The Host Galaxy Fluxes of Active Galaxy Nuclei Are Generally Overestimated by the Flux Variation Gradient Method
Abstract
:1. Introduction
2. Theoretical Predictions
2.1. Simulating AGN Light Curves
2.2. Adding Host Galaxy Contribution
2.3. Simulating Observations
2.4. Retrieving the Host Galaxy Flux with the FVG Method
2.5. The FVG Method Generally Results in Biased Host Galaxy Fluxes
3. Observational Tests
3.1. Mrk 509
3.2. Mrk 279
3.3. 3C 120
4. Discussion
4.1. The FVG Method Gives Rise to Larger Host Galaxy Fluxes Than the Image Decomposition Method
4.2. Comparison with Previous Works
4.3. A Likely Invalid Assumption for the FVG Method
4.4. Can Involving More Than Two Photometric Bands in the FVG Method Help Alleviate the Overestimation?
4.5. Improving the Thermal Fluctuation Model Adopted
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active galaxy nuclei |
FVG | Flux variation gradient |
SDSS | Sloan Digital Sky Survey |
SED | Spectral energy distribution |
SNR | Signal-to-noise ratio |
MCMC | Markov Chain Monte Carlo |
HST | Hubble Space Telescope |
PSF | Point Spread Function |
UV | Ultraviolet |
References
- Gabor, J.M.; Impey, C.D.; Jahnke, K.; Simmons, B.D.; Trump, J.R.; Koekemoer, A.M.; Brusa, M.; Cappelluti, N.; Schinnerer, E.; Smolčić, V.; et al. Active Galactic Nucleus Host Galaxy Morphologies in COSMOS. Astrophys. J. 2009, 691, 705–722. [Google Scholar] [CrossRef]
- Fausnaugh, M.M.; Denney, K.D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K.V.; De Rosa, G.; Goad, M.R.; Horne, K.; et al. Space Telescope and Optical Reverberation Mapping Project. III. Optical Continuum Emission and Broadband Time Delays in NGC 5548. Astrophys. J. 2016, 821, 56. [Google Scholar] [CrossRef]
- Chelouche, D.; Pozo Nuñez, F.; Kaspi, S. Direct evidence of non-disk optical continuum emission around an active black hole. Nat. Astron. 2019, 3, 251–257. [Google Scholar] [CrossRef]
- Pozo Nuñez, F.; Gianniotis, N.; Blex, J.; Lisow, T.; Chini, R.; Polsterer, K.L.; Pott, J.U.; Esser, J.; Pietrzyński, G. Optical continuum photometric reverberation mapping of the Seyfert-1 galaxy Mrk509. Mon. Not. R. Astron. Soc. 2019, 490, 3936–3951. [Google Scholar] [CrossRef]
- Pozo Nuñez, F.; Bruckmann, C.; Deesamutara, S.; Czerny, B.; Panda, S.; Lobban, A.P.; Pietrzyński, G.; Polsterer, K.L. Modelling photometric reverberation mapping data for the next generation of big data surveys. Quasar accretion discs sizes with the LSST. Mon. Not. R. Astron. Soc. 2023, 522, 2002–2018. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, X.B.; Gu, H.; Wen, Y.; Fu, Y. The Hα Broadband Photometric Reverberation Mapping of Four Seyfert 1 Galaxies. Astrophys. J. 2023, 949, 22. [Google Scholar] [CrossRef]
- Bentz, M.C.; Denney, K.D.; Grier, C.J.; Barth, A.J.; Peterson, B.M.; Vestergaard, M.; Bennert, V.N.; Canalizo, G.; De Rosa, G.; Filippenko, A.V.; et al. The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei. Astrophys. J. 2013, 767, 149. [Google Scholar] [CrossRef]
- Heinis, S.; Gezari, S.; Kumar, S.; Burgett, W.S.; Flewelling, H.; Huber, M.E.; Kaiser, N.; Wainscoat, R.J.; Waters, C. The Host Galaxy Properties of Variability Selected AGN in the Pan-STARRS1 Medium Deep Survey. Astrophys. J. 2016, 826, 62. [Google Scholar] [CrossRef]
- Mehdipour, M.; Kaastra, J.S.; Kriss, G.A.; Cappi, M.; Petrucci, P.O.; Steenbrugge, K.C.; Arav, N.; Behar, E.; Bianchi, S.; Boissay, R.; et al. Anatomy of the AGN in NGC 5548. I. A global model for the broadband spectral energy distribution. Astron. Astrophys. 2015, 575, A22. [Google Scholar] [CrossRef]
- Minezaki, T.; Yoshii, Y.; Kobayashi, Y.; Sugawara, S.; Sakata, Y.; Enya, K.; Koshida, S.; Tomita, H.; Suganuma, M.; Aoki, T.; et al. Reverberation Measurements of the Inner Radii of the Dust Tori in Quasars. Astrophys. J. 2019, 886, 150. [Google Scholar] [CrossRef]
- Kotilainen, J.K.; Ward, M.J.; Williger, G.M. CCD imaging of Seyfert galaxies: Deconvolution of the nuclearand stellar components. Mon. Not. R. Astron. Soc. 1993, 263, 655–674. [Google Scholar] [CrossRef]
- Boris, N.V.; Donzelli, C.J.; Pastoriza, M.G.; Rodriguez-Ardila, A.; Ferreiro, D.L. Multicolor photometry of ten Seyfert 1 galaxies. Astron. Astrophys. 2002, 384, 780–792. [Google Scholar] [CrossRef]
- Bentz, M.C.; Peterson, B.M.; Netzer, H.; Pogge, R.W.; Vestergaard, M. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs. Astrophys. J. 2009, 697, 160–181. [Google Scholar] [CrossRef]
- Winkler, H.; Glass, I.S.; van Wyk, F.; Marang, F.; Jones, J.H.S.; Buckley, D.A.H.; Sekiguchi, K. Variability studies of seyfert galaxies—I. Broad-band optical photometry. Mon. Not. R. Astron. Soc. 1992, 257, 659–676. [Google Scholar] [CrossRef]
- Ramolla, M.; Pozo Nuñez, F.; Westhues, C.; Haas, M.; Chini, R. The stability of the optical flux variation gradient for 3C 120. Astron. Astrophys. 2015, 581, A93. [Google Scholar] [CrossRef]
- Sobrino Figaredo, C.; Haas, M.; Ramolla, M.; Chini, R.; Blex, J.; Hodapp, K.W.; Murphy, M.; Kollatschny, W.; Chelouche, D.; Kaspi, S. Dust Reverberation of 3C 273: Torus Structure and Lag-Luminosity Relation. Astron. J. 2020, 159, 259. [Google Scholar] [CrossRef]
- Fian, C.; Chelouche, D.; Kaspi, S.; Sobrino Figaredo, C.; Lewis, T.; Catalan, S. Continuum reverberation mapping of MCG 08-11-011. Astron. Astrophys. 2023, 672, A132. [Google Scholar] [CrossRef]
- Pozo Nuñez, F.; Haas, M.; Chini, R.; Ramolla, M.; Westhues, C.; Hodapp, K.W. Circumstellar disks revealed by H/K flux variation gradients. Astron. Astrophys. 2015, 578, A98. [Google Scholar] [CrossRef]
- Mizukoshi, S.; Minezaki, T.; Tsunetsugu, S.; Yoshida, A.; Sameshima, H.; Kokubo, M.; Noda, H. Measurement of AGN dust extinction based on the near-infrared flux variability of WISE data. Mon. Not. R. Astron. Soc. 2022, 516, 2876–2886. [Google Scholar] [CrossRef]
- Heard, C.Z.P.; Gaskell, C.M. Reddening and the shape of the variable component of the continua of active galactic nuclei from the optical to the far-ultraviolet—I. Mon. Not. R. Astron. Soc. 2023, 518, 418–424. [Google Scholar] [CrossRef]
- Gianniotis, N.; Pozo Nuñez, F.; Polsterer, K.L. Disentangling the optical AGN and host-galaxy luminosity with a probabilistic flux variation gradient. Astron. Astrophys. 2022, 657, A126. [Google Scholar] [CrossRef]
- González-Buitrago, D.H.; García-Díaz, M.T.; Pozo Nuñez, F.; Guo, H. On the nature of the continuum reverberation of X-ray/UV and optical emission of IRAS 09149-6206. Mon. Not. R. Astron. Soc. 2023, 525, 4524–4539. [Google Scholar] [CrossRef]
- Choloniewski, J. The Shape and Variability of the Nonthermal Component of the Optical Spectra of Active Galaxies. Acta Astron. 1981, 31, 293. [Google Scholar]
- Haas, M.; Chini, R.; Ramolla, M.; Pozo Nuñez, F.; Westhues, C.; Watermann, R.; Hoffmeister, V.; Murphy, M. Photometric AGN reverberation mapping—An efficient tool for BLR sizes, black hole masses, and host-subtracted AGN luminosities. Astron. Astrophys. 2011, 535, A73. [Google Scholar] [CrossRef]
- Sun, Y.H.; Wang, J.X.; Chen, X.Y.; Zheng, Z.Y. The Discovery of Timescale-dependent Color Variability of Quasars. Astrophys. J. 2014, 792, 54. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Wang, J.X.; Gu, W.M.; Sun, Y.H.; Wu, M.C.; Huang, X.X.; Chen, X.Y. Simulating the Timescale-Dependent Color Variation in Quasars with a Revised Inhomogeneous Disk Model. Astrophys. J. 2016, 826, 7. [Google Scholar] [CrossRef]
- Dexter, J.; Agol, E. Quasar Accretion Disks are Strongly Inhomogeneous. Astrophys. J. Lett. 2011, 727, L24. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Wang, J.X.; Zhu, F.F.; Sun, M.Y.; Gu, W.M.; Cao, X.W.; Yuan, F. EUCLIA—Exploring the UV/Optical Continuum Lag in Active Galactic Nuclei. I. A Model without Light Echoing. Astrophys. J. 2018, 855, 117. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Wang, J.X.; Sun, M. EUCLIA. II. On the Puzzling Large UV to X-Ray Lags in Seyfert Galaxies. Astrophys. J. 2020, 892, 63. [Google Scholar] [CrossRef]
- Polletta, M.; Tajer, M.; Maraschi, L.; Trinchieri, G.; Lonsdale, C.J.; Chiappetti, L.; Andreon, S.; Pierre, M.; Le Fèvre, O.; Zamorani, G.; et al. Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey. Astrophys. J. 2007, 663, 81–102. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef]
- Huchra, J.; Latham, D.W.; da Costa, L.N.; Pellegrini, P.S.; Willmer, C.N.A. The Morphological Catalogue of Galaxies Equatorial Survey. Astron. J. 1993, 105, 1637. [Google Scholar] [CrossRef]
- Kotilainen, J.K.; Ward, M.J. The host galaxies of Seyfert type 1 nuclei. Mon. Not. R. Astron. Soc. 1994, 266, 953–971. [Google Scholar] [CrossRef]
- Kinney, A.L.; Calzetti, D.; Bohlin, R.C.; McQuade, K.; Storchi-Bergmann, T.; Schmitt, H.R. Template Ultraviolet to Near-Infrared Spectra of Star-forming Galaxies and Their Application to K-Corrections. Astrophys. J. 1996, 467, 38. [Google Scholar] [CrossRef]
- Pogge, R.W.; Martini, P. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling. Astrophys. J. 2002, 569, 624–640. [Google Scholar] [CrossRef]
- Walker, R.C.; Benson, J.M.; Unwin, S.C. The Radio Morphology of 3C 120 on Scales from 0.5 Parsecs to 400 Kiloparsecs. Astrophys. J. 1987, 316, 546. [Google Scholar] [CrossRef]
- Sakata, Y.; Minezaki, T.; Yoshii, Y.; Kobayashi, Y.; Koshida, S.; Aoki, T.; Enya, K.; Tomita, H.; Suganuma, M.; Katsuno Uchimoto, Y.; et al. Long-Term Optical Continuum Color Variability of Nearby Active Galactic Nuclei. Astrophys. J. 2010, 711, 461–483. [Google Scholar] [CrossRef]
- Ramolla, M.; Haas, M.; Westhues, C.; Pozo Nuñez, F.; Sobrino Figaredo, C.; Blex, J.; Zetzl, M.; Kollatschny, W.; Hodapp, K.W.; Chini, R.; et al. Simultaneous Hα and dust reverberation mapping of 3C 120: Testing the bowl-shaped torus geometry. Astron. Astrophys. 2018, 620, A137. [Google Scholar] [CrossRef]
- Pozo Nuñez, F.; Ramolla, M.; Westhues, C.; Bruckmann, C.; Haas, M.; Chini, R.; Steenbrugge, K.; Murphy, M. Photometric reverberation mapping of 3C 120. Astron. Astrophys. 2012, 545, A84. [Google Scholar] [CrossRef]
- Bentz, M.C.; Peterson, B.M.; Pogge, R.W.; Vestergaard, M.; Onken, C.A. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. Astrophys. J. 2006, 644, 133–142. [Google Scholar] [CrossRef]
- Ruan, J.J.; Anderson, S.F.; Dexter, J.; Agol, E. Evidence for Large Temperature Fluctuations in Quasar Accretion Disks from Spectral Variability. Astrophys. J. 2014, 783, 105. [Google Scholar] [CrossRef]
- Sakata, Y.; Morokuma, T.; Minezaki, T.; Yoshii, Y.; Kobayashi, Y.; Koshida, S.; Sameshima, H. Ultraviolet Continuum Color Variability of Luminous Sloan Digital Sky Survey QSOs. Astrophys. J. 2011, 731, 50. [Google Scholar] [CrossRef]
- Zhu, F.F.; Wang, J.X.; Cai, Z.Y.; Sun, Y.H.; Sun, M.Y.; Zhang, J.X. On the UV/Optical Variation in NGC 5548: New Evidence Against the Reprocessing Diagram. Astrophys. J. 2018, 860, 29. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Wang, J.X. A universal average spectral energy distribution for quasars from the optical to the extreme ultraviolet. Nat. Astron. 2023, 7, 1506–1516. [Google Scholar] [CrossRef]
- Sun, M.; Xue, Y.; Brandt, W.N.; Gu, W.M.; Trump, J.R.; Cai, Z.; He, Z.; Lin, D.b.; Liu, T.; Wang, J. Corona-heated Accretion-disk Reprocessing: A Physical Model to Decipher the Melody of AGN UV/Optical Twinkling. Astrophys. J. 2020, 891, 178. [Google Scholar] [CrossRef]
- Kammoun, E.; Papadakis, I.E.; Dovčiak, M.; Panagiotou, C. Broadband X-ray/UV/optical time-resolved spectroscopy of NGC 5548: The origin of the UV/optical variability in active galactic nuclei. Astron. Astrophys. 2024, 686, A69. [Google Scholar] [CrossRef]
- Brandt, W.N.; Ni, Q.; Yang, G.; Anderson, S.F.; Assef, R.J.; Barth, A.J.; Bauer, F.E.; Bongiorno, A.; Chen, C.T.; De Cicco, D.; et al. Active Galaxy Science in the LSST Deep-Drilling Fields: Footprints, Cadence Requirements, and Total-Depth Requirements. arXiv 2018, arXiv:1811.06542. [Google Scholar] [CrossRef]
- Wang, T.; Liu, G.; Cai, Z.; Geng, J.; Fang, M.; He, H.; Jiang, J.a.; Jiang, N.; Kong, X.; Li, B.; et al. Science with the 2.5-meter Wide Field Survey Telescope (WFST). Sci. China Phys. Mech. Astron. 2023, 66, 1095120. [Google Scholar] [CrossRef]
Object | Overestimated Factor of the FVG Method Relative to the Image Decomposition Method |
---|---|
Mrk 509 | 2.237 |
Mrk 279 | 1.722 |
3C 120 | 1.410 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, M.; Wan, Z.; Cai, Z.; Fan, L.; Wang, J. The Host Galaxy Fluxes of Active Galaxy Nuclei Are Generally Overestimated by the Flux Variation Gradient Method. Universe 2024, 10, 282. https://doi.org/10.3390/universe10070282
Cai M, Wan Z, Cai Z, Fan L, Wang J. The Host Galaxy Fluxes of Active Galaxy Nuclei Are Generally Overestimated by the Flux Variation Gradient Method. Universe. 2024; 10(7):282. https://doi.org/10.3390/universe10070282
Chicago/Turabian StyleCai, Minxuan, Zhen Wan, Zhenyi Cai, Lulu Fan, and Junxian Wang. 2024. "The Host Galaxy Fluxes of Active Galaxy Nuclei Are Generally Overestimated by the Flux Variation Gradient Method" Universe 10, no. 7: 282. https://doi.org/10.3390/universe10070282
APA StyleCai, M., Wan, Z., Cai, Z., Fan, L., & Wang, J. (2024). The Host Galaxy Fluxes of Active Galaxy Nuclei Are Generally Overestimated by the Flux Variation Gradient Method. Universe, 10(7), 282. https://doi.org/10.3390/universe10070282