Quantum Field Theory in the Weyl–Wigner Representation
Abstract
1. Introduction
2. The Wigner Representation in Quantum Mechanics
2.1. Weyl Transform and Wigner Function
2.2. Equivalence with Quantum Mechanics
3. Bose Fields in the Weyl–Wigner Representation
3.1. The Massive Neutral Spin Zero Field
3.1.1. Classical Treatment
3.1.2. Canonical (Hilbert Space) Quantization
3.1.3. Weyl–Wigner Quantization
3.2. The Charged Spin-Zero Massive Field
3.3. Spin-One Fields: Electromagnetism
4. Discussion and Applications
4.1. The Realistic Interpretation
4.2. Stochastic Electrodynamics
4.3. The Lack of a WW Representation for Fermi Fields
4.4. The Divergence Problem
4.5. Fields in Curved Spacetime
4.6. Quantum Gravity
5. Non-Relativistic Quantum Electrodynamics
5.1. Weyl–Wigner Unified Treatment of Quantum Particles and EM Field
5.2. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Santos, E. The quantum electromagnetic field in the Weyl-Wigner representation. Universe 2024, 10, 452. [Google Scholar] [CrossRef]
- Santos, E. The quantum theory of the electromagnetic field in the Weyl-Wigner representation as a local realistic model. Found. Phys. 2025, 53, 31. [Google Scholar] [CrossRef]
- Santos, E. Realistic Interpretation of Quantum Mechanics; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2022. [Google Scholar]
- Einstein, A.; Podolski, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein, Podolski, Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Santos, E. Are Bell’s conditions for local realism general enough? Eur. Phys. J. Plus 2025, 140, 1098. [Google Scholar] [CrossRef]
- Freire, O. (Ed.) The Oxford Handbook of the History of Quantum Interpretations; Oxford U.P.: Oxford, UK, 2022. [Google Scholar]
- Santos, E. Motion of quantum particles in terms of probabilities of paths. Entropy 2025, 27, 728. [Google Scholar] [CrossRef]
- Hillery, M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–168. [Google Scholar] [CrossRef]
- Zachos, C.K.; Fairlie, D.B.; Curtright, T.L. Quantum Mechanics in Phase Space; World Scientic: Singapore, 2005. [Google Scholar]
- Weyl, H. The Theory of Groups and Quantum Mechanics; Dover: New York, NY, USA, 1931. [Google Scholar]
- Wigner, E.P. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749. [Google Scholar] [CrossRef]
- Soto, F.; Claverie, P. Some properties of the smoothed Wigner function. J. Math. Phys. 1983, 24, 97. [Google Scholar] [CrossRef]
- Berestetskii, V.B.; Lifshitz, E.M.; Pitaevskii, L.P. Relativistic Quantum Theory; Pergamon Press: Oxford, UK, 1971. [Google Scholar]
- Milonni, P.W. The Quantum Vacuum. An Introduction to Quantum Electrodynamics; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Boyer, T.H. Blackbody radiation in classical physics. A historical perspective. Am. J. Phys. 2018, 86, 495–509. [Google Scholar] [CrossRef]
- Santos, E. Stochastic interpretation of quantum mechanics assuming that vacuum fields are real. Foundations 2022, 2, 409–442. [Google Scholar] [CrossRef]
- Marshall, T.W. Random electrodynamics. Proc. R. Soc. 1963, A276, 475. [Google Scholar]
- de la Peña, L.; Cetto, A.M. The Quantum Dice. An Introduction to Stochastic Electrodynamics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Santos, E. Stochastic electrodynamics and the interpretation of quantum theory. arXiv 2020, arXiv:1205.0916. [Google Scholar] [CrossRef]
- Santos, E. On the analogy between stochastic electrodynamics and nonrelativisti quantum electrodynamics. Eur. Phys. J. Plus 2022, 137, 1302. [Google Scholar] [CrossRef]
- Boyer, T.H. Contrasting classical and quantum vacuum states in non-inertial frames. Found. Phys. 2013, 43, 923–947. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Santos, E. Effects of the quantum vacuum at the cosmc scale and of dark energy. Entropy 2024, 26, 1042. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Parker, L.; Toms, D. Quantum Field Theory in Curved Spacetime; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Fulling, S.A. Nouniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 1973, 7, 2850–2862. [Google Scholar] [CrossRef]
- Davies, P.C. Scalar particle production in Schwarzshild and Rindler sapce-time. J. Phys. A 1975, 6, 609–616. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on blackbody evaporation. Phys. Rev. D 1976, 14, 870–892. [Google Scholar] [CrossRef]
- Crispino, L.C.B.; Higuchi, A.; Matsas, G.E.A. The Unruh effect and its applications. Rev. Mod. Phys. 2008, 80, 787–838. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, E. Quantum Field Theory in the Weyl–Wigner Representation. Universe 2025, 11, 406. https://doi.org/10.3390/universe11120406
Santos E. Quantum Field Theory in the Weyl–Wigner Representation. Universe. 2025; 11(12):406. https://doi.org/10.3390/universe11120406
Chicago/Turabian StyleSantos, Emilio. 2025. "Quantum Field Theory in the Weyl–Wigner Representation" Universe 11, no. 12: 406. https://doi.org/10.3390/universe11120406
APA StyleSantos, E. (2025). Quantum Field Theory in the Weyl–Wigner Representation. Universe, 11(12), 406. https://doi.org/10.3390/universe11120406
