Ellipsoidal Universe and Cosmic Shear
Abstract
:1. Introduction
2. Model of the Ellipsoidal Universe
3. Evolution Equation for Anisotropic Energy Density
4. Cosmic Shear and Ellipsoidal Universe
5. Quadrupole of CMB and Cosmic Shear
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemaitre, G. Annales de la Société Scientifique de Bruxelles, A53, 51, 1933. English translation by M.A.H. MacCallum. Expand. Universe Gen. Rel. Grav. 1997, 29, 641. [Google Scholar]
- Jacobs, K.C. Bianchi Type I Cosmological Models. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1968. [Google Scholar]
- Bianchi, L. Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti. Memorie di Matematica e di Fisica della Societa Italiana delle Scienze 11 267352 (1898). English translation by R.T. Jantzen. On the three-dimensional spaces which admit a continuous group of motions. Gen. Rel. Grav. 2001, 33, 2171. [Google Scholar]
- Gurzadyan, V.G.; Starobinsky, A.A.; Ghahramanyan, T.; Kashin, A.; Khachatryan, H.G.; Kuloghlian, H.; Vetrugno, D.; Yegorian, A.G. Large Scale Plane-mirroring in the cosmic microwave background WMAP5 maps. Astron. Astrophys. 2008, 490, 929. [Google Scholar] [CrossRef]
- Gurzadyan, V.G.; Ghahramanyan, T.; Kashin, A.L.; Khachatryan, H.G.; Kocharyan, A.A.; Kuloghlian, H.; Vetrugno, D.; Yegorian, G. Plane-mirroring anomaly in the cosmic microwave background maps. Astron. Astrophys. 2009, 498, L1. [Google Scholar] [CrossRef]
- Buchert, T.; Coley, A.A.; Kleinert, H.; Roukema, B.F.; Wiltshire, D.L. Observational Challenges for the Standard FLRW Model. Int. J. Mod. Phys. D 2016, 25, 1630007. [Google Scholar] [CrossRef]
- Schwarz, D.J.; Copi, C.J.; Hureter, D.; Starkman, G.D. CMB Anomalies after Planck. Class. Quant. Grav. 2016, 33, 184001. [Google Scholar] [CrossRef]
- Russel, E.; Kilinc, C.B.; Pashev, O.K. Bianchi iI model: An alternative way to model the present-day Universe. Mon. Not. Roy. Astron. Soc. 2014, 442, 2331. [Google Scholar] [CrossRef]
- Bennett, C.L.; Hill, R.S.; Hinshaw, G.; Nolta, M.R.; Odegard, N.; Page, L.; Spergel, D.N.; Weiland, J.L.; Wright, E.L.; Halpern, M. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission. Astrophys. J. Suppl. Ser. 2003, 148, 97. [Google Scholar] [CrossRef]
- Barrow, J.D. Cosmological limits on slightly skew stresses. Phys. Rev. D 1997, 55, 7451. [Google Scholar] [CrossRef]
- Berera, A.; Buniy, R.V.; Kephart, T.W. The eccentric universe. J. Cosmol. Astropart. Phys. 2004, 10, 016. [Google Scholar] [CrossRef]
- Campanelli, L.; Cea, P.; Tedesco, L. Ellipsoidal Universe Can Solve the Cosmic Microwave Background Quadrupole Problem. Phys. Rev. Lett. 2006, 97, 131302, Erratum in Phys. Rev. Lett. 2006, 97, 209903. [Google Scholar] [CrossRef] [PubMed]
- Campanelli, L.; Cea, P.; Tedesco, L. Cosmic microwave background quadrupole and ellipsoidal universe. Phys. Rev. D 2007, 76, 063007. [Google Scholar] [CrossRef]
- Copi, C.J.; Huterer, D.; Schwarz, D.J.; Starkman, G.D. Large-scale alignments from WMAP and Planck. Mon. Not. R. Astron. Soc. 2015, 449, 3458. [Google Scholar] [CrossRef]
- Rodrigues, D.C. Anisotropic cosmological constant and the CMB quadrupole anomaly. Phys. Rev. D 2008, 77, 023534. [Google Scholar] [CrossRef]
- Eriksen, H.K.; Hansen, F.K.; Banday, A.J.; Gorski, K.M.; Lilje, P.B. Asymmetries in the Cosmic microwave background anisotropy field. Astrophys. J. 2004, 605, 14, Erratum in Astrophys. J. 2004, 609, 1198. [Google Scholar] [CrossRef]
- Hansen, F.K.; Banday, A.J.; Gorski, K.M. Testing the cosmological principle of isotropy: Local power-spectrum estimates of the WMAP data. Mon. Not. R. Astron. Soc. 2004, 354, 641. [Google Scholar] [CrossRef]
- Vielva, P.; Martinez-Gonzalez, E.; Barreiro, R.B.; Cayon, J.L.S.L. Detection of Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe First-Year Data Using Spherical Wavelets. Astrophys. J. 2004, 609, 22. [Google Scholar] [CrossRef]
- Land, K.; Magueijo, J. Examination of Evidence for a Preferred Axis in the Cosmic Radiation Anisotropy. Phys. Rev. Lett. 2005, 95, 071301. [Google Scholar] [CrossRef]
- Ralston, J.P.; Jain, P. The Virgo alignment puzzle in propagation of radiation on cosmological scales. Int. J. Mod. Phys. D 2004, 13, 1857. [Google Scholar] [CrossRef]
- de Oliveira-Costa, A.; Tegmark, M.; Zaldarriaga, M.; Hamilton, A. The significance of the largest scale CMB fluctuations in WMAP. Phys. Rev. D 2004, 69, 063516. [Google Scholar] [CrossRef]
- Copi, C.J.; Huterer, D.; Starkman, G.D. Multipole vectors: A new representation of the CMB sky and evidence for statistical anisotropy or non-Gaussianity at 2 < l < 8. Phys. Rev. D 2004, 70, 043515. [Google Scholar]
- Herzberg, M.P.; Loeb, A. Constraints on an anisotropic universe. Phys. Rev. D 2024, 109, 083538. [Google Scholar] [CrossRef]
- Quercellini, C.; Cabella, P.; Amendola, L.; Quartin, M.; Balbi, A. Cosmic parallax as a probe of late time anisotropic expansion. Phys. Rev. D 2009, 80, 063527. [Google Scholar] [CrossRef]
- Sarmah, P.; Goswami, U.D. Bianchi Type I model of universe with customized scale factors. Mod. Phys. Lett. A 2022, 37, 2250134. [Google Scholar] [CrossRef]
- Campanelli, L. Helium-4 synthesis in an anisotropic universe. Phys. Rev. D 2011, 84, 123521. [Google Scholar] [CrossRef]
- Deliduman, C.; Kasikci, O.; Tugyanoglu, V.K. f(R) Gravity in an Ellipsoidal Universe. Phys. Dark Univ. 2024, 44, 101469. [Google Scholar] [CrossRef]
- Mukherjee, S.; Aluri, P.K.; Das, S.; Shaikh, S.; Souradeep, T. Direction dependence of cosmological parameters due to cosmic hemispherical asymmetry. J. Cosmol. Astropart. Phys. 2016, 06, 042. [Google Scholar] [CrossRef]
- de Andrade, L.C.G. Kinematic fast cosmic dynamos in non-inflationary phases of ellipsoidal universe. arXiv 2007, arXiv:0707.1734. [Google Scholar]
- Aluri, P.K.; Cea, P.; Chingangbam, P.; Chu, M.C.; Clowes, R.G.; Hutsemékers, D.; Kochappan, J.P.; Lopez, A.M.; Liu, L.; Martens, N.C.M.; et al. Is the Observable Universe Consistent with the Cosmological Principle? Class. Quant. Grav. 2023, 40, 094001. [Google Scholar] [CrossRef]
- Akarsu, O.; Kumar, S.; Sharma, S.; Tedesco, L. Constraints on a Bianchi type I spacetime extension of the standard ΛCDM model. Phys. Rev. D 2019, 100, 023532. [Google Scholar] [CrossRef]
- Akarsu, O.; Valentino, E.D.; Kumar, S.; Ozyigit, M.; Sharma, S. Testing spatial curvature and anisotropic expansion on top of the ΛCDM model. Phys. Dark Univ. 2023, 39, 101162. [Google Scholar] [CrossRef]
- Campanelli, L.; Cea, P.; Fogli, G.L.; Tedesco, L. Anisotropic dark energy and ellipsoidal Universe. Int. J. Mod. Phys. 2011, 20, 1153. [Google Scholar] [CrossRef]
- Tedesco, L. Ellipsoidal expansion of the Universe, cosmic shear, acceleration and jerk parameter. Eur. Phys. J. Plus 2018, 133, 188. [Google Scholar] [CrossRef]
- Campanelli, L.; Cea, P.; Fogli, G.L.; Tedesco, L. Cosmic parallax in ellipsoidal universe. Mod. Phys. Lett. A 2011, 26, 1169. [Google Scholar] [CrossRef]
- Stavrinos, P.C.; Triantafyllopoulos, A. Cosmology based on Finsler and Finsler-like metric structure of gravitational field. arXiv 2024, arXiv:2405.19318. [Google Scholar]
- Kapsabelis, E.; Saridakis, E.N.; Stavrinos, P.C. Finsler-Randers-Sasaki gravity and cosmology. Eur. Phys. J. C 2024, 84, 538. [Google Scholar] [CrossRef]
- Stavrinos, P.C.; Diakogiannis, F.I. A Geometric anisotropic model of space-time based on Finslerian metric. arXiv 2002, arXiv:0203083. [Google Scholar]
- Papagiannopoulos, G.; Basilakos, S.; Paliathanasis, A.; Savvidou, S.; Stavrinos, P.C. Finsler-Randers cosmology: Dynamical analysis and growth of matter perturbations. Class. Quant. Grav. 2017, 34, 225008. [Google Scholar] [CrossRef]
- Papagiannopoulos, G.; Basilakos, S.; Paliathanasis, A.; Pan, S.; Stavrinos, P.C. Dynamics in varying vacuum Finsler-Randers cosmology. Eur. Phys. J. C 2020, 80, 816. [Google Scholar] [CrossRef]
- Basilakos, S.; Stavrinos, P.C. Cosmological equivalence between the Finsler-Randers space-time and the DGP gravity model. Phys. Rev. D 2013, 87, 043506. [Google Scholar] [CrossRef]
- Gonner, H.F.; Bogoslovsky, G.Y. A Class of anisotropic (Finsler) space-time geometries. Gen. Rel. Grav. 1999, 31, 1383. [Google Scholar] [CrossRef]
- Stavrinos, P.C.; Kouretsis, A.P.; Stathakopoulos, M. Friedmann Robertson Walker model in generalised metric space-time with weak anisotropy. Gen. Rel. Grav. 2008, 40, 1403. [Google Scholar] [CrossRef]
- Colin, J.; Mohayaee, R.; Rameez, M.; Sarkar, S. Evidence for anisotropy of cosmic acceleration. Astron. Astrophys. 2019, 631, L13. [Google Scholar] [CrossRef]
- Zhao, D.; Zhou, Y.; Chang, Z. Anisotropy of the Universe via the Pantheon supernovae sample revisited. Mon. Not. R. Astron. Soc. 2019, 486, 5679. [Google Scholar] [CrossRef]
- Amirhashch, H.; Amirhashch, S. Constraining Bianchi type I universe with type Ia supernova and H(z) data. Phys. Dark Univ. 2020, 29, 100557. [Google Scholar] [CrossRef]
- Colin, J.; Mohayaee, R.; Sarkar, S.; Shafieloo, A. Probing the anisotropic local Universe and beyond with SNe Ia data. Mon. Not. R. Astron. Soc. 2011, 414, 264. [Google Scholar] [CrossRef]
- Taub, A.H. Empty space-times admitting a three parameter group of motions. Ann. Math. 1951, 53, 472, Reprinted in Gen. Rel. Grav. 2004, 36, 2689. [Google Scholar] [CrossRef]
- Maartens, R.; Ellis, G.F.R.; Stoeger, W.R. Anisotropy and inhomogeneity of the Universe from deltaT/T. Astron. Astrophys. 1996, 309, L7. [Google Scholar]
- Buniy, R.V.; Berera, A.; Kephart, T. Asymmetric inflation: Exact solutions. Phys. Rev. D 2006, 73, 063529. [Google Scholar] [CrossRef]
- Barrow, J.D.; Ferreira, P.G.; Silk, J. Constraints on a primordial magnetic field. Phys. Rev. Lett. 1997, 78, 3610. [Google Scholar] [CrossRef]
- Maurya, D.C. Anisotropic dark energy transit cosmological models with time-dependent ω(t) and redshift-dependent ω(z) EoS parameter. Int. J. Geom. Meth. Mod. Phys. 2017, 15, 1850019. [Google Scholar] [CrossRef]
- Fanizza, G.; Tedesco, L. Inhomogeneous and anisotropic Universe and apparent acceleration. Phys. Rev. D 2015, 91, 023006. [Google Scholar] [CrossRef]
- Binici, S.S.; Deliduman, C.; Dilsiz, F.S. The ages of the oldest astrophysical objects in an ellipsoidal universe. Phys. Dark Univ. 2024, 46, 101600. [Google Scholar] [CrossRef]
- Jacobs, K.C. Spatially Homogeneous and Euclidean Cosmological Models with Shear. Astrophys. J. 1968, 153, 661. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Chudayeva, E.N.; Shikin, G.N. Magneto-dilatonic Bianchi-I cosmology: Isotropization and singularity problems. Class. Quantum Gravity 2004, 21, 3389. [Google Scholar] [CrossRef]
- Saha, B. Nonlinear spinor field in Bianchi type-I cosmology: Inflation, isotropization, and late time acceleration. Phys. Rev. D 2006, 74, 124030. [Google Scholar] [CrossRef]
- Saha, B. Early inflation, isotropization, and late time acceleration in a Bianchi type-I universe. Phys. Part. Nucl. 2009, 40, 656. [Google Scholar] [CrossRef]
- Tedesco, L. Different evolution of jerk parameters in ellipsoidal universe. In Preparartion.
- Parker, E.N. Cosmological Magnetic Fields; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Cea, P. The Ellipsoidal Universe and the Hubble tension. arXiv 2022, arXiv:2201.04548. [Google Scholar]
- Cea, P. Confronting the Ellipsoidal Universe to the Planck 2018 Data. Eur. Phys. J. Plus 2020, 135, 150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tedesco, L. Ellipsoidal Universe and Cosmic Shear. Universe 2024, 10, 363. https://doi.org/10.3390/universe10090363
Tedesco L. Ellipsoidal Universe and Cosmic Shear. Universe. 2024; 10(9):363. https://doi.org/10.3390/universe10090363
Chicago/Turabian StyleTedesco, Luigi. 2024. "Ellipsoidal Universe and Cosmic Shear" Universe 10, no. 9: 363. https://doi.org/10.3390/universe10090363
APA StyleTedesco, L. (2024). Ellipsoidal Universe and Cosmic Shear. Universe, 10(9), 363. https://doi.org/10.3390/universe10090363