Starobinsky Inflation with T-Model Kähler Geometries
Abstract
:1. Introduction
- Wess–Zumino models with a matter-like inflaton [19,20,21,22,23,24]. Polynomial superpotentials, W—of the Wess–Zumino form [11]—are adopted in this class of models and the Kähler potentials K parameterize specific Kähler manifolds of the form , inspired by the no-scale models [25,26] of SUSY breaking. The stabilization of the inflaton-accompanying modulus at a Planck-scale value [20] is achieved by a deformation of the internal geometry.
- Ceccoti-like [27] models with a modulus-like inflaton [20,28,29,30,31,32,33,34,35,36,37]. Similar K’s are used here whereas W is linear [38] with respect to the matter-like inflaton-accompanying field which may be stabilized at the origin via several mechanisms [6,10,35,39,40,41,42,43]. In a subclass of these models [31,32,33,34,36,37], the conjecture of induced gravity [44,45] is incorporated leading to a dynamical generation of the reduced Planck scale, through the vacuum expectation value (v.e.v) of the inflaton at the end of its evolution.
- Models which exhibit a pole [51,52,53,54,55] of order one in the kinetic term of the inflaton [56,57,58]. As in every SI model, the inflationary potential develops one shoulder for large values, where is the canonically normalized inflaton which can be expressed in terms of the original field as [58]
2. SUGRA Framework
2.1. General Setup
2.2. Guidelines
2.2.1. Achieving D-Flatness
- If the inflaton is (the radial part of) a gauge-singlet superfield . In this case, has obviously zero contribution to .
- If the inflaton is the radial part of a conjugate pair of Higgs superfields, and , in the fundamental representation of . In such a case (see Section 4.3 below) we obtain . The same result can be obtained if is more structured than employing just one superfield in the adjoint representation of and using as inflaton its neutral component (see e.g., ref. [85]).
2.2.2. Selecting the Suitable W
- It assists in determining W. To achieve it, we require that S appears linearly in W and so both are equally charged under a global R symmetry.
- It can be stabilized at without invoking higher order terms, if we select [35]
- It assures the boundedness of . Indeed, if we set , then for , and . Obviously, non-vanishing values of the last term may render unbounded from below.
- It generates for and for monomial W the numerator of in Equation (3) via the only term of which remains “alive”. Indeed, we obtain
2.2.3. Selecting the Convenient Kähler Potential
- It has to generate the desired relation in Equation (2). Therefore, we need to introduce a contribution into K including and in the same function. After inspection (see Appendix of ref. [86]) we infer that a pole of order two in the kinetic term of inflaton is achieved if where
- −
- −
- Replacing with so that the desired kinetic terms in Equation (4a) remain unaltered and, simultaneously [56,58,66]
3. Gauge-Singlet Inflaton
3.1. Setup
3.2. Canonical Normalization
3.3. Inflationary Potential
4. Gauge Non-Singlet Inflaton
4.1. Setup
4.2. Canonical Normalization
4.3. Inflationary Potential
4.4. Phase Transition
5. Inflation Analysis
5.1. Analytic Results
5.2. Numerical Results
5.2.1. SI with a Gauge-Singlet Inflaton (CSI)
5.2.2. SI with a Higgs Field (HSI)
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Shift Symmetry & Hyperbolic Kähler Geometries
Appendix A.1. Shift Symmetry for CSI
Appendix A.2. Shift Symmetry for HSI
Appendix A.2.1. Kähler Manifold
Appendix A.2.2. Kähler Manifold
References
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Martin, J.; Ringeval, C.; Vennin, V. Encyclopædia Inflationaris. Phys. Dark Univ. 2014, 5, 75. [Google Scholar] [CrossRef]
- Martin, J.; Ringeval, C.; Trotta, R.; Vennin, V. The Best Inflationary Models After Planck. J. Cosmol. Astropart. Phys. 2014, 03, 39. [Google Scholar] [CrossRef]
- Grøn, Ø. Predictions of Spectral Parameters by Several Inflationary Universe Models in Light of the Planck Results. Universe 2018, 4, 15. [Google Scholar] [CrossRef]
- Akrami, Y. et al. [Planck Collaboration] Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
- Kounnas, C.; Lüst, D.; Toumbas, N. R2 inflation from scale invariant supergravity and anomaly free superstrings with fluxes. Fortsch. Phys. 2015, 63, 12. [Google Scholar] [CrossRef]
- Galante, M.; Kallosh, R.; Linde, A.; Roest, D. Unity of Cosmological Inflation Attractors. Phys. Rev. Lett. 2015, 114, 141302. [Google Scholar] [CrossRef]
- Ellis, J.; Nanopoulos, D.V.; Olive, K.A.; Verner, S. A general classification of Starobinsky-like inflationary avatars of SU(2, 1)/SU(2) × U(1) no-scale supergravity. J. High Energy Phys. 2019, 3, 099. [Google Scholar] [CrossRef]
- Ellis, J.; Garcia, M.A.G.; Nagata, N.; Nanopoulos, D.V.; Olive, K.A.; Verner, S. Building Models of Inflation in No-Scale Supergravity. Int. J. Mod. Phys. D 2020, 16, 2030011. [Google Scholar] [CrossRef]
- Pallis, C.; Toumbas, N. Starobinsky Inflation: From Non-SUSY To SUGRA Realizations. Adv. High Energy Phys. 2017, 2017, 6759267. [Google Scholar] [CrossRef]
- Binétruy, P. Supersymmetry: Theory, Experiment and Cosmology; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Navas, S. et al. [Particle Data Group] Review of particle physics. Phys. Rev. D 2024, 110, 030001. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Yang, J.; Zhang, Y.; Zhu, B. Low Energy Supersymmetry Confronted with Current Experiments: An Overview. Universe 2022, 8, 178. [Google Scholar] [CrossRef]
- Buchmüller, W.; Domcke, V.; Kamada, K. The Starobinsky Model from Superconformal D-Term Inflation. Phys. Lett. B 2013, 726, 467. [Google Scholar] [CrossRef]
- Basilakos, S.; Mavromatos, N.E.; Sola, J. Starobinsky-like inflation and running vacuum in the context of Supergravity. Universe 2016, 2, 14. [Google Scholar] [CrossRef]
- Ketov, S.V.; Starobinsky, A.A. Embedding (R + R2)-Inflation into Supergravity. Phys. Rev. D 2011, 83, 063512. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Font, A.; Fuchs, M.; Herschmann, D.; Plauschinn, E. Towards axionic Starobinsky-like inflation in string theory. Phys. Lett. B 2015, 746, 217. [Google Scholar] [CrossRef]
- Li, T.; Li, Z.; Nanopoulos, D.V. Helical phase inflation via non-geometric flux compactifications: From natural to Starobinsky-like inflation. J. High Energy Phys. 2015, 10, 138. [Google Scholar] [CrossRef]
- Ellis, J.; Nanopoulos, D.V.; Olive, K.A. No-Scale Supergravity Realization of the Starobinsky Model of Inflation. Phys. Rev. Lett. 2013, 111, 111301, Erratum in Phys. Rev. Lett. 2013, 111, 129902. [Google Scholar] [CrossRef]
- Ellis, J.; Nanopoulos, D.V.; Olive, K. Starobinsky-like Inflationary Models as Avatars of No-Scale Supergravity. J. Cosmol. Astropart. Phys. 2013, 10, 009. [Google Scholar] [CrossRef]
- Ellis, J.; He, H.-J.; Xianyu, Z.-Z. New Higgs inflation in a no-scale supersymmetric SU(5) GUT. Phys. Rev. D 2015, 91, 021302. [Google Scholar] [CrossRef]
- Garg, I.; Mohanty, S. No-scale SUGRA SO(10) derived Starobinsky model of inflation. Phys. Lett. B 2015, 751, 7. [Google Scholar] [CrossRef]
- Ellis, J.; Garcia, M.A.G.; Nagata, N.; Nanopoulos, D.V.; Olive, K.A. Starobinsky-like Inflation, Supercosmology and Neutrino Masses in No-Scale Flipped SU(5). J. Cosmol. Astropart. Phys. 2017, 7, 006. [Google Scholar] [CrossRef]
- Ellis, J.; Garcia, M.A.G.; Nagata, N.; Nanopoulos, D.V.; Olive, K.A. Starobinsky-Like Inflation and Neutrino Masses in a No-Scale SO(10) Model. J. Cosmol. Astropart. Phys. 2016, 11, 018. [Google Scholar] [CrossRef]
- Cremmer, E.; Ferrara, S.; Kounnas, C.; Nanopoulos, D.V. Naturally Vanishing Cosmological Constant in N = 1 Supergravity. Phys. Lett. B 1983, 133, 61. [Google Scholar] [CrossRef]
- Lahanas, A.B.; Nanopoulos, D.V. The Road to No-Scale Supergravity. Phys. Rept. 1987, 145, 198. [Google Scholar] [CrossRef]
- Cecotti, S. Higher Derivative Supergravity Is Equivalent To Standard Supergravity Coupled To Matter. Phys. Lett. B 1987, 190, 86. [Google Scholar] [CrossRef]
- Farakos, F.; Kehagias, A.; Riotto, A. On the Starobinsky Model of Inflation from Supergravity. Nucl. Phys. 2013, B876, 187. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Superconformal generalizations of the Starobinsky model. J. Cosmol. Astropart. Phys. 2013, 6, 28. [Google Scholar] [CrossRef]
- Lahanas, A.B.; Tamvakis, K. Inflation in no-scale supergravity. Phys. Rev. D 2015, 91, 085001. [Google Scholar] [CrossRef]
- Pallis, C. Linking Starobinsky-Type Inflation in no-Scale Supergravity to MSSM. J. Cosmol. Astropart. Phys. 2014, 4, 024, Erratum in J. Cosmol. Astropart. Phys. 2017, 7, 01(E). [Google Scholar] [CrossRef]
- Pallis, C. Induced-Gravity Inflation in no-Scale Supergravity and Beyond. J. Cosmol. Astropart. Phys. 2014, 08, 057. [Google Scholar] [CrossRef]
- Pallis, C. Reconciling induced-gravity inflation in supergravity with the Planck 2013 & BICEP2 results. J. Cosmol. Astropart. Phys. 2014, 10, 58. [Google Scholar]
- Kallosh, R. More on Universal Superconformal Attractors. Phys. Rev. D 2014, 89, 087703. [Google Scholar] [CrossRef]
- Pallis, C.; Toumbas, N. Starobinsky-Type Inflation with Products of Kähler Manifolds. J. Cosmol. Astropart. Phys. 2016, 5, 15. [Google Scholar] [CrossRef]
- Pallis, C.; Shafi, Q. Induced-Gravity GUT-Scale Higgs Inflation in Supergravity. Eur. Phys. J. C 2018, 78, 523. [Google Scholar] [CrossRef]
- Pallis, C. Starobinsky-Type B–L Higgs Inflation Leading Beyond MSSM. arXiv 2023, arXiv:2305.00523. [Google Scholar]
- Kallosh, R.; Linde, A.; Rube, T. General inflaton potentials in supergravity. Phys. Rev. D 2011, 83, 043507. [Google Scholar] [CrossRef]
- Lee, H.M. Chaotic inflation in Jordan frame supergravity. J. Cosmol. Astropart. Phys. 2010, 08, 003. [Google Scholar] [CrossRef]
- Antoniadis, I.; Dudas, E.; Ferrara, S.; Sagnotti, A. The Volkov—Akulov—Starobinsky Supergravity. Phys. Lett. B 2014, 733, 32. [Google Scholar] [CrossRef]
- Aldabergenov, Y. Volkov–Akulov–Starobinsky supergravity revisited. Eur. Phys. J. C 2020, 80, 329. [Google Scholar] [CrossRef]
- Ferrara, S.; Kallosh, R.; Linde, A. Cosmology with Nilpotent Superfields. J. High Energy Phys. 2014, 10, 143. [Google Scholar] [CrossRef]
- Antoniadis, I.; Nanopoulos, D.V.; Olive, K.A. R2–Inflation Derived from 4d Strings, the Role of the Dilaton, and Turning the Swampland into a Mirage. arXiv 2024, arXiv:2410.16541. [Google Scholar]
- Zee, A. A Broken Symmetric Theory of Gravity. Phys. Rev. Lett. 1979, 42, 417. [Google Scholar] [CrossRef]
- Giudice, G.F.; Lee, H.M. Starobinsky-like inflation from induced gravity. Phys. Lett. B 2014, 733, 58. [Google Scholar] [CrossRef]
- Pallis, C.; Shafi, Q. Non-minimal chaotic inflation, Peccei-Quinn phase transition and non-thermal leptogenesis. Phys. Rev. D 2012, 86, 023523. [Google Scholar] [CrossRef]
- Pallis, C.; Shafi, Q. Gravity Waves From Non-Minimal Quadratic Inflation. J. Cosmol. Astropart. Phys. 2015, 3, 23. [Google Scholar] [CrossRef]
- Pallis, C. Unitarity-Safe Models of Non-Minimal Inflation in Supergravity. Eur. Phys. J. C 2018, 78, 1014. [Google Scholar] [CrossRef]
- Pallis, C. Unitarizing non-Minimal Inflation via a Linear Contribution to the Frame Function. Phys. Lett. B 2019, 789, 243. [Google Scholar] [CrossRef]
- Kehagias, A.; Dizgah, A.M.; Riotto, A. Remarks on the Starobinsky model of in ation and its descendants. Phys. Rev. D 2014, 89, 043527. [Google Scholar] [CrossRef]
- Terada, T. Generalized Pole Inflation: Hilltop, Natural, and Chaotic Inflationary Attractors. Phys. Lett. B 2016, 760, 674. [Google Scholar] [CrossRef]
- Broy, B.J.; Galante, M.; Roest, D.; Westphal, A. Pole inflation, Shift symmetry and universal corrections. J. High Energy Phys. 2015, 12, 149. [Google Scholar] [CrossRef]
- Kobayashi, T.; Seto, O.; Tatsuishi, T.H. Toward pole inflation and attractors in supergravity: Chiral matter field inflation. Prog. Theor. Phys. 2017, 2017, 123B04. [Google Scholar] [CrossRef]
- Pallis, C. Pole Inflation in Supergravity. PoS CORFU 2022, 2021, 78. [Google Scholar]
- Karamitsos, S.; Strumia, A. Pole inflation from non-minimal coupling to gravity. J. High Energy Phys. 2022, 2022, 16. [Google Scholar] [CrossRef]
- Carrasco, J.J.M.; Kallosh, R.; Linde, A.; Roest, D. Hyperbolic geometry of cosmological attractors. Phys. Rev. D 2015, 92, 041301. [Google Scholar] [CrossRef]
- Carrasco, J.J.M.; Kallosh, R.; Linde, A. α-Attractors: Planck, LHC and Dark Energy. J. High Energy Phys. 2015, 10, 147. [Google Scholar] [CrossRef]
- Pallis, C. An Alternative Framework for E-Model Inflation in Supergravity. Eur. Phys. J. C 2022, 82, 444. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A.; Roest, D. Superconformal Inflationary a-Attractors. J. High Energy Phys. 2013, 11, 198. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Universality Class in Conformal Inflation. J. Cosmol. Astropart. Phys. 2013, 2013, 002. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. BICEP/Keck and cosmological attractors. J. Cosmol. Astropart. Phys. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Ellis, J.; Garcia, M.A.G.; Nanopoulos, D.V.; Olive, K.A.; Verner, S. BICEP/Keck constraints on attractor models of inflation and reheating. Phys. Rev. D 2022, 105, 043504. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Dutta, K.; Gangopadhyay, M.R.; Maharana, A. α-attractor inflation: Models and predictions. Phys. Rev. D 2023, 107, 103530. [Google Scholar] [CrossRef]
- Dimopoulos, K. Introduction to Cosmic Inflation and Dark Energy; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-0-367-61104-0. [Google Scholar]
- Ellis, J.; Nanopoulos, D.V.; Olive, K.A.; Verner, S. Unified No-Scale Attractors. J. Cosmol. Astropart. Phys. 2019, 9, 40. [Google Scholar] [CrossRef]
- Pallis, C. Pole-induced Higgs inflation with hyperbolic Kähler geometries. J. Cosmol. Astropart. Phys. 2021, 5, 43. [Google Scholar] [CrossRef]
- Pallis, C. SU(2, 1)/(SU(2) × U(1)) B-L Higgs Inflation. J. Phys. Conf. Ser. 2021, 2105, 12. [Google Scholar] [CrossRef]
- Pallis, C. T-Model Higgs Inflation in Supergravity. arXiv 2023, arXiv:2307.14652. [Google Scholar]
- Hooft, G. Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Sci. Ser. B 1980, 59, 135. [Google Scholar]
- Kawasaki, M.; Yamaguchi, M.; Yanagida, T. Natural chaotic inflation in supergravity. Phys. Rev. Lett. 2000, 85, 3572. [Google Scholar] [CrossRef]
- Brax, P.; Martin, J. Shift symmetry and inflation in supergravity. Phys. Rev. D 2005, 72, 023518. [Google Scholar] [CrossRef]
- Antusch, S.; Dutta, K.; Kostka, P.M. SUGRA Hybrid Inflation with Shift Symmetry. Phys. Lett. B 2009, 677, 221. [Google Scholar] [CrossRef]
- Li, T.; Li, Z.; Nanopoulos, D.V. Supergravity Inflation with Broken Shift Symmetry and Large Tensor-to-Scalar Ratio. J. Cosmol. Astropart. Phys. 2014, 2, 028. [Google Scholar] [CrossRef]
- Pallis, C. Kinetically modified nonminimal chaotic inflation. Phys. Rev. D 2015, 91, 123508. [Google Scholar] [CrossRef]
- Pallis, C. Kinetically Modified Non-Minimal Inflation with Exponential Frame Function. Eur. Phys. J. C 2017, 77, 633. [Google Scholar] [CrossRef]
- Ben-Dayan, I.; Einhorn, M.B. Supergravity Higgs Inflation and Shift Symmetry in Electroweak Theory. J. Cosmol. Astropart. Phys. 2010, 12, 002. [Google Scholar] [CrossRef]
- Lazarides, G.; Pallis, C. Shift Symmetry and Higgs Inflation in Supergravity with Observable Gravitational Waves. J. High Energy Phys. 2015, 11, 114. [Google Scholar] [CrossRef]
- Pallis, C. Kinetically modified nonminimal Higgs inflation in supergravity. Phys. Rev. D 2015, 92, 121305. [Google Scholar] [CrossRef]
- Pallis, C. Variants of Kinetically Modified Non-Minimal Higgs Inflation in Supergravity. J. Cosmol. Astropart. Phys. 2016, 10, 37. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A.; Roest, D.; Wrase, T. Sneutrino inflation with α-attractors. J. Cosmol. Astropart. Phys. 2016, 11, 046. [Google Scholar] [CrossRef]
- Gonzalo, T.E.; Heurtier, L.; Moursy, A. Sneutrino driven GUT Inflation in Supergravity. J. High Energy Phys. 2017, 6, 109. [Google Scholar] [CrossRef]
- Kaneta, K.; Mambrini, Y.; Olive, K.A.; Verner, S. Inflation and Leptogenesis in High-Scale Supersymmetry. Phys. Rev. D 2020, 101, 015002. [Google Scholar] [CrossRef]
- Ellis, J.; Garcia, M.A.G.; Nanopoulos, D.V.; Olive, K.A. Phenomenological aspects of no-scale inflation models. J. Cosmol. Astropart. Phys. 2015, 10, 3. [Google Scholar] [CrossRef]
- Ema, Y.; Garcia, M.A.G.; Ke, W.; Olive, K.A.; Verner, S. Inflaton Decay in No-Scale Supergravity and Starobinsky-like Models. Universe 2024, 10, 239. [Google Scholar] [CrossRef]
- Pallis, C. T-Model Higgs Inflation and Metastable Cosmic Strings. J. High Energy Phys. 2025, 1, 178. [Google Scholar] [CrossRef]
- Pallis, C. E- and T-model hybrid inflation. Eur. Phys. J. C 2023, 83, 2. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar]
- Martin, J.; Ringeval, C. First CMB Constraints on the Inflationary Reheating Temperature. Phys. Rev. D 2010, 82, 023511. [Google Scholar] [CrossRef]
- Ellis, J.; Garcia, M.A.G.; Nanopoulos, D.V.; Olive, K.A. Calculations of Inflaton Decays and Reheating: With Applications to No-Scale Inflation Models. J. Cosmol. Astropart. Phys. 2015, 7, 50. [Google Scholar] [CrossRef]
- Lin, C.M. On the oscillations of the inflaton field of the simplest α-attractor T-model. Chin. J. Phys. 2023, 86, 323. [Google Scholar] [CrossRef]
- Turner, M.S. Coherent Scalar-Field Oscillations in an Expanding Universe. Phys. Rev. D 1983, 28, 1243. [Google Scholar] [CrossRef]
- Tristram, M.; Banday, M.J.; Górski, K.M.; Keskitalo, R.; Lawrence, C.R.; Andersen, K.J.; Barreiro, R.B.; Borrill, J.; Colombo, L.P.L.; Eriksen, H.K.; et al. Improved limits on the tensor-to-scalar ratio using BICEP and Planck. Phys. Rev. Lett. 2021, 127, 151301. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [BICEP and Keck Collaboration] Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. Phys. Rev. Lett. 2021, 127, 151301. [Google Scholar] [CrossRef] [PubMed]
- Abazajian, K.; Addison, G.E.; Adshead, P.; Ahmed, Z.; Allen, S.W.; Alonso, D.; Alvarez, M.; Anderson, A.; Arnold, K.S.; Baccigalupi, C.; et al. CMB-S4 Science Case, Reference Design, and Project Plan. arXiv 2019, arXiv:1907.04473. [Google Scholar]
- Andre, P. et al. [PRISM Collaboration] PRISM (Polarized Radiation Imaging and Spectroscopy Mission): A White Paper on the Ultimate Polarimetric Spectro-Imaging of the Microwave and Far-Infrared Sky. arXiv 2013, arXiv:1306.2259. [Google Scholar]
- Montier, L. et al. [LiteBIRD Collaboration] Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission. Proc. SPIE Int. Soc. Opt. Eng. 2020, 11443, 114432G. [Google Scholar]
- Baumann, D. et al. [CMBPol Study Team Collaboration] CMBPol Mission Concept Study: Probing Inflation with CMB Polarization. AIP Conf. Proc. 2009, 1141, 10. [Google Scholar]
- Kallosh, R.; Linde, A. Polynomial α-attractors. J. Cosmol. Astropart. Phys. 2022, 4, 17. [Google Scholar] [CrossRef]
- Bauer, F.; Demir, D.A. Higgs-Palatini Inflation and Unitarity. Phys. Lett. B 2011, 698, 425. [Google Scholar] [CrossRef]
- Enckell, V.M.; Enqvist, K.; Rasanen, S.; Wahlman, L.P. Inflation with R2 term in the Palatini formalism. J. Cosmol. Astropart. Phys. 2019, 2, 22. [Google Scholar] [CrossRef]
- Antoniadis, I.; Karam, A.; Lykkas, A.; Tamvakis, K. Palatini inflation in models with an R2 term. J. Cosmol. Astropart. Phys. 2018, 11, 28. [Google Scholar] [CrossRef]
- Vafa, C. The String landscape and the swampland. arXiv 2005, arXiv:hep-th/0509212. [Google Scholar]
- Garg, S.K.; Krishnan, C. Bounds on Slow Roll and the de Sitter Swampland. J. High Energy Phys. 2019, 11, 75. [Google Scholar] [CrossRef]
- Ooguri, H.; Palti, E.; Shiu, G.; Vafa, C. Distance and de Sitter Conjectures on the Swampland. Phys. Lett. B 2019, 788, 180. [Google Scholar] [CrossRef]
- Ferrara, S.; Tournoy, M.; Van Proeyen, A. de Sitter Conjectures in N=1 Supergravity. Fortsch. Phys. 2020, 68, 1900107. [Google Scholar] [CrossRef]
- Atli, U.; Guleryuz, O. A Solution to the de Sitter Swampland Conjecture versus Inflation Tension via Supergravity. J. Cosmol. Astropart. Phys. 2021, 4, 27. [Google Scholar] [CrossRef]
- Rasulian, I.M.; Torabian, M.; Velasco-Sevilla, L. Swampland de Sitter conjectures in no-scale supergravity models. Phys. Rev. D 2021, 104, 044028. [Google Scholar] [CrossRef]
Fields | Eigenstates | Masses Squared | |
---|---|---|---|
1 real scalar | |||
2 real scalars | |||
2 Weyl spinors |
Fields | Eigenstates | Masses Squared | ||
---|---|---|---|---|
4 | ||||
real | ||||
scalars | ||||
1 gauge boson | ||||
4 Weyl | ||||
spinors |
Model: | CSI | HSI | HSI | |||
---|---|---|---|---|---|---|
n | 2 | 4 | 8 | |||
1 | 3 | 1 | 7 | 1 | 15 | |
9 | 7 | |||||
{1.9} | ||||||
M | − | |||||
22.6 ZeV | 36.4 ZeV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallis, C. Starobinsky Inflation with T-Model Kähler Geometries. Universe 2025, 11, 75. https://doi.org/10.3390/universe11030075
Pallis C. Starobinsky Inflation with T-Model Kähler Geometries. Universe. 2025; 11(3):75. https://doi.org/10.3390/universe11030075
Chicago/Turabian StylePallis, Constantinos. 2025. "Starobinsky Inflation with T-Model Kähler Geometries" Universe 11, no. 3: 75. https://doi.org/10.3390/universe11030075
APA StylePallis, C. (2025). Starobinsky Inflation with T-Model Kähler Geometries. Universe, 11(3), 75. https://doi.org/10.3390/universe11030075