Where to Search for Supermassive Binary Black Holes
Abstract
:1. Introduction
2. The Quasar Main Sequence: A Brief Synopsis
2.1. A Special Section of the Main Sequence
3. Candidate SMBBHs Along the Quasar Main Sequence
Samples and Measurements
Identification | Jcode | Radio | H | H | Bin.? | |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) |
WISEA J093642.95+551119.2 | J093642 | 0.4971 | RQ | AR,R | 1309 | Y |
SDSS J101230.78+182021.1 | J101230 | 0.4623 | RL | AR,B | Y | |
FBQS J110001.0+231412 | J110001 | 0.5567 | RL | AR,R | 490 | – |
3C 254 | J111438 | 0.7359 | RL | AR,R | 2225 | Y |
FBQS J111903.2+385852 | J111903 | 0.7344 | RL | AR,B | −2149 | Y |
HB89 1156+631 | J115839 | 0.5924 | RQ | AR,B | −349 | Y |
PG 1201+436 | J120424 | 0.6617 | RQ | AR,B | −1374 | Y a |
FBQS J1300+2830 | J130028 | 0.6467 | RL | AB,R | 1781 | Y |
WISEA J130704.39+091004.1 | J130704 | 0.5247 | RQ | AR,B | 3086 b | Y |
SDSS J133051.90+184932.9 | J133051 | 0.5141 | RL | AR,B | Y | |
WISE J133655.49+654115.9 | J133655 | 0.4378 | RQ | AR,R | 172 | Y a |
FBQS J140012.6+353930 | J140012 | 0.5184 | RQ | AR,R | 2341 | Y |
WISEA J141312.59+564113.3 | J141312 | 0.6686 | RL | AR,0 | 53 | — |
WISEA J150249.02+081305.9 | J150249 | 0.5186 | RQ | AR,B | 7 | Y |
FBQS J153159.1+242047 | J153159 | 0.6321 | RL | AR,R | 597 | — |
WISEA J155330.23+223010.3 | J155330 | 0.6404 | RQ | AR,B | −1809 | Y |
WISEA J163206.04+441659.5 | J163206 | 0.5304 | RQ | AB,B | −411 | Y |
4. Results
5. Discussion
5.1. A SMBBH System
5.2. The Latest Phases of Evolution Along the Quasar Main Sequence
5.3. GW from IMBH and Stellar Mass Black Hole Coalescence
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active Galactic Nucleus/i |
BH | Black Hole |
BLR | Broad Line Region |
E1 | Eigenvector 1 |
ET | Einstein Telescope |
EMRI | Extreme Mass Ratio Inspiral |
FWHM | Full Width Half Maximum |
GW | Gravitational Wave |
LIGO | Laser Interferometer Gravitational-Wave Observatory |
LISA | Laser Interferometer Space Antenna |
LIL | Low Ionization Line |
MDPI | Multidisciplinary Digital Publishing Institute |
MS | Main Sequence |
NLSy1 | Narrow Line Seyfert 1 |
PCA | Principal Component Analysis |
PTF | Palomar Transient Factory |
RL | Radio-Loud |
RQ | Radio-Quiet |
SDSS | Sloan Digital Sky Survey |
SMBH | Supermassive Black Hole |
SMBBH | Supermassive Binary Black Hole |
xA | extreme (Population) A |
ZTF | Zwicky Transient Facility |
References
- Colpi, M. Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence. Space Sci. Rev. 2014, 183, 189–221. [Google Scholar] [CrossRef]
- Komossa, S.; Ciprini, S.; Dey, L.; Gallo, L.C.; Gomez, J.L.; Gonzalez, A.; Grupe, D.; Kraus, A.; Laine, S.J.; Parker, M.L.; et al. Supermassive Binary Black Holes and the Case of OJ 287. In Proceedings of the XIX Serbian Astronomical Conference, Belgrade, Serbia, 13–17 October 2020; Publications of the Astronomical Observatory of Belgrade. Kovačević, A., Kovačević Dojčinović, J., Marčeta, D., Onić, D., Eds.; Volume 100, pp. 29–42. [Google Scholar] [CrossRef]
- Komossa, S.; Grupe, D. The Extremes of Continuum and Emission-Line Variability of AGN: Changing-Look Events and Binary SMBHS. Serbian Astron. J. 2024, 209, 1–24. [Google Scholar] [CrossRef]
- Burke-Spolaor, S.; Bailes, M.; Johnston, S.; Bates, S.D.; Bhat, N.D.R.; Burgay, M.; D’Amico, N.; Jameson, A.; Keith, M.J.; Kramer, M.; et al. The High Time Resolution Universe Pulsar Survey—III. Single-pulse searches and preliminary analysis. Mon. Not. R. Astron. Soc. 2011, 416, 2465–2476. [Google Scholar] [CrossRef]
- Theureau, G.; Babak, S.; Berthereau, A.; Chalumeau, A.; Chen, S.; Cognard, I.; Falxa, M.; Guillemot, L.; Petiteau, A. Pulsar Timing Arrays and gravitational waves: The first steps towards detection? In Proceedings of the SF2A-2021: Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, Online, 7–11 June 2021; Siebert, A., Baillié, K., Lagadec, E., Lagarde, N., Malzac, J., Marquette, J.B., N’Diaye, M., Richard, J., Venot, O., Eds.; pp. 23–28. [Google Scholar]
- Berti, E.; Cardoso, V.; Will, C.M. Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D 2006, 73, 064030. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar] [CrossRef]
- D’Onofrio, M.; Marziani, P. A multimessenger view of galaxies and quasars from now to mid-century. Front. Astron. Space Sci. 2018, 5, 31. [Google Scholar] [CrossRef]
- Sillanpaa, A.; Haarala, S.; Valtonen, M.J.; Sundelius, B.; Byrd, G.G. OJ 287-Binary pair of supermassive black holes. Astrophys. J. 1988, 325, 628–634. [Google Scholar] [CrossRef]
- Valtonen, M.J.; Lehto, H.J.; Nilsson, K.; Heidt, J.; Takalo, L.O.; Sillanpää, A.; Villforth, C.; Kidger, M.; Poyner, G.; Pursimo, T.; et al. A massive binary black-hole system in OJ 287 and a test of general relativity. Nature 2008, 452, 851–853. [Google Scholar] [CrossRef]
- Valtonen, M.J.; Dey, L.; Gopakumar, A.; Zola, S.; Lähteenmäki, A.; Tornikoski, M.; Gupta, A.C.; Pursimo, T.; Knudstrup, E.; Gomez, J.L.; et al. Observational Implications of OJ 287’s Predicted 2022 Disk Impact in the Black Hole Binary Model. Galaxies 2023, 11, 82. [Google Scholar] [CrossRef]
- Eracleous, M.; Halpern, J.P.; Gilbert, A.M.; Newman, J.A.; Filippenko, A.V. Rejection of the Binary Broad-Line Region Interpretation of Double-peaked Emission Lines in Three Active Galactic Nuclei. Astrophys. J. 1997, 490, 216. [Google Scholar] [CrossRef]
- Gezari, S.; Halpern, J.P.; Eracleous, M. Long-Term Profile Variability of Double-peaked Emission Lines in Active Galactic Nuclei. Astrophys. J. Suppl. 2007, 169, 167–212. [Google Scholar] [CrossRef]
- Liu, T.; Gezari, S.; Miller, M.C. Did ASAS-SN Kill the Supermassive Black Hole Binary Candidate PG1302-102? Astrophys. J. Lett. 2018, 859, L12. [Google Scholar] [CrossRef]
- Volonteri, M.; Haardt, F.; Madau, P. The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation. Astrophys. J. 2003, 582, 559–573. [Google Scholar] [CrossRef]
- Volonteri, M.; Miller, J.M.; Dotti, M. Sub-Parsec Supermassive Binary Quasars: Expectations at z < 1. Astrophys. J. Lett. 2009, 703, L86–L89. [Google Scholar] [CrossRef]
- Merritt, D.; Milosavljević, M. Massive black hole binary evolution in stellar environments: Implications for gravitational wave detection. Living Rev. Relativ. 2005, 8, 8. [Google Scholar] [CrossRef]
- Graham, M.J.; Djorgovski, S.G.; Stern, D.; Drake, A.J.; Mahabal, A.A.; Donalek, C.; Glikman, E.; Larson, S.; Christensen, E. A systematic search for close supermassive black hole binaries in the Catalina Real-time Transient Survey. Mon. Not. R. Astron. Soc. 2015, 453, 1562–1576. [Google Scholar] [CrossRef]
- Chambers, K.C.; Magnier, E.A.; Metcalfe, N.; Flewelling, H.A.; Huber, M.E.; Waters, C.Z.; Denneau, L.; Draper, P.W.; Farrow, D.; Finkbeiner, D.P.; et al. The Pan-STARRS1 Surveys. arXiv 2016, arXiv:1612.05560. [Google Scholar] [CrossRef]
- Bellm, E.C.; Kulkarni, S.R.; Graham, M.J.; Dekany, R.; Smith, R.M.; Riddle, R.; Masci, F.J.; Helou, G.; Prince, T.A.; Adams, S.M.; et al. The Zwicky Transient Facility: System Overview, Performance, and First Results. Publ. Astron. Soc. Pac. 2019, 131, 018002. [Google Scholar] [CrossRef]
- Graham, M.J.; Kulkarni, S.R.; Bellm, E.C.; Adams, S.M.; Barbarino, C.; Blagorodnova, N.; Bodewits, D.; Bolin, B.; Brady, P.R.; Cenko, S.B.; et al. The Zwicky Transient Facility: Science Objectives. Publ. Astron. Soc. Pac. 2019, 131, 078001. [Google Scholar] [CrossRef]
- Masci, F.J.; Laher, R.R.; Rusholme, B.; Shupe, D.L.; Groom, S.; Surace, J.; Jackson, E.; Monkewitz, S.; Beck, R.; Flynn, D.; et al. The Zwicky Transient Facility: Data Processing, Products, and Archive. Publ. Astron. Soc. Pac. 2019, 131, 018003. [Google Scholar] [CrossRef]
- Charisi, M.; Bartos, I.; Haiman, Z.; Price-Whelan, A.M.; Graham, M.J.; Bellm, E.C.; Laher, R.R.; Márka, S. A population of short-period variable quasars from PTF as supermassive black hole binary candidates. Mon. Not. R. Astron. Soc. 2016, 463, 2145–2171. [Google Scholar] [CrossRef]
- Vaughan, S.; Uttley, P.; Markowitz, A.G.; Huppenkothen, D.; Middleton, M.J.; Alston, W.N.; Scargle, J.D.; Farr, W.M. False periodicities in quasar time-domain surveys. Mon. Not. R. Astron. Soc. 2016, 461, 3145–3152. [Google Scholar] [CrossRef]
- Edelman, A.; Liu, X. The role of red noise in false periodicity detection in AGN light curves. Astrophys. J. 2023, 949, 56. [Google Scholar]
- Horne, J.H.; Baliunas, S.L. A Prescription for Period Analysis of Unevenly Sampled Time Series. Astrophys. J. 1986, 302, 757. [Google Scholar] [CrossRef]
- Sesar, B.; Ivezić, Ž.; Lupton, R.H.; Jurić, M.; Gunn, J.E.; Knapp, G.R.; DeLee, N.; Smith, J.A.; Miknaitis, G.; Lin, H.; et al. Exploring the Variable Sky with the Sloan Digital Sky Survey. Astron. J. 2007, 134, 2236–2251. [Google Scholar] [CrossRef]
- Hilditch, R.W. An Introduction to Close Binary Stars; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Bon, E.; Jovanović, P.; Marziani, P.; Shapovalova, A.I.; Bon, N.; Borka Jovanović, V.; Borka, D.; Sulentic, J.; Popović, L.Č. The First Spectroscopically Resolved Sub-parsec Orbit of a Supermassive Binary Black Hole. Astrophys. J. 2012, 759, 118. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, X.; Loeb, A.; Tremaine, S. Constraining Sub-parsec Binary Supermassive Black Holes in Quasars with Multi-epoch Spectroscopy. I. The General Quasar Population. Astrophys. J. 2013, 775, 49. [Google Scholar] [CrossRef]
- Li, Y.R.; Wang, J.M.; Ho, L.C.; Lu, K.X.; Qiu, J.; Du, P.; Hu, C.; Huang, Y.K.; Zhang, Z.X.; Wang, K.; et al. Spectroscopic Indication of a Centi-parsec Supermassive Black Hole Binary in the Galactic Center of NGC 5548. Astrophys. J. 2016, 822, 4. [Google Scholar] [CrossRef]
- Robinson, A.; Young, S.; Axon, D.J.; Kharb, P.; Smith, J.E. Spectropolarimetric Evidence for a Kicked Supermassive Black Hole in the Quasar E1821+643. Astrophys. J. Lett. 2010, 717, L122–L126. [Google Scholar] [CrossRef]
- Jadhav, Y.; Robinson, A.; Almeyda, T.; Curran, R.; Marconi, A. The spatially offset quasar E1821+643: New evidence for gravitational recoil. Mon. Not. R. Astron. Soc. 2021, 507, 484–495. [Google Scholar] [CrossRef]
- Boroson, T.A.; Green, R.F. The Emission-Line Properties of Low-Redshift Quasi-stellar Objects. Astrophys. J. Suppl. 1992, 80, 109. [Google Scholar] [CrossRef]
- Marziani, P.; Zamanov, R.K.; Sulentic, J.W.; Calvani, M. Searching for the physical drivers of eigenvector 1: Influence of black hole mass and Eddington ratio. Mon. Not. R. Astron. Soc. 2003, 345, 1133–1144. [Google Scholar] [CrossRef]
- Shen, Y.; Ho, L.C. The diversity of quasars unified by accretion and orientation. Nature 2014, 513, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Sulentic, J.W.; Marziani, P.; Dultzin-Hacyan, D. Phenomenology of Broad Emission Lines in Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2000, 38, 521–571. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Marziani, P.; Zwitter, T.; Dultzin-Hacyan, D.; Calvani, M. The Demise of the Classical Broad-Line Region in the Luminous Quasar PG 1416-129. Astrophys. J. Lett. 2000, 545, L15–L18. [Google Scholar] [CrossRef]
- Panda, S.; Marziani, P.; Czerny, B. The Quasar Main Sequence Explained by the Combination of Eddington Ratio, Metallicity, and Orientation. Astrophys. J. 2019, 882, 79. [Google Scholar] [CrossRef]
- Jankov, I.; Ilić, D.; Kovačević, A. Manifold Learning in the Context of Quasar Spectral Diversity. In Proceedings of the XIX Serbian Astronomical Conference, Belgrade, Serbia, 13–17 October 2020; Kovačević, A., Kovačević Dojčinović, J., Marčeta, D., Onić, D., Eds.; Volume 100, pp. 241–246. [Google Scholar]
- Ghojogh, B.; Ghodsi, A.; Karray, F.; Crowley, M. Locally Linear Embedding and its Variants: Tutorial and Survey. arXiv 2020, arXiv:2011.10925. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Plauchu-Frayn, I.; del Olmo, A. Is Mg II 2800 a Reliable Virial Broadening Estimator for Quasars? Astron. Astrophys. 2013, 555, 89. [Google Scholar] [CrossRef]
- Marinello, A.O.M.; Rodriguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T.A.A.; Pradhan, A.K. The FeII emission in active galactic nuclei: Excitation mechanisms and location of the emitting region. Astrophys. J. 2016, 820, 116. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Zwitter, T.; Dultzin-Hacyan, D.; Calvani, M. Searching for the Physical Drivers of the Eigenvector 1 Correlation Space. Astrophys. J. 2001, 558, 553–560. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Y. Dissecting the Quasar Main Sequence: Insight from Host Galaxy Properties. Astrophys. J. Lett. 2015, 804, L15. [Google Scholar] [CrossRef]
- Du, P.; Wang, J.M.; Hu, C.; Ho, L.C.; Li, Y.R.; Bai, J.M. The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei. Astrophys. J. Lett. 2016, 818, L14. [Google Scholar] [CrossRef]
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Marin, F.; Antonucci, R. A Robust Derivation of the Tight Relationship of Radio Core Dominance to Inclination Angle in High Redshift 3CRR Sources. Astrophys. J. 2016, 830, 82. [Google Scholar] [CrossRef]
- Bon, N.; Marziani, P.; Bon, E.; Negrete, C.A.; Dultzin, D.; del Olmo, A.; D’Onofrio, M.; Martínez-Aldama, M.L. Selection of highly-accreting quasars. Spectral properties of Fe IIopt emitters not belonging to extreme Population A. Astron. Astrophys. 2020, 635, A151. [Google Scholar] [CrossRef]
- Collin-Souffrin, S.; Dyson, J.E.; McDowell, J.C.; Perry, J.J. The environment of active galactic nuclei. I-A two-component broad emission line model. Mon. Not. R. Astron. Soc. 1988, 232, 539–550. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Dultzin-Hacyan, D.; Calvani, M.; Moles, M. Comparative Analysis of the High- and Low-Ionization Lines in the Broad-Line Region of Active Galactic Nuclei. Astrophys. J. Suppl. 1996, 104, 37. [Google Scholar] [CrossRef]
- Elvis, M. A Structure for Quasars. Astrophys. J. 2000, 545, 63–76. [Google Scholar] [CrossRef]
- Netzer, H. On the profiles of the broad lines in the spectra of QSOs and Seyfert galaxies. Mon. Not. R. Astron. Soc. 1977, 181, 89P–92P. [Google Scholar] [CrossRef]
- Wang, J.M.; Du, P.; Brotherton, M.S.; Hu, C.; Songsheng, Y.Y.; Li, Y.R.; Shi, Y.; Zhang, Z.X. Tidally disrupted dusty clumps as the origin of broad emission lines in active galactic nuclei. Nat. Astron. 2017, 1, 775–783. [Google Scholar] [CrossRef]
- Wolf, J.; Salvato, M.; Coffey, D.; Merloni, A.; Buchner, J.; Arcodia, R.; Baron, D.; Carrera, F.J.; Comparat, J.; Schneider, D.P.; et al. Exploring the diversity of Type 1 active galactic nuclei identified in SDSS-IV/SPIDERS. Mon. Not. R. Astron. Soc. 2020, 492, 3580–3601. [Google Scholar] [CrossRef]
- Bao, D.W.; Brotherton, M.S.; Du, P.; McLane, J.N.; Zastrocky, T.E.; Olson, K.A.; Fang, F.N.; Zhai, S.; Huang, Z.P.; Wang, K.; et al. Monitoring AGNs with Hβ Asymmetry. III. Long-term Reverberation Mapping Results of 15 Palomar-Green Quasars. Astrophys. J. Suppl. 2022, 262, 14. [Google Scholar] [CrossRef]
- Marziani, P. Accretion/Ejection Phenomena and Emission-Line Profile (A)symmetries in Type-1 Active Galactic Nuclei. Symmetry 2023, 15, 1859. [Google Scholar] [CrossRef]
- Zastrocky, T.E.; Brotherton, M.S.; Du, P.; McLane, J.N.; Olson, K.A.; Dale, D.A.; Kobulnicky, H.A.; Maithil, J.; Nguyen, M.L.; Chick, W.T.; et al. Monitoring AGNs with Hβ Asymmetry. IV. First Reverberation Mapping Results of 14 Active Galactic Nuclei. Astrophys. J. Suppl. 2024, 272, 29. [Google Scholar] [CrossRef]
- Punsly, B.; Marziani, P.; Bennert, V.N.; Nagai, H.; Gurwell, M.A. Revealing the Broad Line Region of NGC 1275: The Relationship to Jet Power. Astrophys. J. 2018, 869, 143. [Google Scholar] [CrossRef]
- Panda, S.; Czerny, B.; Adhikari, T.P.; Hryniewicz, K.; Wildy, C.; Kuraszkiewicz, J.; Śniegowska, M. Modeling of the Quasar Main Sequence in the Optical Plane. Astrophys. J. 2018, 866, 115. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Bachev, R.; Marziani, P.; Negrete, C.A.; Dultzin, D. C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei. Astrophys. J. 2007, 666, 757–777. [Google Scholar] [CrossRef]
- Richards, G.T.; Kruczek, N.E.; Gallagher, S.C.; Hall, P.B.; Hewett, P.C.; Leighly, K.M.; Deo, R.P.; Kratzer, R.M.; Shen, Y. Unification of Luminous Type 1 Quasars through C IV Emission. Astron. J. 2011, 141, 167. [Google Scholar] [CrossRef]
- Bonzini, M.; Mainieri, V.; Padovani, P.; Andreani, P.; Berta, S.; Bethermin, M.; Lutz, D.; Rodighiero, G.; Rosario, D.; Tozzi, P.; et al. Star formation properties of sub-mJy radio sources. Mon. Not. R. Astron. Soc. 2015, 453, 1079–1094. [Google Scholar] [CrossRef]
- Ganci, V.; Marziani, P.; D’Onofrio, M.; del Olmo, A.; Bon, E.; Bon, N.; Negrete, C.A. Radio loudness along the quasar main sequence. Astron. Astrophys. 2019, 630, A110. [Google Scholar] [CrossRef]
- Panessa, F.; Baldi, R.D.; Laor, A.; Padovani, P.; Behar, E.; McHardy, I. The origin of radio emission from radio-quiet active galactic nuclei. Nat. Astron. 2019, 3, 387–396. [Google Scholar] [CrossRef]
- Chen, S.; Laor, A.; Behar, E.; Baldi, R.D.; Gelfand, J.D.; Kimball, A.E.; McHardy, I.M.; Orosz, G.; Paragi, Z. Windy or Not: Radio Parsec-scale Evidence for a Broad-line Region Wind in Radio-quiet Quasars. Astrophys. J. 2024, 975, 35. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Plauchu-Frayn, I.; del Olmo, A. Low-Ionization Outflows in High Eddington Ratio Quasars. Astrophys. J. 2013, 764, 150. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Zamanov, R.; Calvani, M.; Dultzin-Hacyan, D.; Bachev, R.; Zwitter, T. An Optical Spectroscopic Atlas of Low-Redshift Active Galactic Nuclei. Astrophys. J. Suppl. 2003, 145, 199–211. [Google Scholar] [CrossRef]
- Kovačević-Dojčinović, J.; Popović, L.Č. The Connections Between the UV and Optical Fe ii Emission Lines in Type 1 AGNs. Astrophys. J. Suppl. 2015, 221, 35. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Wang, T.; Ho, L.C.; Yuan, W.; Wang, H.; Zhang, K.; Zhang, S.; Zhou, H. Estimating Black Hole Masses in Active Galactic Nuclei Using the Mg II λ2800 Emission Line. Astrophys. J. 2009, 707, 1334–1346. [Google Scholar] [CrossRef]
- Trakhtenbrot, B.; Netzer, H. Black hole growth to z = 2 - I. Improved virial methods for measuring MBH and L/LEdd. Mon. Not. R. Astron. Soc. 2012, 427, 3081–3102. [Google Scholar] [CrossRef]
- Popović, L.Č.; Kovačević-Dojčinović, J.; Marčeta-Mandić, S. The structure of the Mg II broad line emitting region in Type 1 AGNs. Mon. Not. R. Astron. Soc. 2019, 484, 3180–3197. [Google Scholar] [CrossRef]
- Shen, Y.; Horne, K.; Grier, C.J.; Peterson, B.M.; Denney, K.D.; Trump, J.R.; Sun, M.; Brandt, W.N.; Kochanek, C.S.; Dawson, K.S.; et al. The Sloan Digital Sky Survey Reverberation Mapping Project: First Broad-line Hβ and Mg II Lags at z ≳ 0.3 from Six-month Spectroscopy. Astrophys. J. 2016, 818, 30. [Google Scholar] [CrossRef]
- Le, H.A.N.; Woo, J.H.; Xue, Y. Calibrating Mg II-based Black Hole Mass Estimators Using Low-to-high-luminosity Active Galactic Nuclei. Astrophys. J. 2020, 901, 35. [Google Scholar] [CrossRef]
- Yue, M.; Eilers, A.C.; Simcoe, R.A.; Mackenzie, R.; Matthee, J.; Kashino, D.; Bordoloi, R.; Lilly, S.J.; Naidu, R.P. EIGER. V. Characterizing the Host Galaxies of Luminous Quasars at z ≳ 6. Astrophys. J. 2024, 966, 176. [Google Scholar] [CrossRef]
- Collin-Souffrin, S. Line and continuum radiation from the outer region of accretion discs in active galactic nuclei. I-Preliminary considerations. Astron. Astrophys. 1987, 179, 60–70. [Google Scholar]
- Marziani, P.; Sulentic, J.W.; Negrete, C.A.; Dultzin, D.; Zamfir, S.; Bachev, R. Broad-line region physical conditions along the quasar eigenvector 1 sequence. Mon. Not. R. Astron. Soc. 2010, 409, 1033–1048. [Google Scholar] [CrossRef]
- Zamfir, S.; Sulentic, J.W.; Marziani, P.; Dultzin, D. Detailed characterization of Hβ emission line profile in low-z SDSS quasars. Mon. Not. R. Astron. Soc. 2010, 403, 1759. [Google Scholar] [CrossRef]
- Panda, S.; Śniegowska, M. Changing-look Active Galactic Nuclei. I. Tracking the Transition on the Main Sequence of Quasars. Astrophys. J. Suppl. 2024, 272, 13. [Google Scholar] [CrossRef]
- Komossa, S.; Grupe, D.; Marziani, P.; Popovic, L.C.; Marceta-Mandic, S.; Bon, E.; Ilic, D.; Kovacevic, A.B.; Kraus, A.; Haiman, Z.; et al. The extremes of AGN variability: Outbursts, deep fades, changing looks, exceptional spectral states, and semi-periodicities. arXiv 2024, arXiv:2408.00089. [Google Scholar] [CrossRef]
- Sulentic, J.W. Toward a classification scheme for broad-line profiles in active galactic nuclei. Astrophys. J. 1989, 343, 54–65. [Google Scholar] [CrossRef]
- Tody, D. The IRAF Data Reduction and Analysis System. In Proceedings of the Instrumentation in Astronomy VI; Crawford, D.L., Ed.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 1986; Volume 627, p. 733. [Google Scholar] [CrossRef]
- Tody, D. IRAF in the Nineties. In Proceedings of the Astronomical Data Analysis Software and Systems II; Hanisch, R.J., Brissenden, R.J.V., Barnes, J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1993; Volume 52, p. 173. [Google Scholar]
- Fitzpatrick, M.; Placco, V.; Bolton, A.; Merino, B.; Ridgway, S.; Stanghellini, L. Modernizing IRAF to Support Gemini Data Reduction. arXiv 2024, arXiv:2401.01982. [Google Scholar] [CrossRef]
- Kriss, G. Fitting Models to UV and Optical Spectral Data. Astron. Data Anal. Softw. Syst. III 1994, 61, 437. [Google Scholar]
- Marziani, P.; Olmo, A.d.; Negrete, C.A.; Dultzin, D.; Piconcelli, E.; Vietri, G.; Martínez-Aldama, M.L.; D’Onofrio, M.; Bon, E.; Bon, N.; et al. The Intermediate-ionization Lines as Virial Broadening Estimators for Population A Quasars. Astrophys. J. Suppl. 2022, 261, 30. [Google Scholar] [CrossRef]
- Zamfir, S.; Sulentic, J.W.; Marziani, P. New insights on the QSO radio-loud/radio-quiet dichotomy: SDSS spectra in the context of the 4D eigenvector1 parameter space. Mon. Not. R. Astron. Soc. 2008, 387, 856–870. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Stirpe, G.M.; Zamfir, S.; Calvani, M. VLT/ISAAC spectra of the Hβ region in intermediate-redshift quasars. III. Hβ broad-line profile analysis and inferences about BLR structure. Astron. Astrophys. 2009, 495, 83–112. [Google Scholar] [CrossRef]
- Marziani, P.; Deconto–Machado, A.; Del Olmo, A. Isolating an Outflow Component in Single-Epoch Spectra of Quasars. Galaxies 2022, 10, 54. [Google Scholar] [CrossRef]
- Temple, M.J. Testing AGN outflow and accretion models with SDSS quasar demographics. In Proceedings of the IAU Symposium; Bruni, G., Diaz Trigo, M., Laha, S., Fukumura, K., Eds.; Cambridge University Press: Cambridge, UK, 2024; Volume 378, pp. 27–29. [Google Scholar] [CrossRef]
- Corbin, M.R. QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift? Astrophys. J. 1995, 447, 496. [Google Scholar] [CrossRef]
- Gavrilović, N.; Popović, L.Č.; Kollatschny, W. The gravitational redshift in the broad line region of the active galactic nucleus Mrk 110. In Proceedings of the IAU Symposium; Karas, V., Matt, G., Eds.; Cambridge University Press: Cambridge, UK, 2007; Volume 238, pp. 369–370. [Google Scholar] [CrossRef]
- Jonić, S.; Kovačević-Dojčinović, J.; Ilić, D.; Popović, L.Č. Virialization of the Broad Line Region in Active Galactic Nuclei-connection between shifts and widths of broad emission lines. Astrophys. Space Sci. 2016, 361, 101. [Google Scholar] [CrossRef]
- Bon, N.; Bon, E.; Marziani, P.; Jovanović, P. Gravitational redshift of emission lines in the AGN spectra. Astrophys. Space Sci. 2015, 360, 7. [Google Scholar] [CrossRef]
- Heckman, T.M. An optical and radio survey of the nuclei of bright galaxies—Activity in normal galactic nuclei. Astron. Astrophys. 1980, 87, 152–164. [Google Scholar]
- Narayan, R.; Yi, I. Advection-dominated Accretion: A Self-similar Solution. Astrophys. J. Lett. 1994, 428, L13. [Google Scholar] [CrossRef]
- Soria, R.; Graham, A.W.; Fabbiano, G.; Baldi, A.; Elvis, M.; Jerjen, H.; Pellegrini, S.; Siemiginowska, A. Accretion and Nuclear Activity of Quiescent Supermassive Black Holes. II. Optical Study and Interpretation. Astrophys. J. 2006, 640, 143–155. [Google Scholar] [CrossRef]
- Giustini, M.; Proga, D. A global view of the inner accretion and ejection flow around super massive black holes. Radiation-driven accretion disk winds in a physical context. Astron. Astrophys. 2019, 630, A94. [Google Scholar] [CrossRef]
- Vestergaard, M.; Peterson, B.M. Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships. Astrophys. J. 2006, 641, 689–709. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W. Evidence for a very broad line region in PG 1138+222. Astrophys. J. 1993, 409, 612–616. [Google Scholar] [CrossRef]
- Snedden, S.A.; Gaskell, C.M. The Case for Optically Thick High-Velocity Broad-Line Region Gas in Active Galactic Nuclei. Astrophys. J. 2007, 669, 126–134. [Google Scholar] [CrossRef]
- Marziani, P.; Dultzin-Hacyan, D.; Sulentic, J.W. Accretion onto Supermassive Black Holes in Quasars: Learning from Optical/UV Observations. In New Developments in Black Hole Research; Kreitler, P.V., Ed.; Nova Press: New York, NY, USA, 2006; p. 123. [Google Scholar]
- Mineshige, S.; Kawaguchi, T.; Takeuchi, M.; Hayashida, K. Slim-Disk Model for Soft X-Ray Excess and Variability of Narrow-Line Seyfert 1 Galaxies. Publ. Astr. Soc. Jpn. 2000, 52, 499–508. [Google Scholar] [CrossRef]
- Sądowski, A. Slim Disks Around Kerr Black Holes Revisited. Astrophys. J. Suppl. 2009, 183, 171–178. [Google Scholar] [CrossRef]
- Dotan, C.; Shaviv, N.J. Super-Eddington slim accretion discs with winds. Mon. Not. R. Astron. Soc. 2011, 413, 1623–1632. [Google Scholar] [CrossRef]
- Abramowicz, M.A.; Straub, O. Accretion discs. Scholarpedia 2014, 9, 2408. [Google Scholar] [CrossRef]
- Romero, G.E.; Abraham, Z. Precession of relativistic jets in active galactic nuclei as a clue to binary supermassive black holes. Int. J. Mod. Phys. D 2000, 9, 173–184. [Google Scholar]
- Krause, M.; Burkert, A.; Schartmann, M. Stability of cloud orbits in the broad-line region of active galactic nuclei. Mon. Not. R. Astron. Soc. 2011, 411, 550–556. [Google Scholar] [CrossRef]
- Decarli, R.; Dotti, M.; Treves, A. Geometry and inclination of the broad-line region in blazars. Mon. Not. R. Astron. Soc. 2011, 413, 39–46. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Popović, L.Č.; Shapovalova, A.I. Spectropolarimetry of Seyfert 1 galaxies with equatorial scattering: Black hole masses and broad-line region characteristics. Mon. Not. R. Astron. Soc. 2019, 482, 4985–4999. [Google Scholar] [CrossRef]
- Wills, B.J.; Browne, I.W.A. Relativistic beaming and quasar emission lines. Astrophys. J. 1986, 302, 56–63. [Google Scholar] [CrossRef]
- Marin, F. Are there reliable methods to estimate the nuclear orientation of Seyfert galaxies? Mon. Not. R. Astron. Soc. 2016, 460, 3679–3705. [Google Scholar] [CrossRef]
- Punsly, B.; Tramacere, A.; Kharb, P.; Marziani, P. The Powerful Jet and Gamma-Ray Flare of the Quasar PKS 0438–436. Astrophys. J. 2018, 869, 174. [Google Scholar] [CrossRef]
- Marziani, P.; Bon, E.; Bon, N.; D’Onofrio, M.; Punsly, B.; Śniegowska, M.; Czerny, B.; Panda, S.; Martínez Aldama, M.L.; del Olmo, A.; et al. The main sequence of quasars: The taming of the extremes. Astron. Nachrichten 2022, 343, e210082. [Google Scholar] [CrossRef]
- Lynden-Bell, D. Galactic Nuclei as Collapsed Old Quasars. Nature 1969, 223, 690–694. [Google Scholar] [CrossRef]
- Lin, D.N.C.; Papaloizou, J. On the Tidal Interaction between Protoplanets and the Protoplanetary Disk. III. Orbital Migration of Protoplanets. Astrophys. J. 1986, 309, 846. [Google Scholar] [CrossRef]
- Artymowicz, P.; Lubow, S.H. Dynamics of Binary-Disk Interaction. I. Resonances and Disk Gap Sizes. Astrophys. J. 1994, 421, 651. [Google Scholar] [CrossRef]
- Tiede, C.; Zrake, J.; MacFadyen, A.; Haiman, Z. How Binaries Accrete: Hydrodynamic Simulations with Passive Tracer Particles. Astrophys. J. 2022, 932, 24. [Google Scholar] [CrossRef]
- Chen, K.; Halpern, J.P.; Filippenko, A.V. Kinematic evidence for a relativistic Keplerian disk-ARP 102B. Astrophys. J. 1989, 339, 742–751. [Google Scholar] [CrossRef]
- Eracleous, M.; Halpern, J.P. Completion of a Survey and Detailed Study of Double-peaked Emission Lines in Radio-loud Active Galactic Nuclei. Astrophys. J. 2003, 599, 886–908. [Google Scholar] [CrossRef]
- Strateva, I.V.; Strauss, M.A.; Hao, L.; Schlegel, D.J.; Hall, P.B.; Gunn, J.E.; Li, L.; Ivezić, Ž.; Richards, G.T.; Zakamska, N.L.; et al. Double-peaked Low-Ionization Emission Lines in Active Galactic Nuclei. Astron. J. 2003, 126, 1720–1749. [Google Scholar] [CrossRef]
- Mengistue, S.T.; Del Olmo, A.; Marziani, P.; Pović, M.; Martínez-Carballo, M.A.; Perea, J.; Márquez, I. Optical and near-UV spectroscopic properties of low-redshift jetted quasars in the main sequence context. Mon. Not. R. Astron. Soc. 2023, 525, 4474–4496. [Google Scholar] [CrossRef]
- Peters, P.C. Gravitational Radiation and the Motion of Two Point Masses. Phys. Rev. 1964, 136, 1224–1232. [Google Scholar] [CrossRef]
- Deng, H. Gravitational wave background from mergers of large primordial black holes. J. Cosmol. Astropart. Phys. 2022, 2022, 037. [Google Scholar] [CrossRef]
- Nguyen, K.; Bogdanović, T. Emission Signatures from Sub-parsec Binary Supermassive Black Holes. I. Diagnostic Power of Broad Emission Lines. Astrophys. J. 2016, 828, 68. [Google Scholar] [CrossRef]
- Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; et al. The International Pulsar Timing Array project: Using pulsars as a gravitational wave detector. Class. Quantum Gravity 2010, 27, 084013. [Google Scholar] [CrossRef]
- Mingarelli, C.M.F.; Lazio, T.J.W.; Sesana, A.; Greene, J.E.; Ellis, J.A.; Ma, C.P.; Croft, S.; Burke-Spolaor, S.; Taylor, S.R. The local nanohertz gravitational-wave landscape from supermassive black hole binaries. Nat. Astron. 2017, 1, 886–892. [Google Scholar] [CrossRef]
- Antonini, F.; Perets, H.B. Secular Evolution of Compact Binaries near Massive Black Holes: Gravitational Wave Sources and Other Exotica. Astrophys. J. 2012, 757, 27. [Google Scholar] [CrossRef]
- Wang, J.M.; Yan, C.S.; Li, Y.R.; Chen, Y.M.; Xiang, F.; Hu, C.; Ge, J.Q.; Zhang, S. Evolution of Gaseous Disk Viscosity Driven by Supernova Explosions in Star-Forming Galaxies at High Redshift. Astrophys. J. Lett. 2009, 701, L7–L11. [Google Scholar] [CrossRef]
- Wang, J.; Deng, J.S.; Wei, J.Y. Ongoing star formation in AGN host galaxy discs: A view from core-collapse supernovae. Mon. Not. R. Astron. Soc. 2010, 405, 2529–2533. [Google Scholar] [CrossRef]
- Wang, J.M.; Ge, J.Q.; Hu, C.; Baldwin, J.A.; Li, Y.R.; Ferland, G.J.; Xiang, F.; Yan, C.S.; Zhang, S. Star Formation in Self-gravitating Disks in Active Galactic Nuclei. I. Metallicity Gradients in Broad-line Regions. Astrophys. J. 2011, 739, 3. [Google Scholar] [CrossRef]
- Wang, J.M.; Du, P.; Baldwin, J.A.; Ge, J.Q.; Hu, C.; Ferland, G.J. Star Formation in Self-gravitating Disks in Active Galactic Nuclei. II. Episodic Formation of Broad-line Regions. Astrophys. J. 2012, 746, 137. [Google Scholar] [CrossRef]
- Artymowicz, P.; Lin, D.N.C.; Wampler, E.J. Star Trapping and Metallicity Enrichment in Quasars and Active Galactic Nuclei. Astrophys. J. 1993, 409, 592. [Google Scholar] [CrossRef]
- Lin, D.N.C. Star/Disk Interaction in the Nuclei of Active Galaxies. In Proceedings of the IAU Colloq. 159: Emission Lines in Active Galaxies: New Methods and Techniques; Peterson, B.M., Cheng, F.Z., Wilson, A.S., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1997; Volume 113, p. 64. [Google Scholar]
- Collin, S.; Zahn, J.P. Star formation and evolution in accretion disks around massive black holes. Astron. Astrophys. 1999, 344, 433–449. [Google Scholar]
- Wang, J.M.; Zhai, S.; Li, Y.R.; Songsheng, Y.Y.; Ho, L.C.; Chen, Y.J.; Liu, J.R.; Du, P.; Yuan, Y.F. Star Formation in Self-gravitating Disks in Active Galactic Nuclei. III. Efficient Production of Iron and Infrared Spectral Energy Distributions. Astrophys. J. 2023, 954, 84. [Google Scholar] [CrossRef]
- Dittmann, A.J.; Cantiello, M. A Semi-Analytical Model for Stellar Evolution in AGN Disks. arXiv 2024, arXiv:2409.02981. [Google Scholar] [CrossRef]
- Fabj, G.; Dittmann, A.J.; Cantiello, M.; Perna, R.; Samsing, J. Mapping the Outcomes of Stellar Evolution in the Disks of Active Galactic Nuclei. arXiv 2024, arXiv:2408.16050. [Google Scholar] [CrossRef]
- Liu, J.R.; Wang, Y.L.; Wang, J.M. Accretion-modified Stars in Accretion Disks of Active Galactic Nuclei: Observational Characteristics in Different Regions of the Disks. Astrophys. J. 2024, 969, 37. [Google Scholar] [CrossRef]
- Fraix-Burnet, D.; Marziani, P.; D’Onofrio, M.; Dultzin, D. The Phylogeny of Quasars and the Ontogeny of Their Central Black Holes. Front. Astron. Space Sci. 2017, 4, 1. [Google Scholar] [CrossRef]
- Elitzur, M.; Shlosman, I. The AGN-obscuring Torus: The End of the “Doughnut” Paradigm? Astrophys. J. Lett. 2006, 648, L101–L104. [Google Scholar] [CrossRef]
- Portegies Zwart, S.F.; McMillan, S.L.W. The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters. Astrophys. J. 2002, 576, 899–907. [Google Scholar] [CrossRef]
- Portegies Zwart, S.F.; Baumgardt, H.; Hut, P.; Makino, J.; McMillan, S.L.W. Formation of massive black holes through runaway collisions in dense young star clusters. Nature 2004, 428, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Gaete, B.; Schleicher, D.R.G.; Lupi, A.; Reinoso, B.; Fellhauer, M.; Vergara, M.C. Supermassive black hole formation via collisions in black hole clusters. Astron. Astrophys. 2024, 690, A378. [Google Scholar] [CrossRef]
- Chen, Y.X.; Lin, D.N.C. The Population of Massive Stars in Active Galactic Nuclei Disks. Astrophys. J. 2024, 967, 88. [Google Scholar] [CrossRef]
- Neumayer, N.; Seth, A.; Böker, T. Nuclear star clusters. Astron. Astrophys. Rev. 2020, 28, 4. [Google Scholar] [CrossRef]
- Böker, T. Nuclear star clusters. In Proceedings of the Star Clusters: Basic Galactic Building Blocks Throughout Time and Space; de Grijs, R., Lépine, J.R.D., Eds.; IAU Symposium; Cambridge University Press: Cambridge, UK, 2010; Volume 266, pp. 58–63. [Google Scholar] [CrossRef]
- Tagawa, H.; Haiman, Z.; Kocsis, B. Formation and Evolution of Compact-object Binaries in AGN Disks. Astrophys. J. 2020, 898, 25. [Google Scholar] [CrossRef]
- Barack, L.; Cardoso, V.; Nissanke, S.; Sotiriou, T.P.; Askar, A.; Belczynski, C.; Bertone, G.; Bon, E.; Blas, D.; Brito, R.; et al. Black holes, gravitational waves and fundamental physics: A roadmap. Class. Quantum Gravity 2019, 36, 143001. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Ebisuzaki, T.; Makino, J.; Tsuru, T.G.; Funato, Y.; Portegies Zwart, S.; Hut, P.; McMillan, S.; Matsushita, S.; Matsumoto, H.; Kawabe, R. Missing Link Found? The “Runaway” Path to Supermassive Black Holes. Astrophys. J. Lett. 2001, 562, L19–L22. [Google Scholar] [CrossRef]
- Mapelli, M. Massive black hole binaries from runaway collisions: The impact of metallicity. Mon. Not. R. Astron. Soc. 2016, 459, 3432–3446. [Google Scholar] [CrossRef]
- Belczynski, K.; Bulik, T.; Fryer, C.L.; Ruiter, A.; Valsecchi, F.; Vink, J.S.; Hurley, J.R. On the Maximum Mass of Stellar Black Holes. Astrophys. J. 2010, 714, 1217–1226. [Google Scholar] [CrossRef]
- Giacobbo, N.; Mapelli, M. The progenitors of compact-object binaries: Impact of metallicity, common envelope and natal kicks. Mon. Not. R. Astron. Soc. 2018, 480, 2011–2030. [Google Scholar] [CrossRef]
- Gröbner, M.; Ishibashi, W.; Tiwari, S.; Haney, M.; Jetzer, P. Binary black hole mergers in AGN accretion discs: Gravitational wave rate density estimates. Astron. Astrophys. 2020, 638, A119. [Google Scholar] [CrossRef]
- Wang, J.M.; Liu, J.R.; Ho, L.C.; Li, Y.R.; Du, P. Accretion-modified Stars in Accretion Disks of Active Galactic Nuclei: Gravitational-wave Bursts and Electromagnetic Counterparts from Merging Stellar Black Hole Binaries. Astrophys. J. Lett. 2021, 916, L17. [Google Scholar] [CrossRef]
- Jermyn, A.S.; Dittmann, A.J.; McKernan, B.; Ford, K.E.S.; Cantiello, M. Effects of an Immortal Stellar Population in AGN Disks. Astrophys. J. 2022, 929, 133. [Google Scholar] [CrossRef]
- Sicilia, A.; Lapi, A.; Boco, L.; Spera, M.; Di Carlo, U.N.; Mapelli, M.; Shankar, F.; Alexander, D.M.; Bressan, A.; Danese, L. The Black Hole Mass Function Across Cosmic Times. I. Stellar Black Holes and Light Seed Distribution. Astrophys. J. 2022, 924, 56. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration; Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; et al. Advanced LIGO. Class. Quantum Gravity 2015, 32, 074001. [Google Scholar] [CrossRef]
- Acernese, F.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quantum Gravity 2015, 32, 024001. [Google Scholar] [CrossRef]
- Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M.; et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quantum Gravity 2010, 27, 194002. [Google Scholar] [CrossRef]
- Maggiore, M.; Van Den Broeck, C.; Bartolo, N.; Belgacem, E.; Bertacca, D.; Bizouard, M.A.; Branchesi, M.; Clesse, S.; Foffa, S.; García-Bellido, J.; et al. Science case for the Einstein telescope. J. Cosmol. Astropart. Phys. 2020, 2020, 050. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marziani, P.; Bon, E.; Bon, N.; D’Onofrio, M. Where to Search for Supermassive Binary Black Holes. Universe 2025, 11, 76. https://doi.org/10.3390/universe11030076
Marziani P, Bon E, Bon N, D’Onofrio M. Where to Search for Supermassive Binary Black Holes. Universe. 2025; 11(3):76. https://doi.org/10.3390/universe11030076
Chicago/Turabian StyleMarziani, Paola, Edi Bon, Natasa Bon, and Mauro D’Onofrio. 2025. "Where to Search for Supermassive Binary Black Holes" Universe 11, no. 3: 76. https://doi.org/10.3390/universe11030076
APA StyleMarziani, P., Bon, E., Bon, N., & D’Onofrio, M. (2025). Where to Search for Supermassive Binary Black Holes. Universe, 11(3), 76. https://doi.org/10.3390/universe11030076