Gauge-Invariant Perturbation Theory on the Schwarzschild Background Spacetime: Part III—Realization of Exact Solutions
Abstract
:1. Introduction
2. Brief Review of the General-Relativistic Gauge-Invariant Perturbation Theory
2.1. General Framework of Gauge-Invariant Perturbation Theory
2.2. Linear Perturbations on Spherically Symmetric Background
2.3. Even-Mode Linearized Einstein Equations
3. Realization of LTB Solution as a Perturbation on the Schwarzschild Spacetime
3.1. Perturbative Expression of the LTB Solution on Schwarzschild Background Spacetime
- (i)
- :
- (ii)
- :
- (iii)
- :
3.2. Expression of the Perturbative LTB Solution in Static Chart
4. Realization of the Linearized Non-Rotating C-Metric
4.1. The Linearized Non-Rotating C-Metric
4.2. Components of Metric Perturbation of the Linearized Non-Rotating C-Metric
4.3. Harmonic Decomposition of the Perturbative Non-Rotating C-Metric
4.4. Realization of Mode Perturbations
4.5. Realization of Mode Perturbations
4.6. Realization of Mode Perturbations
4.7. Source Term of the Linearized C-Metric
5. Summary and Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LTB solution | Lemaître–Tolman–Bondi solution |
References
- LIGO Scientific Collaboration. 2025. Available online: https://ligo.org (accessed on 23 January 2025).
- Virgo. 2025. Available online: https://www.virgo-gw.eu (accessed on 23 January 2025).
- KAGRA. 2025. Available online: https://gwcenter.icrr.u-tokyo.ac.jp (accessed on 23 January 2025).
- LIGO INDIA. 2025. Available online: https://www.ligo-india.in (accessed on 23 January 2025).
- Einstein Telescope. 2024. Available online: https://www.et-gw.eu (accessed on 13 November 2024).
- Cosmic Explorer. 2025. Available online: https://cosmicexplorer.org/ (accessed on 23 January 2025).
- LISA. 2025. Available online: https://lisa.nasa.gov/ (accessed on 23 January 2025).
- Kawamura, S.; Ando, M.; Seto, N.; Sato, S.; Musha, M.; Kawano, I.; Hong, F.L. Current status of space gravitational wave antenna DECIGO and B-DECIGO. Prog. Theor. Exp. Phys. 2021, 2021, 05A105. [Google Scholar] [CrossRef]
- Mei, J.; Bai, Y.; Bao, J.; Barausse, E.; Cai, L.; Canuto, E.; Cao, B.; Chen, W.; Chen, Y.; Ding, Y.-W.; et al. The TianQin project: Current progress on science and technology. Prog. Theor. Exp. Phys. 2020, 2020, 05A107. [Google Scholar]
- Luo, Z.; Wang, Y.; Wu, Y.; Hu, W.; Jin, G. The Taiji program: A concise overview. Prog. Theor. Exp. Phys. 2020, 2020, 05A108. [Google Scholar]
- Barack, L.; Pound, A. Self-force and radiation reaction in general relativity. Rep. Prog. Phys. 2019, 82, 016904. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K. Proposal of a gauge-invariant treatment of l=0,1-mode perturbations on Schwarzschild background spacetime. Class. Quantum Gravity 2021, 38, 145010. [Google Scholar] [CrossRef]
- Nakamura, K. Formal Solutions of Any-Order Mass, Angular-Momentum, and Dipole Perturbations on the Schwarzschild Background Spacetime. Lett. High Energy Phys. 2021, 2021, 215. [Google Scholar] [CrossRef]
- Nakamura, K. A gauge-invariant perturbation theory on the Schwarzschild background spacetime Part I: —Formulation and odd-mode perturbations. arXiv 2021, arXiv:2110.13508. [Google Scholar] [CrossRef]
- Nakamura, K. Gauge-invariant perturbation theory on the Schwarzschild background spacetime Part II: —Even-mode perturbations. arXiv 2021, arXiv:2110.13512. [Google Scholar] [CrossRef]
- Regge, T.; Wheeler, J.A. Stability of a Schwarzschild Singularity. Phys. Rev. 1957, 108, 1063. [Google Scholar] [CrossRef]
- Zerilli, F. Effective potential for even-parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett. 1970, 24, 737. [Google Scholar] [CrossRef]
- Zerilli, F. Gravitational Field of a Particle Falling in a Schwarzschild Geometry Analyzed in Tensor Harmonics. Phys. Rev. D 1970, 2, 2141. [Google Scholar] [CrossRef]
- Moncrief, V. Gravitational Perturbations of Spherically Symmetric Systems. I. The Exterior Problem. Ann. Phys. 1974, 88, 323. [Google Scholar] [CrossRef]
- Moncrief, V. Gravitational Perturbations of Spherically Symmetric Systems. II. Perfect Fluid Interiors. Ann. Phys. 1974, 88, 343. [Google Scholar] [CrossRef]
- Cunningham, C.T.; Price, R.H.; Moncrief, V. Radiation from collapsing relativistic stars. I. linearized odd-parity radiation. Astrophys. J. 1978, 224, 643. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Clarendon Press: Oxford, UK, 1983. [Google Scholar]
- Gerlach, U.H.; Sengupta, U.K. Gauge-invariant perturbations on most general spherically symmetric space-times. Phys. Rev. D 1979, 19, 2268. [Google Scholar] [CrossRef]
- Gerlach, U.H.; Sengupta, U.K. Junction conditions for odd-parity perturbations on most general spherically symmetric space-times. Phys. Rev. D 1979, 20, 3009. [Google Scholar] [CrossRef]
- Gerlach, U.H.; Sengupta, U.K. Even parity junction conditions for perturbations on most general spherically symmetric space-times. J. Math. Phys. 1979, 20, 2540. [Google Scholar] [CrossRef]
- Gerlach, U.H.; Sengupta, U.K. Gauge-invariant coupled gravitational, acoustical, and electromagnetic modes on most general spherical space-times. Phys. Rev. D 1980, 22, 1300. [Google Scholar] [CrossRef]
- Nakamura, T.; Oohara, K.; Kojima, Y. General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes. Prog. Theor. Phys. Suppl. 1987, 90, 1–218. [Google Scholar] [CrossRef]
- Gundlach, C.; Martín-García, J.M. Gauge-invariant and coordinate-independent perturbations of stellar collapse: The interior. Phys. Rev. D 2000, 61, 084024. [Google Scholar] [CrossRef]
- Martín-García, J.M.; Gundlach, C. Gauge-invariant and coordinate-independent perturbations of stellar collapse. II. Matching to the exterior. Phys. Rev. D 2001, 64, 024012. [Google Scholar] [CrossRef]
- Nagar, A.; Rezzolla, L. Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes. Class. Quantum Grav. 2005, 22, R167, Erratum in IBID 2006, 23, 4297. [Google Scholar] [CrossRef]
- Martel, K.; Poisson, E. Gravitational perturbations of the Schwarzschild spacetime: A practical covariant and gauge-invariant formalism. Phys. Rev. D 2005, 71, 104003. [Google Scholar] [CrossRef]
- Nakamura, K. Gauge Invariant Variables in Two-Parameter Nonlinear Perturbations. Prog. Theor. Phys. 2003, 110, 723. [Google Scholar] [CrossRef]
- Nakamura, K. Second-Order Gauge Invariant Perturbation Theory—Perturbative Curvatures in the Two-Parameter Case. Prog. Theor. Phys. 2005, 113, 481. [Google Scholar] [CrossRef]
- Nakamura, K. Construction of gauge-invariant variables of linear metric perturbations on an arbitrary background spacetime. Prog. Theor. Exp. Phys. 2013, 2013, 043E02. [Google Scholar] [CrossRef]
- Nakamura, K. Recursive structure in the definitions of gauge-invariant variables for any order perturbations. Class. Quantum Grav. 2014, 31, 135013. [Google Scholar] [CrossRef]
- Nakamura, K. Second-Order Gauge Invariant Cosmological Perturbation Theory—Einstein Equations in Terms of Gauge Invariant Variables. Prog. Theor. Phys. 2007, 117, 17. [Google Scholar] [CrossRef]
- Kinnersley, W.; Walker, M. Uniformly Accelerating Charged Mass in General Relativity. Phys. Rev. D 1970, 2, 1359. [Google Scholar] [CrossRef]
- Griffiths, J.B.; Krtous, P.; Podolsky, J. Interpreting the C-metric. Class. Quantum Grav. 2006, 23, 6745. [Google Scholar] [CrossRef]
- Sachs, R.K. Gravitational Radiation. In Relativity, Groups and Topology; DeWitt, C., DeWitt, B., Eds.; Gordon and Breach: New York, NY, USA, 1964. [Google Scholar]
- Bruni, M.; Matarrese, S.; Mollerach, S.; Sonego, S. Perturbations of spacetime: Gauge transformations and gauge invariance at second order and beyond. Class. Quantum Grav. 1997, 14, 2585. [Google Scholar] [CrossRef]
- Nakamura, K. Perturbations of matter fields in the second-order gauge-invariant cosmological perturbation theory. Phys. Rev. D 2009, 80, 124021. [Google Scholar] [CrossRef]
- Landau, L.; Lifshitz, E. The Classical Theory of Fields; Addison-Wesley: Reading, MA, USA, 1962. [Google Scholar]
- Kodama, H. Accelerating a Black Hole in Higher Dimensions. Prog. Theor. Phys. 2008, 120, 371. [Google Scholar] [CrossRef]
- Szmytkowski, R. Closed forms of the Green’s function and the generalized Green’s function for the Helmholtz operator on the N-dimensional unit sphere. J. Phys. A Math. Theor. 2007, 40, 995–1009. [Google Scholar] [CrossRef]
- Szmytkowski, R. Closed form of the generalized Green’s function for the Helmholtz operator on the two-dimensional unit sphere. J. Math. Phys. 2006, 47, 063506. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, K. Gauge-Invariant Perturbation Theory on the Schwarzschild Background Spacetime: Part III—Realization of Exact Solutions. Universe 2025, 11, 52. https://doi.org/10.3390/universe11020052
Nakamura K. Gauge-Invariant Perturbation Theory on the Schwarzschild Background Spacetime: Part III—Realization of Exact Solutions. Universe. 2025; 11(2):52. https://doi.org/10.3390/universe11020052
Chicago/Turabian StyleNakamura, Kouji. 2025. "Gauge-Invariant Perturbation Theory on the Schwarzschild Background Spacetime: Part III—Realization of Exact Solutions" Universe 11, no. 2: 52. https://doi.org/10.3390/universe11020052
APA StyleNakamura, K. (2025). Gauge-Invariant Perturbation Theory on the Schwarzschild Background Spacetime: Part III—Realization of Exact Solutions. Universe, 11(2), 52. https://doi.org/10.3390/universe11020052