Supernovae, by Chandra and XMM-Newton
Abstract
1. Introduction
2. Advancements from XMM and Chandra
2.1. XMM: Type Ic SN2002ap in NGC 628
2.2. Chandra: Type IIn SN2017hcc
2.3. Chandra: Type SLSN I SN2017egm
2.4. Chandra: Type Ib SN 2014C
2.5. XMM and Chandra: Type IIn SN2010jl
3. Older Supernovae
3.1. Chandra and XMM: Type II SN1987A
3.2. Chandra and XMM: Type II SN1986J in NGC 891
4. On-Going Supernova: Type IIL SN2023ixf
5. Additional Results of X-Ray Observations
5.1. XMM: Supernova Density
5.2. XMM and Chandra: H-Poor Superluminous Supernovae
6. Discussion, Conclusions, and ‘What’s Next?’
Funding
Data Availability Statement
Conflicts of Interest
1 | The Rossi X-ray Timing Explorer currently holds the record for largest effective area ever flown, but it was a proportional counter, so it lacked imaging capability. |
2 | The editorial introduction to this series of papers reviewing Chandra and XMM’s contributions contains a brief appendix describing each satellite’s on-board instruments. |
3 | The NuSTAR point spread function is approximately 1′ in size. |
4 | Phrase from R. Kirshner at the Santa Cruz Summer Workshop on Supernovae, 1989. |
5 | Grating spectra have been obtained in 2019–2025 but either are not yet published or archived. |
6 | Three transients occurred without exhibiting a nearby galaxy, so a redshift of 0.3 was adopted for them. |
7 | This need is not restricted to supernovae: essentially any time-dynamic class of objects could make good use of at least a semi-dedicated instrument. |
References
- Schlegel, E.M. X-ray Emission from Supernovae: A Review of the Observations. Rep. Prog. Phys. 1995, 58, 1375. [Google Scholar] [CrossRef]
- Dwarkadas, V. On the X-ray Emission from Supernovae, and Implications for the Mass-Loss Rates of their Progenitor Stars. Universe 2025, 11, 161. [Google Scholar] [CrossRef]
- Wilkes, B.J.; Tucker, W.; Schartel, N.; Santos-Lleo, M. X-ray astronomy comes of age. Nature 2022, 606, 261. [Google Scholar] [CrossRef]
- XMM-Newton Community Support Team. XMM User’s Handbook. Available online: https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/uhb/ (accessed on 30 April 2025).
- Chandra X-ray Center. Chandra Proposer’s Guide. Available online: https://asc.harvard.edu/proposer/POG/ (accessed on 30 April 2025).
- Chandra, P. Radio and X-ray observations of supernovae in dense environments. In Supernova 1987A 30 Years Later: Cosmic Rays and Nuclei from Supernovae and Their Aftermaths; IAU Symposium 331; Marcowith, A., Renaud, M., Dubner, G., Ray, A., Bykov, A., Eds.; Cambridge University Press: Cambridge, UK, 2017; p. 23. [Google Scholar]
- Frisch, P.; Dwarkadas, V.V. Effects of Supernovae on the Local Interstellar Matter. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; p. 2253. [Google Scholar]
- Mazzali, P.; Deng, J.; Maeda, K.; Nomoto, K. The Type Ic Hypernova SN 2002ap. Astrophys. J. 2002, 572, L61. [Google Scholar] [CrossRef]
- Kinugasa, K.; Kawakita, H.; Ayani, K.; Kawabata, T.; Yamaoka, H.; Deng, J.S.; Mazzali, P.A.; Maeda, K.; Nomoto, K. Early Phase Spectra of ‘Hypernova’ SN 2002ap. Astrophys. J. 2002, 577, L97. [Google Scholar] [CrossRef]
- Solar, M.; Michałowski, M.J.; Nadolny, J.; Galbany, L.; Hjorth, J.; Zapartas, E.; Sollerman, J.; Hunt, L.; Klose, S.; Koprowski, M.; et al. Binary Progenitor Systems for Type Ic supernovae. Nat. Commun. 2024, 15, 7667. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Valenti, S.; Della Valle, M.; Chincarini, G.; Sauer, D.N.; Benetti, S.; Pian, E.; Piran, T.; D’Elia, V.; Elias-Rosa, N.; et al. The Metamorphosis of Supernova 2008D-XRF 080109: A Link Between Supernovae and GRBs/Hypernovae. Science 2008, 321, 1185. [Google Scholar] [CrossRef] [PubMed]
- Della Valle, M. Supernovae and gamma-ray burst connection. Astron. Astrophys. Trans. 2022, 33, 249. [Google Scholar] [CrossRef]
- Garnavich, P.; Matheson, T.; Eisenstein, D.; Pindor, B.; Hathi, N.; Jansen, R.; Windhorst, R.; Echevarria, L.; Lee, J.; Krisciunas, K.; et al. GRB 030329; IAU Circular: Paris, France, 2003; p. 8108. [Google Scholar]
- Sutaria, F.K.; Chandra, P.; Bhatnagar, S.; Ray, A. The Nature of the prompt X-ray and radio emission from SN 2002ap. Astron. Astrophys. 2003, 397, 1011. [Google Scholar] [CrossRef]
- Nakano, S. Supernova 2002ap in M74; IAU Circular: Paris, France, 2002; p. 7810. [Google Scholar]
- Nugis, T.; Lamers, H.J.G.L.M. Mass Loss Rates of Wolf-Rayet Stars as a Function of Stellar Parameters. Astron. Astrophys. 2000, 360, 227. [Google Scholar]
- Totani, T. A Failed Gamma-Ray Burst with Dirty Energetic Jets Spirited Away? New Implications for the Gamma-Ray Burst-Supernova Connection From SN2002ap. Astrophys. J. 2003, 598, 1151. [Google Scholar] [CrossRef]
- Ramirez-Ruiz, E.; Madau, P. Compton Echoes from Gamma-Ray Bursts: Unveiling Misaligned Jets in Nearby Type Ib/c Supernovae. Astrophys. J. 2004, 608, L89. [Google Scholar] [CrossRef]
- Björnsson, C.-I.; Fransson, C. The X-ray and Radio Emission from SN2002ap: The Importance of Compton Scattering. Astrophys. J. 2004, 605, 823. [Google Scholar] [CrossRef]
- Fiore, A.; Menegazzi, L.C.; Stratta, G. Exploring GRBs and supernovae connection: Does a superluminous hypernova population exist? Astronomy 2024, 1, 1. [Google Scholar]
- Soker, N. The Two Alternative Explosion Mechanisms of Core-Collapse Supernovae: 2024 Status Report. Universe 2024, 10, 458. [Google Scholar] [CrossRef]
- Prieto, J.L.; Chen, P.; Dong, S.; Shappee, B.J.; Seibert, M.; Bersier, D.; Holoien, T.W.-S.; Kochanek, C.S.; Stanek, K.Z.; Thompson, T.A. The Rise and Peak of the Luminous Type IIn SN2017hcc/ATLAS17lsn from ASAS-SN and Swift UVOT Data. Res. Notes Am. Astron. Soc. 2017, 1, 28. [Google Scholar]
- Chandra, P.; Chevalier, R.A.; James, N.J.H.; Fox, O.D. The luminous Type IIn supernova SN2017hcc: Infrared bright, X-ray and radio faint. Mon. Not. R. Astron. Soc. 2022, 517, 4151. [Google Scholar] [CrossRef]
- Gal-Yam, A. The Most Luminous Supernovae. Annu. Rev. Astron. Astrophys. 2019, 57, 305. [Google Scholar] [CrossRef]
- Quimby, R.M.; Aldering, G.; Wheeler, J.C.; Höflich, P.; Akerlof, C.W.; Rykoff, E.S. SN 2005ap: A Most Brilliant Explosion. Astrophys. J. 2007, 668, L99. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, N.; Dong, S.; Filippenko, A.V.; Rudy, R.J.; Pastorello, A.; Ashall, C.; Bose, S.; Post, R.S.; Bersier, D.; et al. SN 2017egm: A Helium-rich Superluminous Supernova with Multiple Bumps in the Light Curves. Astrophys. J. 2023, 949, 23. [Google Scholar] [CrossRef]
- Margutti, R.; Chornock, R.; Metzger, B.D.; Coppejans, D.L.; Guidorzi, C.; Migliori, G.; Milisavljevic, D.; Berger, E.; Nicholl, M.; Zauderer, B.A.; et al. Results from a Systematic Survey of X-ray Emission from Hydrogen-poor Superluminous SNe. Astrophys. J. 2018, 864, 45. [Google Scholar] [CrossRef]
- Brethauer, D.; Margutti, R.; Milisavljevic, D.; Bietenholz, M.F.; Chornock, R.; Coppejans, D.L.; De Colle, F.; Hajela, A.; Terreran, G.; Vargas, F.; et al. Seven Years of Coordinated Chandra-NuSTAR Observations of SN 2014C Unfold the Extreme Mass-loss History of Its Stellar Progenitor. Astrophys. J. 2022, 939, 105. [Google Scholar] [CrossRef]
- Margutti, R.; Kamble, A.; Milisavljevic, D.; Zapartas, E.; de Mink, S.E.; Drout, M.; Chornock, R.; Risaliti, G.; Zauderer, B.A.; Bietenholz, M.; et al. Ejection of the Massive H-rich Envelope Timed with the Collapse of the Stripped SN 2014C. Astrophys. J. 2017, 835, 140. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.P.; Wheeler, J.C.; Dwarkadas, V.V.; Stockdale, C.; Vinkó, J.; Pooley, D.; Xu, Y.; Zeimann, G.; MacQueen, P. Seven Years of SN2014C: A Multiwavelength Synthesis of an Extraordinary Supernova. Astrophys. J. 2022, 930, 57. [Google Scholar] [CrossRef]
- Chandra, P.; Chevalier, R.A.; Irwin, C.M.; Chugai, N.; Fransson, C.; Soderberg, A.M. Strong Evolution of X-ray Absorption in the Type IIn Supernova SN2010jl. Astrophys. J. 2012, 750, 2. [Google Scholar] [CrossRef]
- Ofek, E.O.; Fox, D.; Cenko, S.B.; Sullivan, M.; Gnat, O.; Frail, D.A.; Horesh, A.; Corsi, A.; Quimby, R.M.; Gehrels, N.; et al. X-ray Emission from Supernovae in Dense Circumstellar Matter Environments: A Search for Collisionless Shocks. Astrophys. J. 2013, 763, 42. [Google Scholar] [CrossRef]
- Ofek, E.O.; Zoglauer, A.; Boggs, S.E.; Barriére, N.M.; Reynolds, S.P.; Fryer, C.L.; Harrison, F.A.; Cenko, S.B.; Kulkarni, S.R.; Gal-Yam, A.; et al. SN2010jl: Optical to Hard X-ray Observations Reveal an Explosion Embedded in a Ten-Solar Mass Cocoon. Astrophys. J. 2014, 781, 42. [Google Scholar] [CrossRef]
- Chandra, P.; Chevalier, R.A.; Chugai, N.; Fransson, C.; Soderberg, A.M. X-ray and Radio Emission from the Type IIn Supernova SN 2010jl. Astrophys. J. 2015, 810, 32. [Google Scholar] [CrossRef]
- McCray, R. The Physics of Supernova 1987A. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; p. 2181. [Google Scholar]
- Hirata, K.; Kajita, T.; Koshiba, M.; Nakahata, M.; Oyama, Y.; Sato, N.; Suzuki, A.; Takita, M.; Totsuka, Y.; Kifune, T.; et al. Observation of a Neutrino Burst from the Supernova SN1987A. Phys. Rev. Lett. 1987, 58, 1490. [Google Scholar] [CrossRef]
- Hirata, K.; Kajita, T.; Koshiba, M.; Nakahata, M.; Oyama, Y.; Sato, N.; Suzuki, A.; Takita, M.; Totsuka, Y.; Kifune, T.; et al. Observation in the Kamiokande-II Detector of the Neutrino Burst from Supernova SN1987A. Phys. Rev. D 1988, 38, 448. [Google Scholar] [CrossRef]
- Bionta, R.M.; Blewitt, G.; Bratton, C.B.; Casper, D.; Ciocio, A.; Claus, R.; Cortez, B.; Crouch, M.; Dye, S.T.; Errede, S.; et al. Observation of a Neutrino Burst in Coincidence with Supernova SN1987A. Phys. Rev. Lett. 1987, 38, 448. [Google Scholar]
- Bratton, C.B.; Casper, D.; Ciocio, A.; Claus, R.; Crouch, M.; Dye, S.T.; Errede, S.; Gajewski, W.; Goldhaber, M.; Haines, T.J.; et al. Angular Distribution of Events from SN1987A. Phys. Rev. D 1988, 37, 3361. [Google Scholar] [CrossRef]
- Sonneborn, G. The Progenitor of SN1987A. In Supernova 1987A in the Large Magellanic Cloud; Kafatos, M., Michalitsianos, A., Eds.; Cambridge University Press: Cambridge, UK, 1988; pp. 107–110. ISBN 978-0-521-35575-9. [Google Scholar]
- Crotts, A.P.S.; Kunkel, W.E.; Heathcote, S.R. The Circumstellar Envelope of SN1987A I. The Shape of the Double-Lobed Nebula and Its Rings and the Distance to the Large Magellanic Cloud. Astrophys. J. 1995, 438, 724. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Soker, N. Asymmetric Envelope Expansion of Supernova 1987A. Astrophys. J. 1989, 341, 867. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Joss, P.C.; Rappaport, S. A merger model for SN 1987A. Astron. Astrophys. 1990, 227, L9. [Google Scholar]
- Fransson, C.; Barlow, M.J.; Kavanagh, P.J.; Larsson, J.; Jones, O.C.; Sargent, B.; Meixner, M.; Bouchet, P.; Temim, T.; Wright, G.S.; et al. Emission Lines Due to Ionizing Radiation from a compact object in the remnant of Supernova 1987A. Science 2024, 383, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Fesen, R.A.; Weil, K.A.; Hamilton, A.J.S.; Höflich, P.A. Optical and UV Spectra of the Remnant of SN1885 (S And) in M31. Astrophys. J. 2017, 848, 130. [Google Scholar] [CrossRef]
- Fesen, R.A.; Gerardy, C.L.; McLin, K.M.; Hamilton, A.J.S. Hubble Space Telescope Images and Spectra of the Remnant of SN1885 in M31. Astrophys. J. 1999, 514, 195. [Google Scholar] [CrossRef]
- Fesen, R.A.; Hamilton, A.J.S.; Saken, J.M. Discovery of the Remnant of S And (SN1885) in M31. Astrophys. J. 1989, 341, 55. [Google Scholar] [CrossRef]
- Prucker, M.; Sasaki, M.; Schlegel, E.M.; Knies, J.; Weber, P.; Kreykenbohm, I.; Wilms, J. X-ray Emission from SN1885A. Astron. Astrophys. 2025, 693, A110. [Google Scholar] [CrossRef]
- Dewey, D.; Zhekov, S.A.; McCray, R.; Canizares, C.R. Chandra HETG Spectra of SN1987A at 20 years. Astrophys. J. 2008, 676, L131. [Google Scholar] [CrossRef]
- Sturm, R.; Haberl, F.; Aschenbach, B.; Hasinger, G. High-resolution X-ray spectroscopy of SN1987A: Monitoring with XMM-Newton. Astron. Astrophys. 2010, 515, A5. [Google Scholar] [CrossRef]
- Ravi, A.P.; Park, S.; Zhekov, S.A.; Miceli, M.; Orlando, S.; Frank, K.A.; Burrows, D.N. Spectral Evolution of the X-ray Remnant of SN1987A: A High-resolution Chandra HETG Study. Astrophys. J. 2021, 922, 140. [Google Scholar] [CrossRef]
- Bray, E.; Burrows, D.N.; Park, S.; Ravi, A.P. High-cadence Dispersed Spectral Analysis of Supernova Remnant 1987A. Astrophys. J. 2020, 899, 21. [Google Scholar] [CrossRef]
- Temple, R.F.; Raychaudhury, S.; Stevens, I.R. X-ray observations of the edge-on star-forming galaxy NGC 891 and its supernova SN1986J. Mon. Not. R. Astron. Soc. 2005, 362, 581. [Google Scholar] [CrossRef]
- Houck, J.C.; Bregman, J.N.; Chevalier, R.A.; Tomisaka, K. Recent X-ray Observations of SN 1986J with ASCA and ROSAT. Astrophys. J. 1998, 493, 431. [Google Scholar] [CrossRef]
- Chandra, P.; Dwarkadas, V.V.; Ray, A.; Immler, S.; Pooley, D. X-rays from the Explosion Site: 15 Years of Light Curves of SN1993J. Astrophys. J. 2009, 699, 388. [Google Scholar] [CrossRef]
- Chandra, P.; Chevalier, R.A.; Maeda, K.; Ray, A.K.; Nayana, A.J. Chandra’s Insights into SN 2023ixf. Astrophys. J. 2024, 963, L4. [Google Scholar] [CrossRef]
- Nayana, A.J.; Margutti, R.; Wiston, E.; Chornock, R.; Campana, S.; Laskar, T.; Murase, K.; Krips, M.; Migliori, G.; Tsuna, D.; et al. Dinosaur in a Haystack: X-ray View of the Entrails of SN2023ixf and the Radio Afterglow of Its Interaction with the Medium Spawned by the Progenitor Star. arXiv 2024, arXiv:2411.02647. [Google Scholar]
- Sun, H.; Liu, H.-Y.; Pan, H.-W.; Liu, Z.; Alp, D.; Hu, J.; Li, Z.; Zhang, B.; Yuan, W. Luminosity Function and Event Rate Density of XMM-Newton-Selected Supernova Shock Breakout Candidates, Astrophys. J. 2022, 927, 224. [Google Scholar]
- Alp, D.; Larsson, J. Blast from the Past: Supernova Shock Breakouts among X-ray Transients in the XMM-Newton Archive. Astrophys. J. 2020, 896, 39. [Google Scholar] [CrossRef]
- Chomiuk, L.; Chornock, R.; Soderberg, A.; Berger, E.; Chevalier, R.A.; Foley, R.J.; Huber, M.E.; Narayan, G.; Rest, A.; Gezari, S.; et al. Pan-STARRS1 Discovery of Two Ultraluminous Supernovae at z ≈ 0.9. Astrophys. J. 2011, 743, 114. [Google Scholar] [CrossRef]
- Quimby, R.M.; Kulkarni, S.R.; Kasliwal, M.M.; Gal-Yam, A.; Arcavi, I.; Sullivan, M.; Nugent, P.; Thomas, R.; Howell, D.A.; Nakar, E.; et al. Hydrogen-poor superluminous stellar explosions. Nature 2011, 474, 487. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlegel, E.M. Supernovae, by Chandra and XMM-Newton. Universe 2025, 11, 188. https://doi.org/10.3390/universe11060188
Schlegel EM. Supernovae, by Chandra and XMM-Newton. Universe. 2025; 11(6):188. https://doi.org/10.3390/universe11060188
Chicago/Turabian StyleSchlegel, Eric M. 2025. "Supernovae, by Chandra and XMM-Newton" Universe 11, no. 6: 188. https://doi.org/10.3390/universe11060188
APA StyleSchlegel, E. M. (2025). Supernovae, by Chandra and XMM-Newton. Universe, 11(6), 188. https://doi.org/10.3390/universe11060188