Conclusions Not Yet Drawn from the Unsolved 4/3-Problem—How to Get a Stable Classical Electron
Abstract
:1. Introduction
2. Particle and Field Description of the Classical Electron
3. Conclusions from the Problems
- 1.
- There is no division of the field degrees of freedom between degrees of freedom for electrons and degrees of freedom for electromagnetic fields, no division of the Lagrangian function into a dynamics of free fields, a dynamics of free particles and an interaction term between these free fields, as exemplified by the Sine–Gordon model. In experiments, electrons are inseparable from their fields. There are no electrons without fields. This is also how electrons should be described.
- 2.
- Electrons should be purely electromagnetic in nature, so their dynamics should be describable by a maximum of three field degrees of freedom as in Maxwell’s electrodynamics. Of the four fields, one of the degrees of freedom is only a gauge degree of freedom and is therefore described as unphysical. The Maxwell-Diracian description uses four fields for the photon field and 8-1 degrees of freedom for the complex, normalized four-component Dirac spinors.
- 3.
- As was concluded in connection with Equation (14), the Lagrangian density sought should contain, in addition to the dynamic term with four derivatives that seeks to smear electrons, a potential term without derivatives that holds the electron together. The field itself, which describes the electrons, is uncharged. The problem of the instability of the classical electron, which has remained unsolved for 100 years, cannot be attributed to the repulsion of charged regions inside the electron, as is often assumed [10]. The topological structure of the field of charges should lead to attraction or repulsion and quantization of the charges due to the terms in the Lagrangian.
- 4.
- The dynamic term with four derivatives should asymptotically transform the field into the structure of the field of a point charge e, i.e., into a field that can be described in Abelian terms. The potential term should only have a short-range effect and modify the Coulomb law at small distances, i.e., cause the charge to run due to the geometry.
- 5.
- The description of electrons following from the Lagrangian should bosonize Maxwell-Dirac’s formulation of electrodynamics.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Kinematics of Point Particles
Appendix B. Electrons in Maxwell’s Field Model
Appendix B.1. Self-Energy of the Classical Electron
Appendix B.2. Energy of the Moving Electron
Appendix B.3. Momentum of the Moving Electron
Appendix B.4. Lorentz Transformed Four-Momentum of the Electron at Rest
1 | We use the metric here, i.e., . |
2 | |
3 | |
4 | We point out that this calculation, which was carried out in analogy to Abraham [1], is an exact calculation according to definition (A40) of the four-momentum and not, as Rohrlich [5] writes before his Equation (16): “We can summarize this discussion by saying that definition (5) is incorrect”. With definition (5), Rohrlich refers to the Abraham-Lorentz definition of the energy of a moving electron, which corresponds to Equation (A47) |
References
- Abraham, M. Prinzipien der Dynamik des Elektrons. Ann. Phys. 1903, 10, 105–179. [Google Scholar] [CrossRef]
- Lorentz, H.A. The Theory of Electrons; B.G. Teubners Sammlung von Lehrbüchern auf dem Gebiete der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, B.G. Teubner: Leipzig, Germany, 1909; Volume 29. [Google Scholar]
- Abraham, M. Elektromagnetische Theorie der Strahlung; Erste Auflage Theorie der Elektrizität/von Dr. M. Abraham, Druck und Verlag von B.G. Teubner: Leipzig, Germany, 1905; Volume 2. [Google Scholar]
- Rohrlich, F. Self-Energy and Stability of the Classical Electron. Am. J. Phys. 1960, 28, 639–643. [Google Scholar] [CrossRef]
- Rohrlich, F. Classical Charged Particles, 3rd ed.; World Scientific: Singapore, 2007. [Google Scholar] [CrossRef]
- Poincaré, M. Sur la dynamique de l’électron. Rend. Del Circ. Mat. Palermo (1884–1940) 1906, 21, 129–175. [Google Scholar] [CrossRef]
- Remoissenet, M. Waves Called Solitons: Concepts and Experiments; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Hobart, R. On the Instability of a Class of Unitary Field Models. Proc. Phys. Soc. Lond. 1963, 82, 201–203. [Google Scholar] [CrossRef]
- Derrick, G. Comments on Nonlinear Wave Equations as Models for Elementary Particles. J. Math. Phys. 1964, 5, 1252–1254. [Google Scholar] [CrossRef]
- Schwinger, J. Electromagnetic mass revisited. Found. Phys. 1983, 13, 373–383. [Google Scholar] [CrossRef]
- Wabnig, J.; Resch, J.; Theuerkauf, D.; Anmasser, F.; Faber, M. Numerical Evaluation of a Soliton Pair with Long Range Interaction. arXiv 2022, arXiv:2210.13374. [Google Scholar]
- Peskin, M.E.; Schroeder, D.V. An Introduction To Quantum Field Theory, 1st ed.; Perseus Books Publishing, L.L.C.: New York, NY, USA, 1995; p. 842. [Google Scholar]
- Callan, C.G.; Coleman, S.; Jackiw, R. A new improved energy–momentum tensor. Ann. Phys. 1970, 59, 42–73. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B. Planck2018 results. Astron. Astrophys. 2020, 641, A1. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Classical theory of radiating electrons. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1938, 167, 148–169. [Google Scholar] [CrossRef]
- Schönberg, M. Classical Theory of the Point Electron. Phys. Rev. 1946, 69, 211–224. [Google Scholar] [CrossRef]
- Kwal, B. Les expressions de l’énergie et de l’impulsion du champ électromagnétique propre de l’électron en mouvement. J. Phys. Radium 1949, 10, 103–104. [Google Scholar] [CrossRef]
- Caldirola, P. A new model of classical electron. Il Nuovo C. 1956, 3, 297–343. [Google Scholar] [CrossRef]
- Coleman, S. Classical Electron Theory from a Modern Standpoint; RAND Corporation: Santa Monica, CA, USA, 1961. [Google Scholar]
- Dirac, P.A.M. An Extensible Model of the Electron. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1962, 268, 57–67. [Google Scholar]
- Nodvik, J.S. A covariant formulation of classical electrodynamics for charges of finite extension. Ann. Phys. 1964, 28, 225–319. [Google Scholar] [CrossRef]
- Caldirola, P.; Casati, G.; Prosperetti, A. On the classical theory of the electron. Il Nuovo C. A (1965–1970) 1978, 43A, 127–142. [Google Scholar] [CrossRef]
- Barut, A.O.; Bracken, A.J. Zitterbewegung and the internal geometry of the electron. Phys. Rev. D 1981, 23, 2454–2463. [Google Scholar] [CrossRef]
- Boyer, T.H. Classical model of the electron and the definition of electromagnetic field momentum. Phys. Rev. D 1982, 25, 3246–3250. [Google Scholar] [CrossRef]
- Ferraris, Marco; Kijowski, J. Unified geometric theory of electromagnetic and gravitational interactions. Gen. Relativ. Gravit. 1982, 14, 37–47. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. Classical Model of the Electron. Exactly Soluble Example. Phys. Rev. D 1983, 28, 2114–2117. [Google Scholar] [CrossRef]
- Coleman, S. The Magnetic Monopole Fifty Years Later. In The Unity of the Fundamental Interactions; Zichichi, A., Ed.; Springer: Boston, MA, USA, 1983; pp. 21–117. [Google Scholar] [CrossRef]
- Visser, M. A classical model for the electron. Phys. Lett. A 1989, 139, 99–102. [Google Scholar] [CrossRef]
- Frenkel, J. 4/3 problem in classical electrodynamics. Phys. Rev. E 1996, 54, 5859–5862. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.G.; Van der Mark, M. Is the electron a photon with toroidal topology? Ann. Fond. Louis Broglie 1997, 22, 133–160. [Google Scholar]
- Kiessling, M.K.H. Classical electron theory and conservation laws. Phys. Lett. A 1999, 258, 197–204. [Google Scholar] [CrossRef]
- Jiménez, J.L. Models of the Classical Electron after a Century. Found. Phys. Lett. 1999, 12, 127–146. [Google Scholar] [CrossRef]
- Polonyi, J. The Abraham–Lorentz force and electrodynamics at the classical electron radius. Int. J. Mod. Phys. A 2019, 34, 1950077. [Google Scholar] [CrossRef]
- Consa, O. Helical Solenoid Model of the Electron. Prog. Phys. 2018, 14, 80–89. [Google Scholar]
- Chubykalo, A.; Espinoza, A.; Kuligin, V.; Korneva, M. Once Again About the Problem “4/3”. Int. J. Eng. Technol. Manag. Res. 2019, 6, 178–196. [Google Scholar] [CrossRef]
- Landvogt, G. Complete Classical Theory of Charged Elementary Particles. J. High Energy Phys. Gravit. Cosmol. 2023, 9, 743–774. [Google Scholar] [CrossRef]
- Klingman, E. The Origin of Electric Charge in Quantum Gravity. J. Mod. Phys. 2024, 15, 511–535. [Google Scholar] [CrossRef]
- Bini, D.; Geralico, A.; Jantzen, R.T.; Ruffini, R. On Fermi’s Resolution of the “4/3 Problem” in the Classical Theory of the Electron. Found. Phys. 2024, 54, 35. [Google Scholar] [CrossRef]
- Faber, M. A Model for topological fermions. Few Body Syst. 2001, 30, 149–186. [Google Scholar] [CrossRef]
- Faber, M. A Geometric Model in 3+1D Space-Time for Electrodynamic Phenomena. Universe 2022, 8, 73. [Google Scholar] [CrossRef]
- Veltman, M.J.G. Discovery of the Higgs Particle. Available online: https://www.mediatheque.lindau-nobel.org/videos/34703/martinus-veltman-discovery-higgs-particle (accessed on 7 February 2025).
- Chaichian, M.; Merches, I.; Radu, D.; Tureanu, A. Electrodynamics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faber, M. Conclusions Not Yet Drawn from the Unsolved 4/3-Problem—How to Get a Stable Classical Electron. Universe 2025, 11, 97. https://doi.org/10.3390/universe11030097
Faber M. Conclusions Not Yet Drawn from the Unsolved 4/3-Problem—How to Get a Stable Classical Electron. Universe. 2025; 11(3):97. https://doi.org/10.3390/universe11030097
Chicago/Turabian StyleFaber, Manfried. 2025. "Conclusions Not Yet Drawn from the Unsolved 4/3-Problem—How to Get a Stable Classical Electron" Universe 11, no. 3: 97. https://doi.org/10.3390/universe11030097
APA StyleFaber, M. (2025). Conclusions Not Yet Drawn from the Unsolved 4/3-Problem—How to Get a Stable Classical Electron. Universe, 11(3), 97. https://doi.org/10.3390/universe11030097