Next Article in Journal
Harmonizing Sunspot Datasets Consistency: Focusing on SOHO/MDI and SDO/HMI Data
Previous Article in Journal
Flare Set-Prediction Transformer: A Transformer-Based Set-Prediction Model for Detailed Solar Flare Forecasting
Previous Article in Special Issue
Scaling Invariance of Perturbations in k-Inflation Models
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Black Hole Solution in f(R) Theory and Its Related Physics

1
Centre for Theoretical Physics, The British University in Egypt, P.O. Box 43, El Sherouk City 11837, Cairo, Egypt
2
Centre for Space Research, North-West University, Private Bag X1290, Potchefstroom 2520, South Africa
3
Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
*
Author to whom correspondence should be addressed.
Universe 2025, 11(6), 175; https://doi.org/10.3390/universe11060175
Submission received: 29 April 2025 / Revised: 20 May 2025 / Accepted: 26 May 2025 / Published: 30 May 2025

Abstract

Recent observations suggest that General Relativity (GR) faces challenges in fully explaining phenomena in regimes of strong gravitational fields. A promising alternative is the f ( R ) theory of gravity, where R denotes the Ricci scalar. This modified theory aims to address the limitations observed in standard GR. In this study, we derive a black hole (BH) solution without introducing nonlinear electromagnetic fields or imposing specific constraints on R or the functional form of f ( R ) gravity. The BH solution obtained here is different from the classical Schwarzschild solution in GR and, under certain conditions, reduces to the Schwarzschild (A)dS solution. This BH is characterized by the gravitational mass of the system and an additional parameter, which distinguishes it from GR BHs, particularly in the asymptotic regime. We show that the curvature invariants of this solution remain well defined at both small and large values of r. Furthermore, we analyze their thermodynamic properties, demonstrating consistency with established principles such as Hawking radiation, entropy, and quasi-local energy. This analysis supports their viability as alternative models to classical GR BHs.

1. Introduction

Recent groundbreaking achievements, such as the direct detection of gravitational waves [1,2] and the imaging of matter dynamics near supermassive BHs [3,4], have provided a wealth of precise and complementary observational data. These advancements have enabled deeper investigations into self-gravitating systems and the nature of gravitational interactions. GR has successfully passed numerous observational tests (e.g., [5,6,7]), solidifying its status as the most reliable and thoroughly tested theory of gravity to date. Nevertheless, GR continues to face unresolved theoretical and observational challenges, including the mysteries of dark energy [8,9,10], the nature of dark matter [11,12], and the ongoing quest to unify gravity with the other fundamental forces in a complete quantum theory of gravity [13,14].
Numerous extensions and alternatives to Einstein’s theory have been proposed to address these limitations. These approaches aim to either relax certain foundational assumptions of GR or build upon them in various ways [15,16,17,18]. However, none of the proposed models have yet succeeded in resolving all the aforementioned challenges simultaneously. It is widely believed that the extreme gravitational fields near a BH may hold the key to uncovering new physics. These regions could either reinforce GR or offer compelling evidence for a new theoretical framework [4].
Therefore, improving our understanding of how theoretical predictions align with observational data is essential. To this end, some research efforts adopt a theory-agnostic approach, employing general BH parametrizations [19,20] to explore gravitational phenomena without committing to a specific underlying theory.
This approach utilizes generic metrics capable of describing BH geometries across a range of gravitational theories, which are parameterized by a small set of variables. The primary objective is to identify potential deviations from GR-based metrics, which are typically constrained by fitting observational data [21,22]. The methodology involves two key steps:
  • Using astrophysical observations to determine whether significant deviations from GR exist;
  • If such deviations are detected, the most appropriate BH solution is reconstructed based on the data. This solution can then serve as an indirect test of alternative gravitational theories.
To explore modifications of gravity, higher-order corrections are often introduced to the Einstein–Hilbert action. Among the simplest such extensions is f ( R ) gravity, where R denotes the Ricci scalar [23]. This framework has shown significant cosmological potential; for instance, it can successfully model inflation [24] (see ref. [25] for discussions on cosmological density perturbations), explain the late-time acceleration of the universe [26,27,28,29,30,31,32,33,34,35], or even offer a unified description of both phenomena [36,37,38].
In this study, we employed a combination of astrophysical methods to accurately identify potential deviations from the Schwarzschild metric. To this end, we focused on f ( R ) gravity, which extends the Einstein’s Hilbert action by introducing an arbitrary function of the Ricci scalar R [23,36,39,40,41,42,43,44]. Specifically, we utilized the order-reduction approach within f ( R ) gravity [45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66] to investigate deviations within this theoretical framework.
Investigating modified theories of gravity also provides a pathway to addressing spacetime singularities. While the singularity theorems [67,68] support their existence, singularities in Einstein’s GR can be avoided by introducing unconventional matter sources. For instance, Sakharov [69] and Gliner [70] proposed that a vacuum configuration producing a de Sitter core near the center could result in singularity-free BHs [71]. Bardeen [72] introduced a nonsingular BH solution, which was later shown by Ayón-Beato and García [73,74], and independently by Bronnikov [75] to arise from nonlinear electrodynamics (NLE) as the source. Hayward constructed a nonsingular BH by specifying an appropriate mass function [76]. Fan and Wang developed a family of nonsingular BH solutions within the framework of NLE, encompassing the Bardeen and Hayward solutions, along with new classes of solutions [77]. Further analysis of the parameters and physical relevance of these solutions was provided by Bronnikov [78] and Toshmatov et al. [79]. Lan et al. have also discussed the issue of regular BHs within Einstein’s GR [80].
Nonsingular BH solutions have also been identified in various modified gravity theories, including f ( R ) gravity [81], Lovelock gravity [82], Palatini gravity [83], Born–Infeld gravity [84], and gravity theories incorporating corrections from the generalized uncertainty principle [85]. Although these solutions may be susceptible to instabilities [86], they can be interpreted as effective models that incorporate quantum gravity effects to smooth out the central region [87]. This study aims to derive a BH solution within f ( R ) gravity that remains finite as r 0 , without introducing electromagnetic fields or imposing specific forms for the Ricci scalar.
This study is organized as follows: In Section 2, we present the field equations for f ( R ) . The new BH solution, including its metric potentials and curvature invariants, is introduced in Section 3. The behavior of the solution for both large and small values of r is also analyzed in Section 3. In Section 5, we investigate the physical properties of the solution by computing its thermodynamic quantities, which are supported by both analytical and graphical analysis. Finally, in Section 5, we summarize and discuss the main findings of the study. Detailed calculations are provided in Appendix A.

2. The f(R) Theory and Its Field Equations

The action of f ( R ) theory is defined as follows:
I f ( R ) = d 4 x g f ( R ) + 2 κ 2 L m .
Here, g denotes the determinant of g μ ν , f ( R ) is an arbitrary function R, L m represents the Lagrangian density of matter, and κ 2 = 8 π G / c 4 , where G and c are Newton’s constant and the speed of light, respectively.
This theory can be formulated using two main approaches. The first, known as the metric formalism, treats the metric and matter fields as the fundamental dynamical variables. The second, called the Palatini formalism, also considers the metric and matter fields as dynamical but treats the Levi–Civita connection as independent of the metric. In this work, we adopt the metric formalism.
By applying the variational principle with respect to the metric to the action (1), we obtain
f R R ν μ 1 2 δ ν μ f + δ ν μ g μ β β ν f R = κ 2 Θ ν μ .
Here, f R is the first derivative of f ( R ) w.r.t. the Ricci scalar, ν is the covariant derivative, □ is the d’Alembertian operator, and Θ μ ν is the energy–momentum tensor of matter.
Taking the trace of Equation (2), we obtain
I = 3 f R + R f R 2 f ( R ) 0 .
From Equation (3) one can derive f ( R ) as
f ( R ) = 1 2 3 f R + R f R .
Using of Equation (4) in Equation (2) gives [45,46,47,48,49,50,51,52,53,66]
I μ ν = R μ ν f R 1 4 g μ ν R f R + 1 4 g μ ν f R μ ν f R κ 2 Θ μ ν .
We assume the spherically symmetric spacetime to have the form
d s 2 = S ( r ) d t 2 + d r 2 S 1 ( r ) + r 2 d θ 2 + sin 2 θ d ϕ 2 ,
where S ( r ) and S 1 ( r ) are functions of r. From Equation (6), we obtain
R ( r ) = r 2 S 1 S 2 r 2 S S S 1 2 r 2 S S 1 S 4 r S S 1 S S S 1 + 4 S 2 ( 1 S 1 ) 2 r 2 S 2 ,
where (′) means the derivative w.r.t r. The field equations of f ( R ) theory are then found by using the line element (6) and the field Equation (5) to yield
I t t = 1 8 S 2 r 2 F S 2 S 1 r 2 F S S 1 S r 2 2 F S S 1 S r 2 4 F r S 1 S S + 4 F r S 1 S 2 4 F S 2 + 4 F S 2 S 1 3 S r 2 F S 1 S + 2 S 2 r 2 F S 1 + S 2 r 2 F S 1 + 4 S 2 r F S 1 = 0 ,
I r r = 1 8 S 2 r 2 F S 2 S 1 r 2 2 F S S 1 S r 2 F S S 1 S r 2 4 F r S 1 S 2 + 4 F r S 1 S S 4 F S 2 + 4 F S 2 S 1 + S r 2 F S 1 S 6 S 2 r 2 F S 1 3 S 2 r 2 F S 1 + 4 S 2 r F S 1 = 0 ,
I θ θ = I ϕ ϕ = 1 8 S 2 r 2 F S 2 S 1 r 2 4 F S 2 + 4 F S 2 S 1 F S S 1 S r 2 2 F S S 1 S r 2 S r 2 F S 1 S 2 S 2 r 2 F S 1 S 2 r 2 F S 1 + 4 S 2 r F S 1 = 0 ,
Finally, the trace equation given by Equation (3) yields the form
I = 1 S 2 r 2 3 S r 2 F S 1 S + 6 S 2 r 2 F S 1 + 3 S 2 r 2 F S 1 + 12 S 2 r F S 1 F S S 1 S r 2 2 F S S 1 S r 2 + F S 2 S 1 r 2 4 F r S 1 S S 4 F r S 1 S 2 + 4 F S 2 4 F S 2 S 1 4 f S 2 r 2 = 0 ,
where F = f R .
In the following section, we employ an algebraic method to solve these equations and derive a new BH solution.

3. Study of Black Hole Solutions in f(R) Gravity

It is not easy to derive a solution of Equations (8)–(10) in spite of the system having a closed form, i.e., we have three nonlinear differential equations in three unknowns S, S 1 , and F . Therefore, we will assume a specific form for one of these unknowns to be able to derive the other two unknowns1. The function that we will assume in this study is F , which we assume to take the following form:
F = 1 + α r 3 r 4 + g 4 ,
Here, the parameter α is a dimensional quantity with units of length, and g is another dimensional parameter, also possessing units of length.
It is important to note that if g = 0 , we obtain
F = 1 + α r .
Equation (13), previously studied in [52], leads to a black hole solution that exhibits problematic behavior r 0 , which is in contrast to the results presented in this study.
The form F = f R given by Equation (12) reduces to Einstein GR when the parameter α = 0 . Using Equation (12) in Equations (8)–(10), we obtain the explicit form of the two functions S and S 1 , which we wrote in Appendix A.
Using Equations (12) and (A2) presented in Appendix A in Equation (3), we obtain the form of f ( R ) f ( r ) , which we write in Appendix A due to its length.
Using Equation (A2) presented in Appendix A, in Equation (7), we obtain the form of the Ricci scalar, which we also write in Appendix A. In the case of α = 0 we obtain
F = 1 , S ( r ) = S 1 ( r ) = 1 + c 2 r 2 + c 1 r ,
which is the Ads/ds Schwarzschild spacetime. In the next section, we are going to discuss the physical properties of the BH solution derived in this study.

Characteristics of the BH (A2)

In this subsection, we explore the physical properties of the solution given by Equation (A2). Specifically, we analyze the asymptotic behavior of S ( r ) and S 1 ( r ) , as defined in Equation (A2) in Appendix A, in the limits of both small and large r. The behaviors of the two functions S ( r ) and S 1 ( r ) are given as
S ( r ) r 0 c 1 + c 2 c 1 r 2 α c 1 r 3 g 4 + 5 α 2 c 1 r 6 14 g 8 + α c 1 r 7 g 8 , S ( r ) r c 1 + c 2 c 1 r 2 4 α c 1 3 r + 3 α 2 c 1 2 r 2 31 α 3 c 1 20 r 3 + 73 α 4 c 1 48 r 4 , S 1 ( r ) r 0 1 + c 2 r 2 3 α r 3 g 4 2 α c 2 r 5 g 4 + 48 α 2 r 6 7 g 8 , S 1 ( r ) r 1 + 2 α c 2 r + c 2 r 2 + 3 2 α 2 c 2 + α ( 4 + 3 α 2 c 2 ) 6 r + α 2 ( 16 + 3 α 2 c 2 ) 48 r 2 α ( α 2 + 120 g 4 c 2 ) 208 r 3 .
Using Equation (15) in Equation (6), we obtain
d s r 0 2 1 + Λ e f f . r 2 3 M r 3 4 g 4 + 45 M 2 r 6 224 g 8 + 3 M r 7 5 g 8 d t 2 + d r 2 1 + Λ e f f . r 2 9 M r 3 4 g 4 3 M Λ e f f . r 5 2 g 4 + 27 M 2 r 6 7 g 8 + r 2 d θ 2 + sin 2 θ d ϕ 2 , d s r 2 1 + Λ e f f . r 2 M r + 27 M 2 32 r 2 837 M 3 1280 r 3 + 1971 M 4 4096 r 4 d t 2 + d r 2 1 + Λ e f f . r 2 + 3 / 2 Λ e f f . M r + 27 / 32 Λ e f f . M 2 + M ( 64 + 27 M 2 Λ e f f . ) 128 r + M 2 ( 768 + 81 M 2 Λ e f f . ) 4096 r 2 M ( 5760 g 4 Λ e f f . + 27 M 2 ) 1280 r 3 + r 2 d θ 2 + sin 2 θ d ϕ 2 ,
where we have put c 1 = 1 , c 2 = Λ e f f . , and M = 4 α 3 . Equation (16) shows that as r 0 and r , the spacetime will approach AdS/dS spacetime according to the sign of Λ e f f . .
Next, we are going to calculate the invariants of the line element (16) and obtain the Kretschmann scalar as
K = R μ ν ρ σ R μ ν ρ σ r 0 24 Λ e f f . 2 108 Λ e f f . M g 4 r + 567 M 2 4 g 8 r 2 126 Λ e f f . 2 M g 4 r 3 + 648 M 2 Λ e f f . 4 g 8 r 4 , K = R μ ν ρ σ R μ ν ρ σ r 24 Λ e f f . 2 54 Λ e f f . 2 M r + 54 Λ e f f . 2 M 2 r 2 + 1053 Λ e f f . 2 M 3 32 r 3 + 45 Λ e f f . M 2 ( 64 + 81 M 2 Λ e f f . ) r 4 ,
and the squared Ricci tensor has the form
R μ ν R μ ν r 0 36 Λ e f f . 2 162 Λ e f f . M g 4 r + 1539 M 2 8 g 8 r 2 189 Λ e f f . 2 M g 4 r 3 + 1863 M 2 Λ e f f . 2 g 8 r 4 , R μ ν R μ ν r 36 Λ e f f . 2 + 81 Λ e f f . 2 M r + 621 Λ e f f . 2 M 2 8 r 2 + 2673 Λ e f f . 2 M 3 64 r 3 + 9 Λ e f f . M 2 ( 224 + 405 M 2 Λ e f f . ) 256 r 4 ,
and finally, the Ricci scalar has the form
R r 0 12 Λ e f f . + 27 M g 4 r + 63 M Λ e f f . 2 g 4 r 3 81 M 2 g 8 r 4 126 M g 8 r 5 , R r 12 Λ e f f . 2 27 Λ e f f . M 2 r 81 Λ e f f . M 2 16 r 2 81 Λ e f f . M 3 128 r 3 9 M 2 16 r 4 .
Now, we are going to calculate the asymptote of the form of f ( r ) at small and large r, which is given as
f ( r ) r 0 = 6 Λ e f f . + 27 M r g 4 + 63 M r 3 2 g 4 1215 M 2 r 4 16 g 8 126 M r 5 g 8 , f ( r ) r 6 Λ e f f . + 27 M Λ e f f . 2 r 81 M 2 Λ e f f . 8 r 2 405 M 3 Λ e f f . 128 r 3 9 M 2 ( 128 + 81 M 2 Λ e f f . ) 2048 r 4 .
Using the form of the Ricci scalar R ( r ) and solving it asymptotically to obtain r ( R ) , we then substitute it in the form of Equation (20) and obtain
f ( R ) R 0 γ 0 + γ 1 R + γ 2 R 2 , f ( R ) r 6 Λ e f f . 43 Λ e f f . 4 / 3 M 4 / 3 g 4 / 3 R 1 / 3 101 Λ e f f . 5 / 3 M 8 / 3 g 8 / 3 R 2 / 3 M 2 Λ e f f . ( Λ e f f . M 2 + 5 ) g 4 R .
where γ 0 γ 2 are constant depending on Λ e f f . and M.

4. The Thermodynamic Properties of the BH Described by Equation (36)

To examine the thermodynamic properties of the newly identified BH solution, as indicated by Equation (A2), we present the idea of the Hawking temperature [88,89,90,91]2 as follows:
T h = S ( r h ) 4 π S ( r h ) S 1 ( r h ) ,
where ′ is the derivative w.r.t. the horizon positioned at r = r h . Here, r h corresponds to the largest positive root of the equation S 1 ( r h ) = 0 . The entropy in the framework of f ( R ) gravity is given by [92,93]
δ ( r h ) = 1 4 A F ( r h ) ,
where A is considered as the horizon area; the quasilocal energy in the f ( R ) gravitational theory is defined as follows [92]:
E ( r h ) = 1 4 2 F ( r h ) + r h 2 f ( R ( r h ) ) R ( r h ) F ( r h ) d r h .
The thermodynamic stability of BHs is linked to the sign of their heat capacity, denoted as C h , which is defined as [94]
C h = d E h d T h = M r h T r h 1 ,
where E h represents the quasilocal energy. If C h is positive/negative, then the BH is considered stable/unstable. Lastly, the Gibbs free energy is defined as follows [93]:
G h = E h T h δ h .
In the context of the solution given by Equation (A2), the examination of all the aforementioned thermodynamic quantities commences with the constraint S 1 ( r h ) = 0 , leading to the following result:
r h = 1 24 Λ e f f 270 M 3 Λ e f f + 6 3 729 M 6 Λ e f f 3 + 1728 M 4 Λ e f f 2 + 18432 M 2 Λ e f f + 65536 Λ e f f Λ e f f 2 3 1 / 4 3 M 2 Λ e f f + 32 1 270 M 3 Λ e f f + 6 3 729 M 6 Λ e f f 3 + 1728 M 4 Λ e f f 2 + 18432 M 2 Λ e f f + 65536 Λ e f f Λ e f f 2 3 1 / 2 M , M h = 4 9 Λ e f f 27 Λ e f f 3 r h 6 + 108 Λ e f f 2 r h 4 + 225 Λ e f f r h 2 + 64 Λ e f f 9 r h Λ e f f 2 3 4 / 9 3 Λ e f f r h 2 + 4 1 27 Λ e f f 3 r h 6 + 108 Λ e f f 2 r h 4 + 225 Λ e f f r h 2 + 64 Λ e f f 9 r h Λ e f f 2 3 4 4 r h 3 .
Equation (27) demonstrates that the BH’s total mass is dependent on the horizon radius as well as on the Λ e f f . We depict S 1 ( r ) via r h in Figure 1, demonstrating the dashed-dots curve’s potential horizons for this solution. Furthermore, the dashed curve in Figure 1 illustrates the degenerate horizon, which may be found by equating M h r h to zero. Lastly, the dotted curve of Figure 1a illustrates the naked singularity of this solution.
Using Equation (23), we can calculate the entropy of Equation (A2) as follows:
δ h = π r h 2 4 g 4 + 3 r h 3 M + 4 r h 4 4 ( r h 4 + g 4 ) .
If the dimensional quantity g = 0 , we obtain the standard entropy of Einstein’s GR.
  • The pattern of S h is shown in Figure 1b, indicating a well-behaved entropy profile.
The temperature associated with Equation (A2) is computed as
T h = 4 2 Λ e f f r h 3 + M 5 π Λ e f f r h 3 + r h M 1280 Λ r h 5 + 1920 M Λ r h 4 + 1080 M 2 Λ e f f r h 3 + 1280 r h 3 + 270 M 3 r h 2 Λ e f f + 640 M r h 2 27 M 3 5760 M g 4 Λ e f f 1 / 2 ,
where T h is the Hawking temperature at the event horizon. We plot the Hawking temperature in Figure 1c, which shows that we always have a positive Hawking temperature.
From Equation (24), the quasilocal energy corresponding to the BH solution given by Equation (A2) is calculated as
E h = 1 16384 g 243 Λ e f f M 4 2 ln r 2 g r 2 + g 2 r 2 + g r 2 + g 2 5184 Λ e f f M 2 g 2 2 ln r 2 + g r 2 + g 2 r 2 g r 2 + g 2 + 486 2 M 2 Λ e f f 64 3 g 2 + M 2 arctan 2 r g g + 486 2 M 2 Λ e f f 64 3 g 2 + M 2 arctan 2 r + g g 10368 g 4 27 M 3 / 8 M 3 Λ e f f ln r 4 + g 4 + 16 9 Λ e f f M g 2 arctan r 2 g 2 + Λ e f f M 3 ln r 2 r 32 81 + 32 81 r 2 + 8 9 M r + M 2 Λ e f f .
To guarantee a positive value for the quasilocal energy, the following condition must be met:
r 2 g r 2 + g 2 r 2 + g r 2 + g 2 > 0 , which   yields g > 0 .
We plot the quasilocal energy in Figure 1d, which demonstrates that the Hawking temperature is always positive, indicating a consistently positive value.
Now we are going to calculate C ( r h ) of Equation (A2). Using Equation (25), we obtain
C ( r h ) = 1 4050 1 r h 4 Λ e f f r h 3 + r h M 1280 Λ e f f r h 5 + 1920 M Λ e f f r h 4 + 1080 M 2 Λ e f f r h 3 + 1280 r h 3 27 M 3 + 270 M 3 r h 2 Λ e f f + 640 M r h 2 5760 M g 4 Λ e f f 3 / 2 5 r h 6 2 Λ e f f 2 r h 27 Λ e f f 3 r h 6 + 108 Λ e f f 2 r h 4 + 225 Λ e f f r h 2 + 64 + Λ e f f 9 r h + 27 Λ e f f 3 r h 6 + 108 Λ e f f 2 r h 4 + 225 Λ e f f r h 2 + 64 Λ e f f Λ e f f 2 2 / 3 + 4 Λ e f f 2 15 Λ e f f 3 r h 2 + 9 r h + 27 Λ e f f 3 r h 6 + 108 Λ e f f 2 r h 4 + 225 Λ e f f r h 2 + 64 Λ e f f Λ e f f 2 4 / 3 1 Λ e f f 27 Λ e f f 3 r h 6 + 108 Λ e f f 2 r h 4 + 64 + 225 Λ e f f r h 2 1 / 2 Λ e f f r h 9 Λ e f f 2 r h 4 + 24 Λ e f f r h 2 + 25 3 Λ e f f 2 r h 2 + 4 Λ e f f + 9 r h + 1 Λ e f f 27 Λ e f f 3 r h 6 + 64 + 108 Λ e f f 2 r h 4 + 225 Λ e f f r h 2 Λ e f f 2 2 / 3 π 27 Λ e f f 3 r h 6 + 108 Λ e f f 2 r h 4 + 225 Λ e f f r h 2 + 64 Λ e f f 9 r h Λ e f f 2 4 / 3 × 1 27 Λ e f f 3 r h 6 + 108 Λ e f f 2 r h 4 + 225 Λ e f f r h 2 + 64 Λ e f f 256 27 Λ e f f 3 r h 10 64 9 Λ e f f 3 r h 9 M + 128 9 Λ e f f 2 M + Λ e f f 3 M 3 r h 7 + 280 9 Λ e f f 2 M 2 + 256 27 Λ e f f r h 6 + 320 9 M Λ e f f 64 Λ e f f 3 M g 4 213 10 Λ e f f 2 M 3 r h 5 + 13 / 2 M 4 Λ e f f 2 64 3 M 2 Λ e f f r h 4 + 320 3 Λ e f f 2 M g 4 + 103 18 M 3 Λ e f f 256 27 M r h 3 + 21 4 M 4 Λ e f f + 160 Λ e f f 2 M 2 g 4 + 32 9 M 2 r h 2 + M 5 Λ e f f + 64 27 M 3 r h + 1 / 20 M 4 + 32 3 M 2 g 4 Λ e f f 1 .
The above equation indicates that for a positive value of the heat capacity, we must have Λ e f f > 0 . We plot the heat capacity in Figure 1e, which shows that the heat capacity is always positive.
Gibbs free energy is described as [93]
G ( r h ) = E ( r h ) T ( r h ) S ( r h ) .
Here, the expressions T ( r h ) , S ( r h ) , and E ( r h ) are defined in Equations (28)–(30). Using Equations (23) and (27)–(29) in (32), we obtain
G ( r h ) = 1 16384 B g r h 4 + g 4 10368 B M 2 2 Λ e f f arctan 2 r h + g g g 6 + 486 B Λ e f f M 4 2 arctan 2 r h + g g r h 4 + 486 B Λ e f f M 4 2 arctan 2 r h + g g g 4 + 3888 B g ln r h 4 + g 4 M 3 Λ e f f r h 4 18432 B M Λ e f f g 3 arctan r h 2 g 2 r h 4 + Λ e f f 243 B M 4 2 ln r h 2 g r 2 + g 2 r h 2 + g r 2 + g 2 ( r h 4 + g 4 ) 10368 B g M 3 ln r r h 4 5184 B M 2 g 6 2 ln r h 2 g r 2 g 2 g r 2 r h 2 g 2 + arctan 2 r h g g 486 B Λ e f f M 4 2 r h 4 10368 B M 2 2 Λ e f f g 6 + 486 B Λ e f f M 4 2 g 4 131072 5 g 5 Λ e f f r h 3 131072 5 g Λ e f f r h 7 49152 5 g M 2 r h 3 65536 5 g M r h 4 + 1536 B g 5 M ln r h 4 + g 4 + 8192 B g Λ e f f r h 7 + 8192 B g 5 Λ e f f r h 3 65536 5 g 5 M 98304 5 g Λ e f f r h 6 M + 8192 B g r h 5 + 8192 B g 5 r h + ln r h 4 + g 4 1536 B g M r h 4 + 3888 B g 5 M 3 Λ e f f + Λ e f f B 18432 g M r h 6 18432 M g 7 arctan r 2 g 2 10368 g 5 M 3 ln r + 18432 g 5 M r h 2 + 20736 g M 2 r h 5 + 20736 g 5 M 2 r h 5184 B Λ e f f M 2 g 2 2 ln r h 2 + g r 2 + g 2 r h 2 g r 2 + g 2 + 2 arctan 2 r h g g + arctan 2 r h + g g ,
where
B = 1 r h 2 Λ e f f r h 3 + r h M 1280 Λ e f f r h 5 + 1920 M Λ e f f r h 4 + 1080 M 2 Λ e f f r h 3 + 1280 r h 3 + 270 M 3 r h 2 Λ e f f + 640 M r h 2 27 M 3 5760 M g 4 Λ e f f 1 / 2 .
The figure (Figure 1f) illustrates the behavior of the Gibbs energy for the BH solution outlined in Equation (A2). This visualization is based on a specific set of model parameters and demonstrates that for this solution, the Gibbs free energy is consistently positive. A positive Gibbs free energy signifies that the BH configuration is globally more stable.

5. Conclusions

In this study, we explore the concept of new BHs within the framework of f ( R ) gravity. To achieve this, we reformulate the field equations of f ( R ) gravity, reducing them from fourth order to third order, as shown in Equation (5). We then apply these third-order field equations to a spherically symmetric spacetime with two distinct metric potentials and derive the corresponding differential equations. Although the resulting system consists of three differential equations with three unknowns, obtaining an exact solution proved challenging. As a result, we were compelled to assume a specific form for one of the unknowns.
In this work, we assume the form of F = f R ( R ) = 1 + α r 3 r 4 + g 4 , which enables us to determine the other two unknowns (the metric potentials). Notably, this form of f ( R ) reduces to the cases discussed in Refs. [45,47,49,51,52,66] when the dimensional parameter g = 0 . The nonvanishing nature of g introduces invariants that are defined as r 0 and r , which is in contrast to the previous studies presented in [45,47,49,51,52,66]. Additionally, we derive the corresponding form of f ( R ) for this solution, demonstrating that as R 0 , it behaves as a polynomial function Equation (20), while as R , it exhibits asymptotic behavior such as R 1 / 3 , R 2 / 3 ⋯, and so on, as shown in Equation (20).
In this study, we examine the physical properties of the derived solution by analyzing the asymptotic behavior of the metric potentials at both small and large values of r. We demonstrate that the metric potentials remain finite in both limits. Additionally, we derive the asymptotic forms of the curvature invariants associated with the solution and show that they are free from singularities, unlike those in general relativity. We also show that the solution of this study depends mainly on the dimensional parameters g and α ; when α = 0 , the solution reduces to AdS/dS spacetime.
Finally, we investigated the physical properties of this BH solution by calculating its thermodynamic quantities. We demonstrated that all of these values behave in a manner consistent with physical expectations, as illustrated in Figure 1. Furthermore, we established the stability of the solution, as evidenced by the positive trends in the heat capacity and Gibbs free energy plots.
In summary, we have successfully derived a new black hole solution within f ( R ) gravitational theory. This raises several pertinent questions for future investigation: What is the geodesic completeness of this solution? What would occur if we introduced a specific form of nonlinear electrodynamics? How would the asymptotic behavior of the metric manifest, and how would the curvature invariants behave? These questions will be explored in future work.

Author Contributions

Conceptualization, G.G.L.N.; validation, A.E.; data curation, G.G.L.N.; writing—original draft preparation, G.G.L.N.; writing—review and editing, G.G.L.N. and A.E. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU DDRSP2502).

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

  • The explicate forms of the two functions S ( r ) and S 1 ( r )
The exact solution of the field Equations (8)–(10), obtained using the specific form of F , is given by
F = 1 + α r 3 r 4 + g 4 , is   given   by
S ( r ) = S 1 ( r ) c 1 e x p 4 α 3 g 8 12 g 4 r 4 + r 8 r 2 2 r 12 + r 11 α + 6 r 8 g 4 + 6 r 7 α g 4 + 6 r 4 g 8 + 5 r 3 α g 8 + 2 g 12 1 d r S 1 ( r ) = r 3 e x p 2 r 12 + 5 r 11 α + 6 r 8 g 4 42 r 7 α g 4 + 6 r 4 g 8 + 17 r 3 α g 8 + 2 g 12 r Υ 1 d r c 2 e x p 2 r 12 + 5 r 11 α + 6 r 8 g 4 42 r 7 α g 4 + 6 r 4 g 8 + 17 r 3 α g 8 + 2 g 12 r Υ 1 d r e x p 29 r 6 g 8 α 2 + 46 g 4 r 10 α 2 + r 14 α 2 + 8 r 16 + 28 r 3 g 12 α + 96 r 7 α g 8 + 76 r 11 α g 4 + 8 r 15 α + 8 g 16 + 32 g 12 r 4 + 48 g 8 r 8 + 32 r 12 g 4 Υ 1 r 1 d r d r c 2 2 e x p 2 r 11 Υ d r 5 α r 10 Υ d r 6 g 4 r 7 Υ d r + 42 g 4 α r 6 Υ d r 6 g 8 r 3 Υ d r 17 α g 8 r 2 Υ d r 2 g 12 1 r Υ d r exp 6 g 8 r 3 Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 2 r 11 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + 32 g 4 r 11 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 29 α 2 g 8 r 5 Υ d r + 8 r 15 Υ 1 d r + 46 g 4 α 2 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 32 g 12 r 3 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 2 g 12 1 r Υ d r e x p 29 α 2 g 8 r 5 Υ d r 46 g 4 α 2 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r + 2 e x p 2 r 11 Υ d r 5 α r 10 Υ d r 6 g 4 r 7 Υ d r + 42 g 4 α r 6 Υ d r 6 g 8 r 3 Υ d r 17 α g 8 r 2 Υ d r 2 g 12 1 r Υ d r e x p 6 g 8 r 3 Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 2 r 11 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + 32 g 4 r 11 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 8 r 15 Υ 1 d r + 46 g 4 α 2 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 32 g 12 r 3 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 2 g 12 1 r Υ d r r 5 d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 g 4 α 2 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r .
where Υ 1 and Υ are defined as
Υ ( r ) Υ = r 4 + g 4 4 g 4 r 4 + 5 g 4 r 3 α + r 7 α + 2 r 8 + 2 g 8 , Υ 1 ( r ) Υ 1 = Υ g 4 + r 3 α + r 4 .
The explicate form of the function f ( r )
f ( r ) = 1 / 5 192 r 3 e x p 2 r 11 Υ d r 5 α r 10 Υ d r 6 g 4 r 7 Υ d r + 42 g 4 α r 6 Υ d r 6 g 8 r 3 Υ d r 17 α g 8 r 2 Υ d r 2 g 12 1 r Υ d r 1 / 2 r 12 g 4 1 / 8 r 16 25 16 r 7 α g 8 1 / 8 g 16 33 16 r 11 α g 4 3 / 4 g 8 r 8 1 / 2 g 12 r 4 + r 6 g 8 α 2 2 g 4 r 10 α 2 + 5 16 r 3 g 12 α 3 16 r 15 α e x p 6 g 8 r 3 Υ d r + 6 g 4 r 7 d r Υ + 5 α r 10 d r Υ + 2 r 11 d r Υ + α 2 r 13 d r Υ 1 + 8 α r 14 d r Υ 1 + 32 g 4 r 11 d r Υ 1 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + 48 g 8 r 7 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 8 r 15 Υ 1 d r + 46 g 4 α 2 r 9 Υ 1 d r + 28 g 12 α r 2 d r Υ 1 + 96 α g 8 r 6 d r Υ 1 + 76 g 4 α r 10 Υ 1 d r + 32 g 12 r 3 d r Υ 1 + 8 g 16 d r Υ 1 r + 2 g 12 d r r Υ e x p 29 α 2 g 8 r 5 d r Υ 1 46 g 4 α 2 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r 40 r 3 r 1 / 2 g 8 + g 4 r 3 α g 4 r 4 r 7 α 1 / 2 r 8 4 / 5 g 4 r 4 + g 4 r 3 α + 1 / 5 r 7 α + 2 / 5 r 8 + 2 / 5 g 8 e x p 2 r 11 Υ d r 5 α r 10 Υ d r 6 g 4 r 7 Υ d r + 42 g 4 α r 6 Υ d r 6 g 8 r 3 Υ d r 17 α g 8 r 2 Υ d r 2 g 12 1 r Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 g 4 α 2 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r + 24 5 e x p 2 r 11 Υ d r 5 α r 10 Υ d r 6 g 4 r 7 Υ d r + 42 g 4 α r 6 Υ d r 6 g 8 r 3 Υ d r 17 α g 8 r 2 Υ d r 2 g 12 1 r Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 g 4 α 2 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r 1 2 r 12 g 4 1 / 8 r 16 25 16 r 7 α g 8 1 8 g 16 33 16 r 11 α g 4 3 4 g 8 r 8 1 2 g 12 r 4 + r 6 g 8 α 2 2 g 4 r 10 α 2 + 5 16 r 3 g 12 α 3 16 r 15 α e x p 6 g 8 r 3 Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 2 r 11 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + 32 g 4 r 11 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 8 r 15 Υ 1 d r + 46 g 4 α 2 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 32 g 12 r 3 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 2 g 12 1 r Υ d r r 5 d r + 96 r 3 1 / 2 r 12 g 4 1 / 8 r 16 25 16 r 7 α g 8 1 8 g 16 33 16 r 11 α g 4 3 4 g 8 r 8 1 / 2 g 12 r 4 + r 6 g 8 α 2 2 g 4 r 10 α 2 + 5 16 r 3 g 12 α 3 16 r 15 α c 2 e x p 2 r 12 + 5 r 11 α + 2 g 12 + 6 r 8 g 4 42 r 7 α g 4 + 6 r 4 g 8 + 17 r 3 α g 8 r Υ 1 d r + Υ 1 r 2 S 1 r 4 + g 4 1 4 5 g 4 r 4 + g 4 r 3 α + 1 5 r 7 α + 2 5 r 8 + 2 5 g 8 1 .
The explicate form of the Ricci scalar associated with the solution (A2)
The Ricci scalar of the solution (A2) takes the form
R = 2 216 e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 d r Υ 1 + 8 r 15 d r Υ 1 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 d r Υ 1 + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 d r Υ 1 + 29 α 2 g 8 r 5 d r Υ 1 + 2 r 11 d r Υ r 5 d r α 2 g 4 r 13 + 48 e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 d r Υ 1 α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r e x p 42 g 4 α r 6 d r Υ 17 α g 8 r 2 d r Υ 2 r 11 d r Υ 6 g 8 r 3 d r Υ 2 g 12 d r r Υ 6 g 4 r 7 d r Υ 5 α r 10 Υ d r e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 d r Υ 1 + 76 g 4 α r 10 d r Υ 1 + 48 g 8 r 7 d r Υ 1 + 32 g 4 r 11 d r Υ 1 + 8 r 15 d r Υ 1 42 g 4 α r 6 d r Υ + 17 α g 8 r 2 d r Υ + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r α g 12 r 6 + 312 e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r e 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r α g 8 r 10 + 288 e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 d r Υ 1 8 r 15 Υ 1 d r d r e x p 42 g 4 α r 6 d r Υ 17 α g 8 r 2 d r Υ 2 r 11 d r Υ 6 g 8 r 3 d r Υ 2 g 12 d r r Υ 6 g 4 r 7 d r Υ 5 α r 10 Υ d r e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r α g 4 r 14 + 24 e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r e x p 6 g 8 r 3 Υ d r + 2 g 12 d r r Υ + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 2 r 11 Υ d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r r 5 d r α 2 g 8 r 9 12 e x p r Υ 1 42 r 7 α g 4 + 17 r 3 α g 8 + 2 r 12 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + 5 r 11 α d r c 3 r 19 + 8 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r r 20 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r 24 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r r 19 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 d r Υ 1 32 g 4 r 11 d r Υ 1 8 r 15 d r Υ 1 d r r 5 d r 12 r 18 e x p 17 r 3 α g 8 42 r 7 α g 4 + 2 r 12 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + 5 r 11 α r Υ 1 d r c 3 α 72 e x p 17 r 3 α g 8 42 r 7 α g 4 + 2 r 12 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + 5 r 11 α r Υ 1 d r c 3 r 11 g 8 48 e x p 17 r 3 α g 8 42 r 7 α g 4 + 2 r 12 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + 5 r 11 α r Υ 1 d r c 3 r 7 g 12 12 e x p 17 r 3 α g 8 42 r 7 α g 4 + 2 r 12 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + 5 r 11 α r Υ 1 d r c 3 g 16 r 3 48 e x p 17 r 3 α g 8 42 r 7 α g 4 + 2 r 12 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + 5 r 11 α r Υ 1 d r c 3 r 15 g 4 + 32 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r g 12 r 8 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r + 48 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r g 8 r 12 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r + 32 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r g 4 r 16 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r + 14 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r r 19 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r α + 5 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r r 18 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r α 2 + 8 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r g 16 r 4 e x p 42 g 4 α r 6 d r Υ 17 α g 8 r 2 d r Υ 2 r 11 d r Υ 6 g 8 r 3 d r Υ 2 g 12 1 r Υ d r 6 g 4 r 7 d r Υ 5 α r 10 d r Υ 29 α 2 g 8 r 5 d r Υ 1 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r 24 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r r 18 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r α 96 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r r 15 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r g 4 144 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r r 11 g 8 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r 96 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r r 7 g 12 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r 24 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r g 16 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r r 3 + 24 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r r 19 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r 12 α 2 g 8 r 9 e x p 42 r 7 α g 4 + 17 r 3 α g 8 + 2 r 12 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + 5 r 11 α r Υ 1 d r c 3 108 α 2 g 4 r 13 e x p 17 r 3 α g 8 42 r 7 α g 4 + 2 r 12 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + 5 r 11 α r Υ 1 d r c 3 156 α g 8 r 10 e x p 17 r 3 α g 8 42 r 7 α g 4 + 2 r 12 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + 5 r 11 α r Υ 1 d r c 3 144 α g 4 r 14 e x p 42 r 7 α g 4 + 2 r 12 + 17 r 3 α g 8 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + 5 r 11 α r Υ 1 d r c 3 24 α g 12 r 6 e x p 42 r 7 α g 4 + 17 r 3 α g 8 + 2 r 12 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + 5 r 11 α r Υ 1 d r c 3 + 58 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r α g 8 r 11 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r + 50 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r α g 4 r 15 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r + 5 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 d r Υ 1 + 8 α r 14 d r Υ 1 + 8 g 16 d r Υ 1 r + 32 g 12 r 3 d r Υ 1 + 29 α 2 g 8 r 5 d r Υ 1 + 2 r 11 d r Υ r 5 d r α 2 g 8 r 10 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r + 26 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r α 2 g 4 r 14 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r + 22 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r α g 12 r 7 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r 24 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r α 2 g 8 r 9 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r 48 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r α g 12 r 6 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r 216 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r α 2 g 4 r 13 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r 288 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r α g 4 r 14 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r 312 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r α g 8 r 10 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 5 d r + 24 e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r r 18 α + 96 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r r 15 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r e x p 29 α 2 g 8 r 5 d r Υ 1 46 α 2 g 4 r 9 d r Υ 1 α 2 r 13 d r Υ 1 28 g 12 α r 2 d r Υ 1 d r 96 α g 8 r 6 d r Υ 1 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r g 4 + 144 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r r 11 g 8 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r + 96 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r r 7 g 12 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r + 24 e x p 42 g 4 α r 6 Υ d r 17 α g 8 r 2 Υ d r 2 r 11 Υ d r 6 g 8 r 3 Υ d r 2 g 12 1 r Υ d r 6 g 4 r 7 Υ d r 5 α r 10 Υ d r g 16 e x p 6 g 8 r 3 Υ d r + 2 g 12 1 r Υ d r + 6 g 4 r 7 Υ d r + 5 α r 10 Υ d r + 46 α 2 g 4 r 9 Υ 1 d r + 28 g 12 α r 2 Υ 1 d r + 96 α g 8 r 6 Υ 1 d r + 76 g 4 α r 10 Υ 1 d r + 48 g 8 r 7 Υ 1 d r + 32 g 4 r 11 Υ 1 d r + 8 r 15 Υ 1 d r 42 g 4 α r 6 Υ d r + 17 α g 8 r 2 Υ d r + α 2 r 13 Υ 1 d r + 8 α r 14 Υ 1 d r + 8 g 16 1 Υ 1 r d r + 32 g 12 r 3 Υ 1 d r + 29 α 2 g 8 r 5 Υ 1 d r + 2 r 11 Υ d r r 5 d r e x p 29 α 2 g 8 r 5 Υ 1 d r 46 α 2 g 4 r 9 Υ 1 d r α 2 r 13 Υ 1 d r 28 g 12 α r 2 Υ 1 d r 96 α g 8 r 6 Υ 1 d r 76 g 4 α r 10 Υ 1 d r 8 α r 14 Υ 1 d r 8 g 16 1 Υ 1 r d r 32 g 12 r 3 Υ 1 d r 48 g 8 r 7 Υ 1 d r 32 g 4 r 11 Υ 1 d r 8 r 15 Υ 1 d r d r r 3 + 34 r 7 α g 8 + 26 r 11 α g 4 + 10 r 6 α 2 g 8 + 12 r 10 α 2 g 4 + 14 r 3 α g 12 + 24 g 8 r 8 + 16 r 12 g 4 + 6 r 15 α + 16 r 4 g 12 + 4 g 16 + 4 r 16 + 2 r 14 α 2 Υ r 2 6 r 7 α g 4 + 5 r 3 α g 8 + 2 r 12 + 6 r 4 g 8 + 2 g 12 + 6 r 8 g 4 + r 11 α 1 Υ 1 1 .

Notes

1
In previous studies, there were different forms of F ; see, for example, refs. [45,46,47,48,49,50,51,52,53,66].
2
Because the solution provided by Equation (A2) has unequal ansatzs, then the temperature will differ from the one with equal ansatzs.

References

  1. Sathyaprakash, B.S.; Schutz, B.F. Physics, Astrophysics and Cosmology with Gravitational Waves. Living Rev. Rel. 2009, 12, 2. [Google Scholar] [CrossRef] [PubMed]
  2. Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3. Phys. Rev. X 2023, 13, 011048. [Google Scholar] [CrossRef]
  3. Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar]
  4. Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett. 2022, 930, L14. [Google Scholar]
  5. Ciufolini, I.; Pavlis, E.C. A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 2004, 431, 958. [Google Scholar] [CrossRef]
  6. Abuter, R.; Amorim, A.; Bauboeck, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Cardoso, V.; Clenet, Y.; de Zeeuw, P.T.; Dexter, J.; et al. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2020, 636, L5. [Google Scholar] [CrossRef]
  7. Kramer, M.; Stairs, I.H.; Manchester, R.N.; Wex, N.; Deller, A.T.; Coles, W.A.; Ali, M.; Burgay, M.; Camilo, F.; Cognard, I.; et al. Strong-Field Gravity Tests with the Double Pulsar. Phys. Rev. X 2021, 11, 041050. [Google Scholar] [CrossRef]
  8. Carroll, S.M. The Cosmological Constant. Living Rev. Rel. 2001, 4, 1. [Google Scholar] [CrossRef]
  9. Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
  10. D’Agostino, R.; Luongo, O.; Muccino, M. Healing the cosmological constant problem during inflation through a unified quasi-quintessence matter field. Class. Quant. Grav. 2022, 39, 195014. [Google Scholar] [CrossRef]
  11. Arun, K.; Gudennavar, S.B.; Sivaram, C. Dark matter, dark energy, and alternate models: A review. Adv. Space Res. 2017, 60, 166. [Google Scholar] [CrossRef]
  12. Salucci, P.; Esposito, G.; Lambiase, G.; Battista, E.; Benetti, M.; Bini, D.; Boco, L.; Sharma, G.; Bozza, V.; Buoninfante, L.; et al. Einstein, Planck and Vera Rubin: Relevant Encounters Between the Cosmological and the Quantum Worlds. Front. Phys. 2021, 8, 603190. [Google Scholar] [CrossRef]
  13. Ross, G.G. Grand Unified Theories; Westview 1 Press: Boulder, CO, USA, 1985. [Google Scholar]
  14. Zwiebach, B. A First Course in String Theory; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
  15. Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167. [Google Scholar] [CrossRef]
  16. Capozziello, S.; D’Agostino, R.; Luongo, O. Extended gravity cosmography. Int. J. Mod. Phys. D 2019, 28, 1930016. [Google Scholar] [CrossRef]
  17. Capozziello, S.; D’Agostino, R. Model-independent reconstruction of f(Q) non-metric gravity. Phys. Lett. B 2022, 832, 137229. [Google Scholar] [CrossRef]
  18. Bajardi, F.; D’Agostino, R. Late-time constraints on modified Gauss-Bonnet cosmology. Gen. Rel. Grav. 2023, 55, 49. [Google Scholar] [CrossRef]
  19. Johannsen, T.; Psaltis, D. Testing the no-hair theorem with observations in the electromagnetic spectrum. I. properties of a quasi-kerr spacetime. Astrophys. J. 2010, 716, 187. [Google Scholar] [CrossRef]
  20. Medeiros, L.; Psaltis, D.; Özel, F. A Parametric model for the shapes of black-hole shadows in non-Kerr spacetimes. Astrophys. J. 2020, 896, 7. [Google Scholar] [CrossRef]
  21. De Laurentis, M.; Younsi, Z.; Porth, O.; Mizuno, Y.; Rezzolla, L. Test-particle dynamics in general spherically symmetric black hole spacetimes. Phys. Rev. D 2018, 97, 104024. [Google Scholar] [CrossRef]
  22. Völkel, S.H.; Kokkotas, K.D. Scalar fields and parametrized spherically symmetric black holes: Can one hear the shape of space-time? Phys. Rev. D 2019, 100, 044026. [Google Scholar] [CrossRef]
  23. De Felice, A.; Tsujikawa, S. f(R) Theories|Living Reviews in Relativity. Living Rev. Relativ. 2010, 13, 1. [Google Scholar]
  24. Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
  25. Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 1992, 215, 203. [Google Scholar] [CrossRef]
  26. Capozziello, S.; Cardone, V.F.; Troisi, A. Reconciling dark energy models with f(R) theories. Phys. Rev. D 2005, 71, 043503. [Google Scholar] [CrossRef]
  27. Li, B.; Barrow, J.D. Conceptual Problems of Inflationary Cosmology and a New Approach to Cosmological Structure Formation. Phys. Rev. D 2007, 75, 084010. [Google Scholar] [CrossRef]
  28. Hu, W.; Sawicki, I. Models of f(R) cosmic acceleration that evade solar system tests. Phys. Rev. D 2007, 76, 064004. [Google Scholar] [CrossRef]
  29. Starobinsky, A.A. Disappearing cosmological constant in f(R) gravity. JETP Lett. 2007, 86, 157. [Google Scholar] [CrossRef]
  30. Song, Y.-S.; Peiris, H.; Hu, W. Cosmological constraints on f(R) acceleration models. Phys. Rev. D 2007, 76, 063517. [Google Scholar] [CrossRef]
  31. Faraoni, V. Palatini f(R) gravity as a fixed point. Phys. Lett. B 2008, 665, 135. [Google Scholar] [CrossRef]
  32. Leon, G.; Saridakis, E.N. Dynamics of the anisotropic Kantowsky–Sachs geometries in Rn gravity. Class. Quant. Grav. 2011, 28, 065008. [Google Scholar] [CrossRef]
  33. Gil-Marin, H.; Schmidt, F.; Hu, W.; Jimenez, R.; Verde, L. The bispectrum of f(R) cosmologies. JCAP 2011, 11, 019. [Google Scholar] [CrossRef]
  34. Oikonomou, V.K. An exponential f(R) dark energy model. Gen. Rel. Grav. 2013, 45, 2467. [Google Scholar] [CrossRef]
  35. Oikonomou, V.K.; Karagiannakis, N. Late-time cosmological evolution in f(R) theories with ordinary and collisional matter. Class. Quant. Grav. 2015, 32, 085001. [Google Scholar] [CrossRef]
  36. Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From f(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59. [Google Scholar] [CrossRef]
  37. Nojiri, S.; Odintsov, S.D. Modified f(R) gravity unifying Rm inflation with the ΛCDM epoch. Phys. Rev. D 2008, 77, 026007. [Google Scholar] [CrossRef]
  38. Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 2008, 77, 046009. [Google Scholar] [CrossRef]
  39. Capozziello, S. Curvature Quintessence. Int. J. Mod. Phys. D 2002, 11, 483. [Google Scholar] [CrossRef]
  40. Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Rel. Grav. 2008, 40, 357. [Google Scholar] [CrossRef]
  41. Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef]
  42. Capozziello, S.; D’Agostino, R.; Luongo, O. Rational approximations of f(R) cosmography through Pad’e polynomials. J. Cosmol. Astropart. Phys. 2018, 05, 008. [Google Scholar] [CrossRef]
  43. Nojiri, S.; Odintsov, S.; Oikonomou, V. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1. [Google Scholar] [CrossRef]
  44. D’Agostino, R.; Nunes, R.C. Probing observational bounds on scalar-tensor theories from standard sirens. Phys. Rev. D 2019, 100, 044041. [Google Scholar] [CrossRef]
  45. Nashed, G.G.L.; Nojiri, S. Black Holes with Electric and Magnetic Charges in f(R) Gravity. Fortsch. Phys. 2023, 71, 2200091. [Google Scholar] [CrossRef]
  46. Nashed, G.G.L.; Sheykhi, A. New black hole solutions in three-dimensional f(R) gravity. Phys. Dark Univ. 2023, 40, 101174. [Google Scholar] [CrossRef]
  47. Nashed, G.G.L.; Nojiri, S. Rotating black hole in f(R) theory. J. Cosmol. Astropart. Phys. 2021, 11, 7. [Google Scholar] [CrossRef]
  48. Nashed, G.G.L.; Capozziello, S. Rotating black hole in f(R) theory. Eur. Phys. J. C 2021, 81, 481. [Google Scholar] [CrossRef]
  49. Nashed, G.G.L.; Nojiri, S. Specific neutral and charged black holes in f(R) gravitational theory. Phys. Rev. D 2021, 104, 124054. [Google Scholar] [CrossRef]
  50. Nashed, G.G.L. Specific neutral and charged black holes in f(R) gravitational theory. Phys. Lett. B 2021, 815, 136133. [Google Scholar] [CrossRef]
  51. Nashed, G.G.L. Uniqueness of non-trivial spherically symmetric black hole solution in special classes of f(R) gravitational theory. Phys. Lett. B 2021, 812, 136012. [Google Scholar] [CrossRef]
  52. Nashed, G.G.L.; Nojiri, S. Nontrivial black hole solutions in f(R) gravitational theory. Phys. Rev. D 2020, 102, 124022. [Google Scholar] [CrossRef]
  53. Nashed, G.G.L.; Saridakis, E.N. Nontrivial black hole solutions in f(R) gravitational theory. Phys. Rev. D 2020, 102, 124072. [Google Scholar] [CrossRef]
  54. Sebastiani, L.; Zerbini, S. Static spherically symmetric solutions in f(R) gravity. Eur. Phys. J. C 2011, 71, 1591. [Google Scholar] [CrossRef]
  55. Nashed, G.G.L. Charged axially symmetric solution, energy and angular momentum in tetrad theory of gravitation. Int. J. Mod. Phys. A 2006, 21, 3181. [Google Scholar] [CrossRef]
  56. Multamaki, T.; Vilja, I. Spherically symmetric solutions of modified field equations in f(R) theories of gravity. Phys. Rev. D 2006, 74, 064022. [Google Scholar] [CrossRef]
  57. Hendi, S.H.; Eslam Panah, B.; Saffari, R. Exact solutions of three-dimensional black holes: Einstein gravity versus F(R) gravity. Int. J. Mod. Phys. D 2014, 23, 1450088. [Google Scholar] [CrossRef]
  58. Nashed, G.G.L.; Capozziello, S. Charged spherically symmetric black holes in f(R) gravity and their stability analysis. Phys. Rev. D 2019, 99, 104018. [Google Scholar] [CrossRef]
  59. Tang, Z.-Y.; Wang, B.; Papantonopoulos, E. Exact charged black hole solutions in D-dimensions in f(R) gravity. Eur. Phys. J. C 2021, 81, 346. [Google Scholar] [CrossRef]
  60. Nashed, G.G.L.; El Hanafy, W.; Odintsov, S.D.; Oikonomou, V.K. Thermodynamical correspondence of f(R) gravity in the Jordan and Einstein frames. Int. J. Mod. Phys. D 2020, 29, 2050090. [Google Scholar] [CrossRef]
  61. Rodrigues, M.E.; Junior, E.L.B.; Marques, G.T.; Zanchin, V.T. Regular black holes in f(R) gravity coupled to nonlinear electrodynamics. Phys. Rev. D 2016, 94, 024062, Erratum in: Phys. Rev. D 2016, 94, 049904. [Google Scholar] [CrossRef]
  62. Rodrigues, M.E.; Fabris, J.C.; Junior, E.L.B.; Marques, G.T. Generalisation for regular black holes on general relativity to f(R) gravity. Eur. Phys. J. C 2016, 76, 250. [Google Scholar] [CrossRef]
  63. Nashed, G.G.L. Kerr-NUT black hole thermodynamics in f(T) gravity theories. Eur. Phys. J. Plus 2015, 130, 124. [Google Scholar] [CrossRef]
  64. Hollenstein, L.; Lobo, F.S.N. Exact solutions of f(R) gravity coupled to nonlinear electrodynamics. Phys. Rev. D 2008, 78, 124007. [Google Scholar] [CrossRef]
  65. Karakasis, T.; Papantonopoulos, E.; Tang, Z.-Y.; Wang, B. Exact black hole solutions with a conformally coupled scalar field and dynamic Ricci curvature in f(R) gravity theories. Eur. Phys. J. C 2021, 81, 897. [Google Scholar] [CrossRef]
  66. Nashed, G.G.L.; Nojiri, S. Analytic charged BHs in f(R) gravity. Phys. Lett. B 2021, 820, 136475. [Google Scholar] [CrossRef]
  67. Hawking, S. Occurrence of Singularities in Open Universes. Phys. Rev. Lett. 1965, 15, 689. [Google Scholar] [CrossRef]
  68. Hawking, S.W.; Penrose, R. The Singularities of Gravitational Collapse and Cosmology. Proc. R. Soc. A Lond. Math. Phys. Sci. 1970, 314, 529. [Google Scholar]
  69. Sakharov, A.D. The Initial Stage of an Expanding Universe and the Appearance of a Nonuniform Distribution of Matter. Sov. Phys. JETP 1966, 22, 241. [Google Scholar]
  70. Gliner, E.B. Algebraic Properties of the Energy-momentum Tensor and Vacuum-like States o+ Matter. Sov. J. Exp. Theor. Phys. 1966, 22, 378. [Google Scholar]
  71. Dymnikova, I. Spherically symmetric space–time with regular de sitter center. Int. J. Mod. Phys. D 2003, 12, 1015. [Google Scholar] [CrossRef]
  72. Bardeen, J. Non-singular general-relativistic gravitational collapse. In Proceedings of the International Conference GR5, Tbilisi, Georgia, 9–13 September 1968; p. 174. [Google Scholar]
  73. Ayon-Beato, E.; Garcia, A. Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics. Phys. Rev. Lett. 1998, 80, 5056. [Google Scholar] [CrossRef]
  74. Ayon-Beato, E.; Garcia, A. The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 2000, 493, 149. [Google Scholar] [CrossRef]
  75. Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 2001, 63, 044005. [Google Scholar] [CrossRef]
  76. Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett. 2006, 96, 031103. [Google Scholar] [CrossRef]
  77. Fan, Z.-Y.; Wang, X. Construction of regular black holes in general relativity. Phys. Rev. D 2016, 94, 124027. [Google Scholar] [CrossRef]
  78. Bronnikov, K.A. Comment on “Construction of regular black holes in general relativity”. Phys. Rev. D 2017, 96, 128501. [Google Scholar] [CrossRef]
  79. Toshmatov, B.; Stuchlík, Z.; Ahmedov, B. Comment on “Construction of regular black holes in general relativity”. Phys. Rev. D 2018, 98, 028501. [Google Scholar] [CrossRef]
  80. Lan, C.; Yang, H.; Guo, Y.; Miao, Y.-G. Regular Black Holes: A Short Topic Review. Int. J. Theor. Phys. 2023, 62, 202. [Google Scholar] [CrossRef]
  81. Nojiri, S.; Odintsov, S.D. Regular multihorizon black holes in modified gravity with nonlinear electrodynamics. Phys. Rev. D 2017, 96, 104008. [Google Scholar] [CrossRef]
  82. Gao, C.; Yu, S.; Qiu, J. Nonsingular black holes and nonsingular universes in the regularized Lovelock gravity. Phys. Dark Univ. 2021, 31, 100754. [Google Scholar] [CrossRef]
  83. Olmo, G.J.; Rubiera-Garcia, D. Nonsingular black holes in quadratic Palatini gravity. Eur. Phys. J. C 2012, 72, 2098. [Google Scholar] [CrossRef]
  84. Menchon, C.; Olmo, G.J.; Rubiera-Garcia, D. Nonsingular black holes, wormholes, and de Sitter cores from anisotropic fluids. Phys. Rev. D 2017, 96, 104028. [Google Scholar] [CrossRef]
  85. Maluf, R.V.; Neves, J.C.S. Thermodynamics of a class of regular black holes with a generalized uncertainty principle. Phys. Rev. D 2018, 97, 104015. [Google Scholar] [CrossRef]
  86. Carballo-Rubio, R.; Di Filippo, F.; Liberati, S.; Pacilio, C.; Visser, M. Phenomenological aspects of black holes beyond general relativity. J. High Energy Phys. 2021, 05, 132. [Google Scholar] [CrossRef]
  87. Frolov, V.P. Notes on non-singular models of black holes. Phys. Rev. D 2016, 94, 104056. [Google Scholar] [CrossRef]
  88. Nashed, G.G.L.; Nojiri, S. Slow-rotating charged black hole solution in dynamical Chern-Simons modified gravity. Phys. Rev. D 2023, 107, 064069. [Google Scholar] [CrossRef]
  89. Mazharimousavi, S.H. Dirty black hole supported by a uniform electric field in Einstein-nonlinear electrodynamics-Dilaton theory. Eur. Phys. J. C 2023, 83, 406, Erratum in: Eur. Phys. J. C 2023, 83, 597. [Google Scholar] [CrossRef]
  90. Hendi, S.H.; Sheykhi, A.; Dehghani, M.H. Thermodynamics of higher dimensional topological charged AdS black branes in dilaton gravity. Eur. Phys. J. C 2010, 70, 703. [Google Scholar] [CrossRef]
  91. Sheykhi, A.; Dehghani, M.H.; Hendi, S.H. Thermodynamic instability of charged dilaton black holes in AdS spaces. Phys. Rev. D 2010, 81, 084040. [Google Scholar] [CrossRef]
  92. Cognola, G.; Gorbunova, O.; Sebastiani, L.; Zerbini, S. Energy issue for a class of modified higher order gravity black hole solutions. Phys. Rev. D 2011, 84, 023515. [Google Scholar] [CrossRef]
  93. Zheng, Y.; Yang, R.-J. Horizon thermodynamics in f(R) theory. Eur. Phys. J. C 2018, 78, 682. [Google Scholar] [CrossRef]
  94. Nouicer, K. Black hole thermodynamics to all orders in the Planck length in extra dimensions. Class. Quant. Grav. 2007, 24, 5917. [Google Scholar] [CrossRef]
Figure 1. (a) The general behaviors of g r r as r reveal three distinct regions; (b) shows the behavior of the entropy, (c) illustrates the Hawking temperature, (d) presents the quasilocal energy, (e) displays the pattern of the heat capacity, (f) displays the pattern of the Gibbs function.
Figure 1. (a) The general behaviors of g r r as r reveal three distinct regions; (b) shows the behavior of the entropy, (c) illustrates the Hawking temperature, (d) presents the quasilocal energy, (e) displays the pattern of the heat capacity, (f) displays the pattern of the Gibbs function.
Universe 11 00175 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Nashed, G.G.L.; Eid, A. New Black Hole Solution in f(R) Theory and Its Related Physics. Universe 2025, 11, 175. https://doi.org/10.3390/universe11060175

AMA Style

Nashed GGL, Eid A. New Black Hole Solution in f(R) Theory and Its Related Physics. Universe. 2025; 11(6):175. https://doi.org/10.3390/universe11060175

Chicago/Turabian Style

Nashed, G. G. L., and Ali Eid. 2025. "New Black Hole Solution in f(R) Theory and Its Related Physics" Universe 11, no. 6: 175. https://doi.org/10.3390/universe11060175

APA Style

Nashed, G. G. L., & Eid, A. (2025). New Black Hole Solution in f(R) Theory and Its Related Physics. Universe, 11(6), 175. https://doi.org/10.3390/universe11060175

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop