New Black Hole Solution in f(R) Theory and Its Related Physics
Abstract
1. Introduction
- Using astrophysical observations to determine whether significant deviations from GR exist;
- If such deviations are detected, the most appropriate BH solution is reconstructed based on the data. This solution can then serve as an indirect test of alternative gravitational theories.
2. The f(R) Theory and Its Field Equations
3. Study of Black Hole Solutions in f(R) Gravity
Characteristics of the BH (A2)
4. The Thermodynamic Properties of the BH Described by Equation (36)
- The pattern of is shown in Figure 1b, indicating a well-behaved entropy profile.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- The explicate forms of the two functions and
1 | |
2 | Because the solution provided by Equation (A2) has unequal ansatzs, then the temperature will differ from the one with equal ansatzs. |
References
- Sathyaprakash, B.S.; Schutz, B.F. Physics, Astrophysics and Cosmology with Gravitational Waves. Living Rev. Rel. 2009, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3. Phys. Rev. X 2023, 13, 011048. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett. 2022, 930, L14. [Google Scholar]
- Ciufolini, I.; Pavlis, E.C. A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 2004, 431, 958. [Google Scholar] [CrossRef]
- Abuter, R.; Amorim, A.; Bauboeck, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Cardoso, V.; Clenet, Y.; de Zeeuw, P.T.; Dexter, J.; et al. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2020, 636, L5. [Google Scholar] [CrossRef]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; Wex, N.; Deller, A.T.; Coles, W.A.; Ali, M.; Burgay, M.; Camilo, F.; Cognard, I.; et al. Strong-Field Gravity Tests with the Double Pulsar. Phys. Rev. X 2021, 11, 041050. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological Constant. Living Rev. Rel. 2001, 4, 1. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
- D’Agostino, R.; Luongo, O.; Muccino, M. Healing the cosmological constant problem during inflation through a unified quasi-quintessence matter field. Class. Quant. Grav. 2022, 39, 195014. [Google Scholar] [CrossRef]
- Arun, K.; Gudennavar, S.B.; Sivaram, C. Dark matter, dark energy, and alternate models: A review. Adv. Space Res. 2017, 60, 166. [Google Scholar] [CrossRef]
- Salucci, P.; Esposito, G.; Lambiase, G.; Battista, E.; Benetti, M.; Bini, D.; Boco, L.; Sharma, G.; Bozza, V.; Buoninfante, L.; et al. Einstein, Planck and Vera Rubin: Relevant Encounters Between the Cosmological and the Quantum Worlds. Front. Phys. 2021, 8, 603190. [Google Scholar] [CrossRef]
- Ross, G.G. Grand Unified Theories; Westview 1 Press: Boulder, CO, USA, 1985. [Google Scholar]
- Zwiebach, B. A First Course in String Theory; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R.; Luongo, O. Extended gravity cosmography. Int. J. Mod. Phys. D 2019, 28, 1930016. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R. Model-independent reconstruction of f(Q) non-metric gravity. Phys. Lett. B 2022, 832, 137229. [Google Scholar] [CrossRef]
- Bajardi, F.; D’Agostino, R. Late-time constraints on modified Gauss-Bonnet cosmology. Gen. Rel. Grav. 2023, 55, 49. [Google Scholar] [CrossRef]
- Johannsen, T.; Psaltis, D. Testing the no-hair theorem with observations in the electromagnetic spectrum. I. properties of a quasi-kerr spacetime. Astrophys. J. 2010, 716, 187. [Google Scholar] [CrossRef]
- Medeiros, L.; Psaltis, D.; Özel, F. A Parametric model for the shapes of black-hole shadows in non-Kerr spacetimes. Astrophys. J. 2020, 896, 7. [Google Scholar] [CrossRef]
- De Laurentis, M.; Younsi, Z.; Porth, O.; Mizuno, Y.; Rezzolla, L. Test-particle dynamics in general spherically symmetric black hole spacetimes. Phys. Rev. D 2018, 97, 104024. [Google Scholar] [CrossRef]
- Völkel, S.H.; Kokkotas, K.D. Scalar fields and parametrized spherically symmetric black holes: Can one hear the shape of space-time? Phys. Rev. D 2019, 100, 044026. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) Theories|Living Reviews in Relativity. Living Rev. Relativ. 2010, 13, 1. [Google Scholar]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 1992, 215, 203. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Troisi, A. Reconciling dark energy models with f(R) theories. Phys. Rev. D 2005, 71, 043503. [Google Scholar] [CrossRef]
- Li, B.; Barrow, J.D. Conceptual Problems of Inflationary Cosmology and a New Approach to Cosmological Structure Formation. Phys. Rev. D 2007, 75, 084010. [Google Scholar] [CrossRef]
- Hu, W.; Sawicki, I. Models of f(R) cosmic acceleration that evade solar system tests. Phys. Rev. D 2007, 76, 064004. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Disappearing cosmological constant in f(R) gravity. JETP Lett. 2007, 86, 157. [Google Scholar] [CrossRef]
- Song, Y.-S.; Peiris, H.; Hu, W. Cosmological constraints on f(R) acceleration models. Phys. Rev. D 2007, 76, 063517. [Google Scholar] [CrossRef]
- Faraoni, V. Palatini f(R) gravity as a fixed point. Phys. Lett. B 2008, 665, 135. [Google Scholar] [CrossRef]
- Leon, G.; Saridakis, E.N. Dynamics of the anisotropic Kantowsky–Sachs geometries in Rn gravity. Class. Quant. Grav. 2011, 28, 065008. [Google Scholar] [CrossRef]
- Gil-Marin, H.; Schmidt, F.; Hu, W.; Jimenez, R.; Verde, L. The bispectrum of f(R) cosmologies. JCAP 2011, 11, 019. [Google Scholar] [CrossRef]
- Oikonomou, V.K. An exponential f(R) dark energy model. Gen. Rel. Grav. 2013, 45, 2467. [Google Scholar] [CrossRef]
- Oikonomou, V.K.; Karagiannakis, N. Late-time cosmological evolution in f(R) theories with ordinary and collisional matter. Class. Quant. Grav. 2015, 32, 085001. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From f(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified f(R) gravity unifying Rm inflation with the ΛCDM epoch. Phys. Rev. D 2008, 77, 026007. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 2008, 77, 046009. [Google Scholar] [CrossRef]
- Capozziello, S. Curvature Quintessence. Int. J. Mod. Phys. D 2002, 11, 483. [Google Scholar] [CrossRef]
- Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Rel. Grav. 2008, 40, 357. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R.; Luongo, O. Rational approximations of f(R) cosmography through Pad’e polynomials. J. Cosmol. Astropart. Phys. 2018, 05, 008. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.; Oikonomou, V. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1. [Google Scholar] [CrossRef]
- D’Agostino, R.; Nunes, R.C. Probing observational bounds on scalar-tensor theories from standard sirens. Phys. Rev. D 2019, 100, 044041. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Black Holes with Electric and Magnetic Charges in f(R) Gravity. Fortsch. Phys. 2023, 71, 2200091. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Sheykhi, A. New black hole solutions in three-dimensional f(R) gravity. Phys. Dark Univ. 2023, 40, 101174. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Rotating black hole in f(R) theory. J. Cosmol. Astropart. Phys. 2021, 11, 7. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Capozziello, S. Rotating black hole in f(R) theory. Eur. Phys. J. C 2021, 81, 481. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Specific neutral and charged black holes in f(R) gravitational theory. Phys. Rev. D 2021, 104, 124054. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Specific neutral and charged black holes in f(R) gravitational theory. Phys. Lett. B 2021, 815, 136133. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Uniqueness of non-trivial spherically symmetric black hole solution in special classes of f(R) gravitational theory. Phys. Lett. B 2021, 812, 136012. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Nontrivial black hole solutions in f(R) gravitational theory. Phys. Rev. D 2020, 102, 124022. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Saridakis, E.N. Nontrivial black hole solutions in f(R) gravitational theory. Phys. Rev. D 2020, 102, 124072. [Google Scholar] [CrossRef]
- Sebastiani, L.; Zerbini, S. Static spherically symmetric solutions in f(R) gravity. Eur. Phys. J. C 2011, 71, 1591. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Charged axially symmetric solution, energy and angular momentum in tetrad theory of gravitation. Int. J. Mod. Phys. A 2006, 21, 3181. [Google Scholar] [CrossRef]
- Multamaki, T.; Vilja, I. Spherically symmetric solutions of modified field equations in f(R) theories of gravity. Phys. Rev. D 2006, 74, 064022. [Google Scholar] [CrossRef]
- Hendi, S.H.; Eslam Panah, B.; Saffari, R. Exact solutions of three-dimensional black holes: Einstein gravity versus F(R) gravity. Int. J. Mod. Phys. D 2014, 23, 1450088. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Capozziello, S. Charged spherically symmetric black holes in f(R) gravity and their stability analysis. Phys. Rev. D 2019, 99, 104018. [Google Scholar] [CrossRef]
- Tang, Z.-Y.; Wang, B.; Papantonopoulos, E. Exact charged black hole solutions in D-dimensions in f(R) gravity. Eur. Phys. J. C 2021, 81, 346. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; El Hanafy, W.; Odintsov, S.D.; Oikonomou, V.K. Thermodynamical correspondence of f(R) gravity in the Jordan and Einstein frames. Int. J. Mod. Phys. D 2020, 29, 2050090. [Google Scholar] [CrossRef]
- Rodrigues, M.E.; Junior, E.L.B.; Marques, G.T.; Zanchin, V.T. Regular black holes in f(R) gravity coupled to nonlinear electrodynamics. Phys. Rev. D 2016, 94, 024062, Erratum in: Phys. Rev. D 2016, 94, 049904. [Google Scholar] [CrossRef]
- Rodrigues, M.E.; Fabris, J.C.; Junior, E.L.B.; Marques, G.T. Generalisation for regular black holes on general relativity to f(R) gravity. Eur. Phys. J. C 2016, 76, 250. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Kerr-NUT black hole thermodynamics in f(T) gravity theories. Eur. Phys. J. Plus 2015, 130, 124. [Google Scholar] [CrossRef]
- Hollenstein, L.; Lobo, F.S.N. Exact solutions of f(R) gravity coupled to nonlinear electrodynamics. Phys. Rev. D 2008, 78, 124007. [Google Scholar] [CrossRef]
- Karakasis, T.; Papantonopoulos, E.; Tang, Z.-Y.; Wang, B. Exact black hole solutions with a conformally coupled scalar field and dynamic Ricci curvature in f(R) gravity theories. Eur. Phys. J. C 2021, 81, 897. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Analytic charged BHs in f(R) gravity. Phys. Lett. B 2021, 820, 136475. [Google Scholar] [CrossRef]
- Hawking, S. Occurrence of Singularities in Open Universes. Phys. Rev. Lett. 1965, 15, 689. [Google Scholar] [CrossRef]
- Hawking, S.W.; Penrose, R. The Singularities of Gravitational Collapse and Cosmology. Proc. R. Soc. A Lond. Math. Phys. Sci. 1970, 314, 529. [Google Scholar]
- Sakharov, A.D. The Initial Stage of an Expanding Universe and the Appearance of a Nonuniform Distribution of Matter. Sov. Phys. JETP 1966, 22, 241. [Google Scholar]
- Gliner, E.B. Algebraic Properties of the Energy-momentum Tensor and Vacuum-like States o+ Matter. Sov. J. Exp. Theor. Phys. 1966, 22, 378. [Google Scholar]
- Dymnikova, I. Spherically symmetric space–time with regular de sitter center. Int. J. Mod. Phys. D 2003, 12, 1015. [Google Scholar] [CrossRef]
- Bardeen, J. Non-singular general-relativistic gravitational collapse. In Proceedings of the International Conference GR5, Tbilisi, Georgia, 9–13 September 1968; p. 174. [Google Scholar]
- Ayon-Beato, E.; Garcia, A. Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics. Phys. Rev. Lett. 1998, 80, 5056. [Google Scholar] [CrossRef]
- Ayon-Beato, E.; Garcia, A. The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 2000, 493, 149. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 2001, 63, 044005. [Google Scholar] [CrossRef]
- Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett. 2006, 96, 031103. [Google Scholar] [CrossRef]
- Fan, Z.-Y.; Wang, X. Construction of regular black holes in general relativity. Phys. Rev. D 2016, 94, 124027. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Comment on “Construction of regular black holes in general relativity”. Phys. Rev. D 2017, 96, 128501. [Google Scholar] [CrossRef]
- Toshmatov, B.; Stuchlík, Z.; Ahmedov, B. Comment on “Construction of regular black holes in general relativity”. Phys. Rev. D 2018, 98, 028501. [Google Scholar] [CrossRef]
- Lan, C.; Yang, H.; Guo, Y.; Miao, Y.-G. Regular Black Holes: A Short Topic Review. Int. J. Theor. Phys. 2023, 62, 202. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Regular multihorizon black holes in modified gravity with nonlinear electrodynamics. Phys. Rev. D 2017, 96, 104008. [Google Scholar] [CrossRef]
- Gao, C.; Yu, S.; Qiu, J. Nonsingular black holes and nonsingular universes in the regularized Lovelock gravity. Phys. Dark Univ. 2021, 31, 100754. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D. Nonsingular black holes in quadratic Palatini gravity. Eur. Phys. J. C 2012, 72, 2098. [Google Scholar] [CrossRef]
- Menchon, C.; Olmo, G.J.; Rubiera-Garcia, D. Nonsingular black holes, wormholes, and de Sitter cores from anisotropic fluids. Phys. Rev. D 2017, 96, 104028. [Google Scholar] [CrossRef]
- Maluf, R.V.; Neves, J.C.S. Thermodynamics of a class of regular black holes with a generalized uncertainty principle. Phys. Rev. D 2018, 97, 104015. [Google Scholar] [CrossRef]
- Carballo-Rubio, R.; Di Filippo, F.; Liberati, S.; Pacilio, C.; Visser, M. Phenomenological aspects of black holes beyond general relativity. J. High Energy Phys. 2021, 05, 132. [Google Scholar] [CrossRef]
- Frolov, V.P. Notes on non-singular models of black holes. Phys. Rev. D 2016, 94, 104056. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Nojiri, S. Slow-rotating charged black hole solution in dynamical Chern-Simons modified gravity. Phys. Rev. D 2023, 107, 064069. [Google Scholar] [CrossRef]
- Mazharimousavi, S.H. Dirty black hole supported by a uniform electric field in Einstein-nonlinear electrodynamics-Dilaton theory. Eur. Phys. J. C 2023, 83, 406, Erratum in: Eur. Phys. J. C 2023, 83, 597. [Google Scholar] [CrossRef]
- Hendi, S.H.; Sheykhi, A.; Dehghani, M.H. Thermodynamics of higher dimensional topological charged AdS black branes in dilaton gravity. Eur. Phys. J. C 2010, 70, 703. [Google Scholar] [CrossRef]
- Sheykhi, A.; Dehghani, M.H.; Hendi, S.H. Thermodynamic instability of charged dilaton black holes in AdS spaces. Phys. Rev. D 2010, 81, 084040. [Google Scholar] [CrossRef]
- Cognola, G.; Gorbunova, O.; Sebastiani, L.; Zerbini, S. Energy issue for a class of modified higher order gravity black hole solutions. Phys. Rev. D 2011, 84, 023515. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, R.-J. Horizon thermodynamics in f(R) theory. Eur. Phys. J. C 2018, 78, 682. [Google Scholar] [CrossRef]
- Nouicer, K. Black hole thermodynamics to all orders in the Planck length in extra dimensions. Class. Quant. Grav. 2007, 24, 5917. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nashed, G.G.L.; Eid, A. New Black Hole Solution in f(R) Theory and Its Related Physics. Universe 2025, 11, 175. https://doi.org/10.3390/universe11060175
Nashed GGL, Eid A. New Black Hole Solution in f(R) Theory and Its Related Physics. Universe. 2025; 11(6):175. https://doi.org/10.3390/universe11060175
Chicago/Turabian StyleNashed, G. G. L., and Ali Eid. 2025. "New Black Hole Solution in f(R) Theory and Its Related Physics" Universe 11, no. 6: 175. https://doi.org/10.3390/universe11060175
APA StyleNashed, G. G. L., & Eid, A. (2025). New Black Hole Solution in f(R) Theory and Its Related Physics. Universe, 11(6), 175. https://doi.org/10.3390/universe11060175