sizes and High Implied Densities of “Little Red Dots” with Balmer Breaks Could Explain Their Broad Emission Lines without an Active Galactic Nucleus. Astrophys. J. Lett. 2024, 977, L13. [Google Scholar] [CrossRef]
- Pérez-González, P.G.; Barro, G.; Rieke, G.H.; Lyu, J.; Rieke, M.; Alberts, S.; Williams, C.C.; Hainline, K.; Sun, F.; Puskás, D.; et al. What Is the Nature of Little Red Dots and what Is Not, MIRI SMILES Edition. Astrophys. J. 2024, 968, 4. [Google Scholar] [CrossRef]
- Williams, C.C.; Alberts, S.; Ji, Z.; Hainline, K.N.; Lyu, J.; Rieke, G.; Endsley, R.; Suess, K.A.; Sun, F.; Johnson, B.D.; et al. The Galaxies Missed by Hubble and ALMA: The Contribution of Extremely Red Galaxies to the Cosmic Census at 3 < z < 8. Astrophys. J. 2024, 968, 34. [Google Scholar] [CrossRef]
- Barrufet, L.; Oesch, P.A.; Marques-Chaves, R.; Arellano-Cordova, K.; Baggen, J.F.W.; Carnall, A.C.; Cullen, F.; Dunlop, J.S.; Gottumukkala, R.; Fudamoto, Y.; et al. Quiescent or dusty? Unveiling the nature of extremely red galaxies at z > 3. Mon. Not. R. Astron. Soc. 2025, 537, 3453–3469. [Google Scholar] [CrossRef]
- Yang, G.; Caputi, K.I.; Papovich, C.; Arrabal Haro, P.; Bagley, M.B.; Behroozi, P.; Bell, E.F.; Bisigello, L.; Buat, V.; Burgarella, D.; et al. CEERS Key Paper. VI. JWST/MIRI Uncovers a Large Population of Obscured AGN at High Redshifts. Astrophys. J. Lett. 2023, 950, L5. [Google Scholar] [CrossRef]
- Kokorev, V.; Chisholm, J.; Endsley, R.; Finkelstein, S.L.; Greene, J.E.; Akins, H.B.; Bromm, V.; Casey, C.M.; Fujimoto, S.; Labbé, I.; et al. Silencing the Giant: Evidence of Active Galactic Nucleus Feedback and Quenching in a Little Red Dot at z = 4.13. Astrophys. J. 2024, 975, 178. [Google Scholar] [CrossRef]
- Ananna, T.T.; Bogdán, Á.; Kovács, O.E.; Natarajan, P.; Hickox, R.C. X-Ray View of Little Red Dots: Do They Host Supermassive Black Holes? Astrophys. J. Lett. 2024, 969, L18. [Google Scholar] [CrossRef]
- Yue, M.; Eilers, A.C.; Ananna, T.T.; Panagiotou, C.; Kara, E.; Miyaji, T. Stacking X-Ray Observations of “Little Red Dots”: Implications for Their Active Galactic Nucleus Properties. Astrophys. J. Lett. 2024, 974, L26. [Google Scholar] [CrossRef]
- Akins, H.B.; Casey, C.M.; Lambrides, E.; Allen, N.; Andika, I.T.; Brinch, M.; Champagne, J.B.; Cooper, O.; Ding, X.; Drakos, N.E.; et al. COSMOS-Web: The over-abundance and physical nature of “little red dots”–Implications for early galaxy and SMBH assembly. arXiv 2024, arXiv:2406.10341. [Google Scholar] [CrossRef]
- Perger, K.; Fogasy, J.; Frey, S.; Gabányi, K.É. Deep silence: Radio properties of little red dots. Astron. Astrophys. 2025, 693, L2. [Google Scholar] [CrossRef]
- Mazzolari, G.; Gilli, R.; Maiolino, R.; Prandoni, I.; Delvecchio, I.; Norman, C.; Jimenez-Andrade, E.F.; Belladitta, S.; Vito, F.; Momjian, E.; et al. The radio properties of the JWST-discovered AGN. arXiv 2024, arXiv:2412.04224. [Google Scholar] [CrossRef]
- Gloudemans, A.J.; Duncan, K.J.; Eilers, A.C.; Farina, E.P.; Harikane, Y.; Inayoshi, K.; Lambrides, E.; Vardoulaki, E. Another Piece to the Puzzle: Radio Detection of a JWST-detected Active Galactic Nucleus Candidate. Astrophys. J. 2025, 986, 130. [Google Scholar] [CrossRef]
- Latif, M.A.; Aftab, A.; Whalen, D.J.; Mezcua, M. Radio emission from little red dots may reveal their true nature. Astron. Astrophys. 2025, 694, L14. [Google Scholar] [CrossRef]
- Maiolino, R.; Risaliti, G.; Signorini, M.; Trefoloni, B.; Juodžbalis, I.; Scholtz, J.; Übler, H.; D’Eugenio, F.; Carniani, S.; Fabian, A.; et al. JWST meets Chandra: A large population of Compton thick, feedback-free, and intrinsically X-ray weak AGN, with a sprinkle of SNe. Mon. Not. R. Astron. Soc. 2025, 538, 1921–1943. [Google Scholar] [CrossRef]
- Wang, B.; de Graaff, A.; Davies, R.L.; Greene, J.E.; Leja, J.; Brammer, G.B.; Goulding, A.D.; Miller, T.B.; Suess, K.A.; Weibel, A.; et al. RUBIES: JWST/NIRSpec Confirmation of an Infrared-luminous, Broad-line Little Red Dot with an Ionized Outflow. Astrophys. J. 2025, 984, 121. [Google Scholar] [CrossRef]
- Kokorev, V.; Caputi, K.I.; Greene, J.E.; Dayal, P.; Trebitsch, M.; Cutler, S.E.; Fujimoto, S.; Labbé, I.; Miller, T.B.; Iani, E.; et al. A Census of Photometrically Selected Little Red Dots at 4 < z < 9 in JWST Blank Fields. Astrophys. J. 2024, 968, 38. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, L.; Liu, W.; Ho, L.C.; Inayoshi, K. JWST Insights into Narrow-line Little Red Dots. arXiv 2025, arXiv:2506.04350. [Google Scholar] [CrossRef]
- Pizzati, E.; Hennawi, J.F.; Schaye, J.; Eilers, A.C.; Huang, J.; Schindler, J.T.; Wang, F. ’Little red dots’ cannot reside in the same dark matter haloes as comparably luminous unobscured quasars. Mon. Not. R. Astron. Soc. 2025, 539, 2910–2925. [Google Scholar] [CrossRef]
- Casey, C.M.; Akins, H.B.; Kokorev, V.; McKinney, J.; Cooper, O.R.; Long, A.S.; Franco, M.; Manning, S.M. Dust in Little Red Dots. Astrophys. J. Lett. 2024, 975, L4. [Google Scholar] [CrossRef]
- Kokubo, M.; Harikane, Y. Challenging the AGN scenario for JWST/NIRSpec broad Hα emitters/Little Red Dots in light of non-detection of NIRCam photometric variability and X-ray. arXiv 2024, arXiv:2407.04777. [Google Scholar] [CrossRef]
- de las Mercedes Carranza Escudero, M.; Conselice, C.J.; Adams, N.; Harvey, T.; Austin, D.; Behroozi, P.; Ferreira, L.; Ormerod, K.; Duan, Q.; Trussler, J.; et al. Lonely Little Red Dots: Challenges to the AGN-nature of little red dots through their clustering and spectral energy distributions. arXiv 2025, arXiv:2506.04004. [Google Scholar] [CrossRef]
- Bellovary, J. Little Red Dots Are Tidal Disruption Events in Runaway-collapsing Clusters. Astrophys. J. Lett. 2025, 984, L55. [Google Scholar] [CrossRef]
- Wevers, T.; van Velzen, S.; Jonker, P.G.; Stone, N.C.; Hung, T.; Onori, F.; Gezari, S.; Blagorodnova, N. Black hole masses of tidal disruption event host galaxies. Mon. Not. R. Astron. Soc. 2017, 471, 1694–1708. [Google Scholar] [CrossRef]
- Ryu, T.; Krolik, J.; Piran, T. Measuring Stellar and Black Hole Masses of Tidal Disruption Events. Astrophys. J. 2020, 904, 73. [Google Scholar] [CrossRef]
- Goldtooth, A.; Zabludoff, A.I.; Wen, S.; Jonker, P.G.; Stone, N.C.; Cao, Z. A Census of Archival X-Ray Spectra for Modeling Tidal Disruption Events. Publ. Astron. Soc. Pac. 2023, 135, 034101. [Google Scholar] [CrossRef]
- Alexander, K.D.; van Velzen, S.; Horesh, A.; Zauderer, B.A. Radio Properties of Tidal Disruption Events. Space Sci. Rev. 2020, 216, 81. [Google Scholar] [CrossRef]
- Goodwin, A.J.; Burn, M.; Anderson, G.E.; Miller-Jones, J.C.A.; Grotova, I.; Baldini, P.; Liu, Z.; Malyali, A.; Rau, A.; Salvato, M. A Systematic Analysis of the Radio Properties of 22 X-Ray-selected Tidal Disruption Event Candidates with the Australia Telescope Compact Array. Astrophys. J. Suppl. Ser. 2025, 278, 36. [Google Scholar] [CrossRef]
- Anumarlapudi, A.; Dobie, D.; Kaplan, D.L.; Murphy, T.; Horesh, A.; Lenc, E.; Driessen, L.; Duchesne, S.W.; Dykaar, H.; Gaensler, B.M.; et al. Radio Afterglows from Tidal Disruption Events: An Unbiased Sample from ASKAP RACS. Astrophys. J. 2024, 974, 241. [Google Scholar] [CrossRef]
- Cendes, Y.; Berger, E.; Alexander, K.D.; Chornock, R.; Margutti, R.; Metzger, B.; Wieringa, M.H.; Bietenholz, M.F.; Hajela, A.; Laskar, T.; et al. Ubiquitous Late Radio Emission from Tidal Disruption Events. Astrophys. J. 2024, 971, 185. [Google Scholar] [CrossRef]
- Horesh, A.; Sfaradi, I.; Fender, R.; Green, D.A.; Williams, D.R.A.; Bright, J.S. Are Delayed Radio Flares Common in Tidal Disruption Events? The Case of the TDE iPTF 16fnl. Astrophys. J. Lett. 2021, 920, L5. [Google Scholar] [CrossRef]
- Burrows, D.N.; Kennea, J.A.; Ghisellini, G.; Mangano, V.; Zhang, B.; Page, K.L.; Eracleous, M.; Romano, P.; Sakamoto, T.; Falcone, A.D.; et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 2011, 476, 421–424. [Google Scholar] [CrossRef]
- van Velzen, S.; Mendez, A.J.; Krolik, J.H.; Gorjian, V. Discovery of Transient Infrared Emission from Dust Heated by Stellar Tidal Disruption Flares. Astrophys. J. 2016, 829, 19. [Google Scholar] [CrossRef]
- Alexander, K.D.; Berger, E.; Guillochon, J.; Zauderer, B.A.; Williams, P.K.G. Discovery of an Outflow from Radio Observations of the Tidal Disruption Event ASASSN-14li. Astrophys. J. Lett. 2016, 819, L25. [Google Scholar] [CrossRef]
- Goodwin, A.J.; Alexander, K.D.; Miller-Jones, J.C.A.; Bietenholz, M.F.; van Velzen, S.; Anderson, G.E.; Berger, E.; Cendes, Y.; Chornock, R.; Coppejans, D.L.; et al. A radio-emitting outflow produced by the tidal disruption event AT2020vwl. Mon. Not. R. Astron. Soc. 2023, 522, 5084–5097. [Google Scholar] [CrossRef]
- Pasham, D.R.; van Velzen, S. Discovery of a Time Lag between the Soft X-Ray and Radio Emission of the Tidal Disruption Flare ASASSN-14li: Evidence for Linear Disk-Jet Coupling. Astrophys. J. 2018, 856, 1. [Google Scholar] [CrossRef]
- Sfaradi, I.; Horesh, A.; Fender, R.; Green, D.A.; Williams, D.R.A.; Bright, J.; Schulze, S. A Late-time Radio Flare Following a Possible Transition in Accretion State in the Tidal Disruption Event AT 2019azh. Astrophys. J. 2022, 933, 176. [Google Scholar] [CrossRef]
- Krolik, J.; Piran, T.; Svirski, G.; Cheng, R.M. ASASSN-14li: A Model Tidal Disruption Event. Astrophys. J. 2016, 827, 127. [Google Scholar] [CrossRef]
- Yalinewich, A.; Steinberg, E.; Piran, T.; Krolik, J.H. Radio emission from the unbound debris of tidal disruption events. Mon. Not. R. Astron. Soc. 2019, 487, 4083–4092. [Google Scholar] [CrossRef]
- Mattila, S.; Pérez-Torres, M.; Efstathiou, A.; Mimica, P.; Fraser, M.; Kankare, E.; Alberdi, A.; Aloy, M.Á.; Heikkilä, T.; Jonker, P.G.; et al. A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger. Science 2018, 361, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.; Dykaar, H.; Codd, J.; Zaccagnini, G.; Dong, D.; Drout, M.R.; Gaensler, B.M.; Hallinan, G.; Law, C. FIRST J153350.8+272729: The Radio Afterglow of a Decades-old Tidal Disruption Event. Astrophys. J. 2022, 925, 220. [Google Scholar] [CrossRef]
- Blagorodnova, N.; Gezari, S.; Hung, T.; Kulkarni, S.R.; Cenko, S.B.; Pasham, D.R.; Yan, L.; Arcavi, I.; Ben-Ami, S.; Bue, B.D.; et al. iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy. Astrophys. J. 2017, 844, 46. [Google Scholar] [CrossRef]
- Gezari, S. Tidal Disruption Events. Annu. Rev. Astron. Astrophys. 2021, 59, 21–58. [Google Scholar] [CrossRef]
- Saxton, R.; Komossa, S.; Auchettl, K.; Jonker, P.G. X-Ray Properties of TDEs. Space Sci. Rev. 2020, 216, 85. [Google Scholar] [CrossRef]
- van Velzen, S.; Holoien, T.W.S.; Onori, F.; Hung, T.; Arcavi, I. Optical-Ultraviolet Tidal Disruption Events. Space Sci. Rev. 2020, 216, 124. [Google Scholar] [CrossRef]
- Gezari, S.; Heckman, T.; Cenko, S.B.; Eracleous, M.; Forster, K.; Gonçalves, T.S.; Martin, D.C.; Morrissey, P.; Neff, S.G.; Seibert, M.; et al. Luminous Thermal Flares from Quiescent Supermassive Black Holes. Astrophys. J. 2009, 698, 1367–1379. [Google Scholar] [CrossRef]
- Brown, G.C.; Levan, A.J.; Stanway, E.R.; Tanvir, N.R.; Cenko, S.B.; Berger, E.; Chornock, R.; Cucchiaria, A. Swift J1112.2-8238: A candidate relativistic tidal disruption flare. Mon. Not. R. Astron. Soc. 2015, 452, 4297–4306. [Google Scholar] [CrossRef]
- Stone, N.C.; Metzger, B.D. Rates of stellar tidal disruption as probes of the supermassive black hole mass function. Mon. Not. R. Astron. Soc. 2016, 455, 859–883. [Google Scholar] [CrossRef]
- van Velzen, S. On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression due to Black Hole Event Horizons. Astrophys. J. 2018, 852, 72. [Google Scholar] [CrossRef]
- Gordon, Y.A.; Boyce, M.M.; O’Dea, C.P.; Rudnick, L.; Andernach, H.; Vantyghem, A.N.; Baum, S.A.; Bui, J.P.; Dionyssiou, M. A Catalog of Very Large Array Sky Survey Epoch 1 Quick Look Components, Sources, and Host Identifications. Res. Notes Am. Astron. Soc. 2020, 4, 175. [Google Scholar] [CrossRef]
- Gordon, Y.A.; Boyce, M.M.; O’Dea, C.P.; Rudnick, L.; Andernach, H.; Vantyghem, A.N.; Baum, S.A.; Bui, J.P.; Dionyssiou, M.; Safi-Harb, S.; et al. A Quick Look at the 3 GHz Radio Sky. I. Source Statistics from the Very Large Array Sky Survey. Astrophys. J. Suppl. Ser. 2021, 255, 30. [Google Scholar] [CrossRef]
- Horesh, A.; Cenko, S.B.; Arcavi, I. Delayed radio flares from a tidal disruption event. Nat. Astron. 2021, 5, 491–497. [Google Scholar] [CrossRef]
- Wang, Y.; Baldi, R.D.; del Palacio, S.; Guolo, M.; Yang, X.; Zhang, Y.; Done, C.; Castro Segura, N.; Pasham, D.R.; Middleton, M.; et al. The radio detection and accretion properties of the peculiar nuclear transient AT 2019avd. Mon. Not. R. Astron. Soc. 2023, 520, 2417–2435. [Google Scholar] [CrossRef]
- Dykaar, H.; Drout, M.R.; Gaensler, B.M.; Kaplan, D.L.; Murphy, T.; Horesh, A.; Anumarlapudi, A.; Dobie, D.; Driessen, L.N.; Lenc, E.; et al. An Untargeted Search for Radio-emitting Tidal Disruption Events in the VAST Pilot Survey. Astrophys. J. 2024, 973, 104. [Google Scholar] [CrossRef]
- Hajela, A.; Alexander, K.D.; Margutti, R.; Chornock, R.; Bietenholz, M.; Christy, C.T.; Stroh, M.; Terreran, G.; Saxton, R.; Komossa, S.; et al. Eight Years of Light from ASASSN-15oi: Toward Understanding the Late-time Evolution of TDEs. Astrophys. J. 2025, 983, 29. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, B.; Li, Z. Extragalactic High-energy Transients: Event Rate Densities and Luminosity Functions. Astrophys. J. 2015, 812, 33. [Google Scholar] [CrossRef]
- Ramirez-Ruiz, E.; Rosswog, S. The Star Ingesting Luminosity of Intermediate-Mass Black Holes in Globular Clusters. Astrophys. J. Lett. 2009, 697, L77–L80. [Google Scholar] [CrossRef]
- Bouwens, R.J.; Illingworth, G.D.; Thompson, R.I.; Blakeslee, J.P.; Dickinson, M.E.; Broadhurst, T.J.; Eisenstein, D.J.; Fan, X.; Franx, M.; Meurer, G.; et al. Star Formation at z ~6: The Hubble Ultra Deep Parallel Fields. Astrophys. J. Lett. 2004, 606, L25–L28. [Google Scholar] [CrossRef]
- Stein, R.; van Velzen, S.; Kowalski, M.; Franckowiak, A.; Gezari, S.; Miller-Jones, J.C.A.; Frederick, S.; Sfaradi, I.; Bietenholz, M.F.; Horesh, A.; et al. A tidal disruption event coincident with a high-energy neutrino. Nat. Astron. 2021, 5, 510–518. [Google Scholar] [CrossRef]
- Mohan, P.; An, T.; Zhang, Y.; Yang, J.; Yang, X.; Wang, A. High-resolution VLBI Observations of and Modeling the Radio Emission from the Tidal Disruption Event AT2019dsg. Astrophys. J. 2022, 927, 74. [Google Scholar] [CrossRef]
- Wilkins, S.M.; Di Matteo, T.; Croft, R.; Khandai, N.; Feng, Y.; Bunker, A.; Coulton, W. Confronting predictions of the galaxy stellar mass function with observations at high redshift. Mon. Not. R. Astron. Soc. 2013, 429, 2098–2103. [Google Scholar] [CrossRef]
- Bouwens, R.J.; Illingworth, G.D.; Oesch, P.A.; Trenti, M.; Labbé, I.; Bradley, L.; Carollo, M.; van Dokkum, P.G.; Gonzalez, V.; Holwerda, B.; et al. UV Luminosity Functions at Redshifts z ∼ 4 to z ∼ 10: 10,000 Galaxies from HST Legacy Fields. Astrophys. J. 2015, 803, 34. [Google Scholar] [CrossRef]
- Bowler, R.A.A.; Jarvis, M.J.; Dunlop, J.S.; McLure, R.J.; McLeod, D.J.; Adams, N.J.; Milvang-Jensen, B.; McCracken, H.J. A lack of evolution in the very bright end of the galaxy luminosity function from z = 8 to 10. Mon. Not. R. Astron. Soc. 2020, 493, 2059–2084. [Google Scholar] [CrossRef]
- Maio, U.; Viel, M. JWST high-redshift galaxy constraints on warm and cold dark matter models. Astron. Astrophys. 2023, 672, A71. [Google Scholar] [CrossRef]
- Byrohl, C.; Nelson, D.; Horowitz, B.; Lee, K.G.; Pillepich, A. Introducing cosmosTNG: Simulating galaxy formation with constrained realizations of the COSMOS field. Astron. Astrophys. 2025, 698, A103. [Google Scholar] [CrossRef]
- Harvey, T.; Conselice, C.J.; Adams, N.J.; Austin, D.; Juodžbalis, I.; Trussler, J.; Li, Q.; Ormerod, K.; Ferreira, L.; Lovell, C.C.; et al. EPOCHS. IV. SED Modeling Assumptions and Their Impact on the Stellar Mass Function at 6.5 ≤ z ≤ 13.5 Using PEARLS and Public JWST Observations. Astrophys. J. 2025, 978, 89. [Google Scholar] [CrossRef]
- Rojas-Ruiz, S.; Bagley, M.; Roberts-Borsani, G.; Treu, T.; Finkelstein, S.L.; Morishita, T.; Leethochawalit, N.; Mason, C.; Bañados, E.; Trenti, M.; et al. The BoRG-JWST Survey: Abundance and Mass-to-light Ratio of Luminous z = 7–9 Galaxies from Independent Sight Lines with NIRSpec. Astrophys. J. 2025, 985, 80. [Google Scholar] [CrossRef]
- Muru, M.M.; Tempel, E. Using photometric redshift data to improve the detection of galactic filaments with the Bisous model. Astron. Astrophys. 2023, 670, A77. [Google Scholar] [CrossRef]
- Bunker, A.J.; Stanway, E.R.; Ellis, R.S.; McMahon, R.G. The star formation rate of the Universe at z~6 from the Hubble Ultra-Deep Field. Mon. Not. R. Astron. Soc. 2004, 355, 374–384. [Google Scholar] [CrossRef]
- McLeod, D.J.; McLure, R.J.; Dunlop, J.S. The z = 9–10 galaxy population in the Hubble Frontier Fields and CLASH surveys: The z = 9 luminosity function and further evidence for a smooth decline in ultraviolet luminosity density at z ≥ 8. Mon. Not. R. Astron. Soc. 2016, 459, 3812–3824. [Google Scholar] [CrossRef]
- Ownsworth, J.R.; Conselice, C.J.; Mundy, C.J.; Mortlock, A.; Hartley, W.G.; Duncan, K.; Almaini, O. The evolution of galaxies at constant number density: A less biased view of star formation, quenching, and structural formation. Mon. Not. R. Astron. Soc. 2016, 461, 1112–1129. [Google Scholar] [CrossRef]
- Meng, J.; Li, C.; Mo, H.J.; Chen, Y.; Wang, K. Measuring Galaxy Abundance and Clustering at High Redshift from Incomplete Spectroscopic Data: Tests on Mock Catalogs. Astrophys. J. 2024, 964, 161. [Google Scholar] [CrossRef]
- Finkelstein, S.L.; Leung, G.C.K.; Bagley, M.B.; Dickinson, M.; Ferguson, H.C.; Papovich, C.; Akins, H.B.; Arrabal Haro, P.; Davé, R.; Dekel, A.; et al. The Complete CEERS Early Universe Galaxy Sample: A Surprisingly Slow Evolution of the Space Density of Bright Galaxies at z ∼ 8.5–14.5. Astrophys. J. Lett. 2024, 969, L2. [Google Scholar] [CrossRef]
- Franco, M.; Akins, H.B.; Casey, C.M.; Finkelstein, S.L.; Shuntov, M.; Chworowsky, K.; Faisst, A.L.; Fujimoto, S.; Ilbert, O.; Koekemoer, A.M.; et al. Unveiling the Distant Universe: Characterizing z ≥ 9 Galaxies in the First Epoch of COSMOS-Web. Astrophys. J. 2024, 973, 23. [Google Scholar] [CrossRef]
Name | Type | Redshift | Luminosity (erg s−1) |
---|---|---|---|
XMMSL1 J0740−85 | RQ | 0.0173 | |
ASASSN-14li | RQ | 0.0206 | |
Sw J1112−82 | RL | 0.8901 | |
Sw J2058+05 | RL | 1.1853 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perger, K.; Fogasy, J.; Frey, S. What Do Radio Emission Constraints Tell Us About Little Red Dots as Tidal Disruption Events? Universe 2025, 11, 294. https://doi.org/10.3390/universe11090294
Perger K, Fogasy J, Frey S. What Do Radio Emission Constraints Tell Us About Little Red Dots as Tidal Disruption Events? Universe. 2025; 11(9):294. https://doi.org/10.3390/universe11090294
Chicago/Turabian StylePerger, Krisztina, Judit Fogasy, and Sándor Frey. 2025. "What Do Radio Emission Constraints Tell Us About Little Red Dots as Tidal Disruption Events?" Universe 11, no. 9: 294. https://doi.org/10.3390/universe11090294
APA StylePerger, K., Fogasy, J., & Frey, S. (2025). What Do Radio Emission Constraints Tell Us About Little Red Dots as Tidal Disruption Events? Universe, 11(9), 294. https://doi.org/10.3390/universe11090294