Source Count Distribution of Fermi LAT Gamma-Ray Blazars Using Novel Nonparametric Methods
Abstract
:1. Introduction
2. Sample
3. Analysis and Results
3.1. Correlations
3.2. Distributions
3.3. Detection Efficiencies
3.4. Contribution to the EGB and IGRB
4. Summary and Discussion
- Flux–index relations: Addressing the bias towards hard sources in the photon flux limit (Figure 1), we applied the EP method to correct for this bias, resulting in a correlation-corrected spectral index . Our analysis revealed no significant correlation for all blazars (), with only a weak correlation being observed for FSRQs () and BL Lacs () individually.
- Intrinsic distributions: Employing the Lynden-Bell method, we derived cumulative distributions and subsequently obtained differential distributions through numerical derivation. The true intrinsic differential distributions of flux exhibited a broken power law for blazars, FSRQs, and BL Lacs, individually. The intrinsic photon index distributions were described well by Gaussian forms for FSRQs and BL Lacs individually; however, when considering the sample as a whole, double Gaussians provided a better fit. Table 1 summarizes the best-fit parameters for the intrinsic flux and photon index distributions, comparing them with the results of previous studies (i.e., [16,17]).
- Detection efficiency: The source count distribution at , shown in the left panel of Figure 4, displayed a broken power law for ph cm−2 s−1. Below this flux threshold, the observed distribution dropped rapidly due to the challenges in detecting fainter sources with Fermi-LAT. We calculated the detection efficiency by comparing observed sources with the theoretical distribution in photon flux.
- EGB and IGRB: Through the nonparametric determination of intrinsic distributions of photon flux and the spectral index, along with considerations of the detection efficiency, we directly calculated the contributions of all Fermi-LAT blazars to the EGB’s and IGRB’s intensity and spectra. Our findings indicate that blazars up to the flux threshold of Fermi-LAT, i.e., ph cm−2 s−1, could explain 34.5% of observed EGB photons and 32.6% of observed IGRB photons. For FSRQs and BL Lacs, we estimated their contributions to the EGB without considering the detection efficiency, revealing that FSRQs and BL Lacs could account for 19.6% and 13% of the observed EGB, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://fermi.gsfc.nasa.gov/ssc/data/access/lat/8yr_catalog/gll_psc_v20.fit, (accessed on 6 August 2020). |
2 | https://fermi.gsfc.nasa.gov/ssc/data/access/lat/14yr_catalog/, (accessed on 20 December 2023). |
3 | https://fermi.gsfc.nasa.gov/ssc/data/access/lat/14yr_catalog/gll_psc_v33.fit, (accessed on 20 December 2023). |
4 | The subscript 2 in and represents 100 MeV and 5 represents 100 GeV. |
References
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; et al. Fermi Large Area Telescope First Source Catalog. Astrophys. J. Suppl. Ser. 2010, 188, 405–436. [Google Scholar] [CrossRef]
- Abdollahi, S.; Acero, F.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 2020, 247, 33. [Google Scholar] [CrossRef]
- Ballet, J.; Burnett, T.H.; Digel, S.W.; Lott, B. Fermi Large Area Telescope Fourth Source Catalog Data Release 2. arXiv 2020, arXiv:2005.11208. [Google Scholar]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Dermer, C.D.; Finke, J.D.; Krug, H.; Böttcher, M. Gamma-Ray Studies of Blazars: Synchro-Compton Analysis of Flat Spectrum Radio Quasars. Astrophys. J. 2009, 692, 32–46. [Google Scholar] [CrossRef]
- Fan, J.H.; Yang, J.H.; Liu, Y.; Luo, G.Y.; Lin, C.; Yuan, Y.H.; Xiao, H.B.; Zhou, A.Y.; Hua, T.X.; Pei, Z.Y. The Spectral Energy Distributions of Fermi Blazars. Astrophys. J. Suppl. Ser. 2016, 226, 20. [Google Scholar] [CrossRef]
- Zheng, Y.G.; Yang, C.Y.; Zhang, L.; Wang, J.C. Discerning the Gamma-Ray-emitting Region in the Flat Spectrum Radio Quasars. Astrophys. J. Suppl. Ser. 2017, 228, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, L. On the Jet Properties of γ-Ray-loud Active Galactic Nuclei. Astrophys. J. Suppl. Ser. 2018, 235, 39. [Google Scholar] [CrossRef]
- Ajello, M.; Shaw, M.S.; Romani, R.W.; Dermer, C.D.; Costamante, L.; King, O.G.; Max-Moerbeck, W.; Readhead, A.; Reimer, A.; Richards, J.L.; et al. The Luminosity Function of Fermi-detected Flat-spectrum Radio Quasars. Astrophys. J. 2012, 751, 108. [Google Scholar] [CrossRef]
- Ajello, M.; Romani, R.W.; Gasparrini, D.; Shaw, M.S.; Bolmer, J.; Cotter, G.; Finke, J.; Greiner, J.; Healey, S.E.; King, O.; et al. The Cosmic evolution offermibl lacertae objects. Astrophys. J. 2014, 780, 73. [Google Scholar] [CrossRef]
- Di Mauro, M.; Calore, F.; Donato, F.; Ajello, M.; Latronico, L. Diffuse γ-Ray Emission from Misaligned Active Galactic Nuclei. Astrophys. J. 2014, 780, 161. [Google Scholar] [CrossRef]
- Di Mauro, M.; Donato, F.; Lamanna, G.; Sanchez, D.A.; Serpico, P.D. Diffuse γ-Ray Emission from Unresolved BL Lac Objects. Astrophys. J. 2014, 786, 129. [Google Scholar] [CrossRef]
- Zeng, H.D.; Yan, D.H.; Sun, Y.Q.; Zhang, L. γ-Ray Luminosity Function and the Contribution to Extragalactic γ-Ray Background for Fermi-detected Blazars. Astrophys. J. 2012, 749, 151. [Google Scholar] [CrossRef]
- Zeng, H.; Yan, D.; Zhang, L. A revisit of gamma-ray luminosity function and contribution to the extragalactic diffuse gamma-ray background for Fermi FSRQs. Mon. Not. R. Astron. Soc. 2013, 431, 997–1003. [Google Scholar] [CrossRef]
- Qu, Y.; Zeng, H.; Yan, D. Gamma-ray luminosity function of BL Lac objects and contribution to the extragalactic gamma-ray background. Mon. Not. R. Astron. Soc. 2019, 490, 758–765. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. The Fermi-LAT High-Latitude Survey: Source Count Distributions and the Origin of the Extragalactic Diffuse Background. Astrophys. J. 2010, 720, 435–453. [Google Scholar] [CrossRef]
- Singal, J.; Petrosian, V.; Ajello, M. Flux and Photon Spectral Index Distributions of Fermi-LAT Blazars and Contribution to the Extragalactic Gamma-Ray Background. Astrophys. J. 2012, 753, 45. [Google Scholar] [CrossRef]
- Zeng, H.; Petrosian, V.; Yi, T. Cosmological Evolution of Fermi Large Area Telescope Gamma-Ray Blazars Using Novel Nonparametric Methods. Astrophys. J. 2021, 913, 120. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Resolving the Extragalactic γ -Ray Background above 50 GeV with the Fermi Large Area Telescope. Phys. Rev. Lett. 2016, 116, 151105. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; et al. The First Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2010, 715, 429–457. [Google Scholar] [CrossRef]
- Marcotulli, L.; Di Mauro, M.; Ajello, M. Source-count Distribution of Gamma-Ray Blazars. Astrophys. J. 2020, 896, 6. [Google Scholar] [CrossRef]
- Efron, B.; Petrosian, V. A simple test of independence for truncated data with applications to redshift surveys. Astrophys. J. 1992, 399, 345–352. [Google Scholar] [CrossRef]
- Lynden-Bell, D. A method of allowing for known observational selection in small samples applied to 3CR quasars. Mon. Not. R. Astron. Soc. 1971, 155, 95. [Google Scholar] [CrossRef]
- Maloney, A.; Petrosian, V. The Evolution and Luminosity Function of Quasars from Complete Optical Surveys. Astrophys. J. 1999, 518, 32–43. [Google Scholar] [CrossRef]
- Singal, J.; Petrosian, V.; Lawrence, A. On the Radio and Optical Luminosity Evolution of Quasars. Astrophys. J. 2011, 743, 104. [Google Scholar] [CrossRef]
- Singal, J.; Petrosian, V.; Stawarz, Ł.; Lawrence, A. The Radio and Optical Luminosity Evolution of Quasars. II. The SDSS Sample. Astrophys. J. 2013, 764, 43. [Google Scholar] [CrossRef]
- Singal, J.; Ko, A.; Petrosian, V. Gamma-Ray Luminosity and Photon Index Evolution of FSRQ Blazars and Contribution to the Gamma-Ray Background. Astrophys. J. 2014, 786, 109. [Google Scholar] [CrossRef]
- Yu, H.; Wang, F.Y.; Dai, Z.G.; Cheng, K.S. An Unexpectedly Low-redshift Excess of Swift Gamma-ray Burst Rate. Astrophys. J. Suppl. Ser. 2015, 218, 13. [Google Scholar] [CrossRef]
- Petrosian, V.; Kitanidis, E.; Kocevski, D. Cosmological Evolution of Long Gamma-Ray Bursts and the Star Formation Rate. Astrophys. J. 2015, 806, 44. [Google Scholar] [CrossRef]
- Pescalli, A.; Ghirlanda, G.; Salvaterra, R.; Ghisellini, G.; Vergani, S.D.; Nappo, F.; Salafia, O.S.; Melandri, A.; Covino, S.; Götz, D. The rate and luminosity function of long gamma ray bursts. Astron. Astrophys. 2016, 587, A40. [Google Scholar] [CrossRef]
- Tsvetkova, A.; Frederiks, D.; Golenetskii, S.; Lysenko, A.; Oleynik, P.; Pal’Shin, V.; Svinkin, D.; Ulanov, M.; Cline, T.; Hurley, K.; et al. The Konus-Wind Catalog of Gamma-Ray Bursts with Known Redshifts. I. Bursts Detected in the Triggered Mode. Astrophys. J. 2017, 850, 161. [Google Scholar] [CrossRef]
- Ajello, M.; Angioni, R.; Axelsson, M.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J.B.; Bellazzini, R.; Bissaldi, E.; Bloom, E.D.; et al. The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2020, 892, 105. [Google Scholar] [CrossRef]
- Yonetoku, D.; Murakami, T.; Nakamura, T.; Yamazaki, R.; Inoue, A.K.; Ioka, K. Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation. Astrophys. J. 2004, 609, 935–951. [Google Scholar] [CrossRef]
- Lloyd, N.M.; Petrosian, V.; Mallozzi, R.S. Cosmological versus Intrinsic: The Correlation between Intensity and the Peak of the νFν Spectrum of Gamma-Ray Bursts. Astrophys. J. 2000, 534, 227–238. [Google Scholar] [CrossRef]
- Di Mauro, M.; Manconi, S.; Zechlin, H.S.; Ajello, M.; Charles, E.; Donato, F. Deriving the Contribution of Blazars to the Fermi-LAT Extragalactic γ-ray Background at E > 10 GeV with Efficiency Corrections and Photon Statistics. Astrophys. J. 2018, 856, 106. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. The Spectrum of Isotropic Diffuse Gamma-Ray Emission between 100 MeV and 820 GeV. Astrophys. J. 2015, 799, 86. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J.B.; Bellazzini, R.; Bissaldi, E.; et al. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2015, 810, 14. [Google Scholar] [CrossRef]
- Finke, J.D.; Razzaque, S.; Dermer, C.D. Modeling the Extragalactic Background Light from Stars and Dust. Astrophys. J. 2010, 712, 238–249. [Google Scholar] [CrossRef]
Sample | log10() | ||||||
---|---|---|---|---|---|---|---|
Blazars (this work) | |||||||
Blazars (EP-L) | − | ||||||
Blazars (MA) | − | − | |||||
FSRQs (this work) | |||||||
FSRQs (EP-L) | − | ||||||
FSRQs (MA) | − | − | |||||
BL Lacs (this work) | |||||||
BL Lacs (EP-L) | − | ||||||
BL Lacs (MA) | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Zeng, H. Source Count Distribution of Fermi LAT Gamma-Ray Blazars Using Novel Nonparametric Methods. Universe 2024, 10, 340. https://doi.org/10.3390/universe10090340
Yin X, Zeng H. Source Count Distribution of Fermi LAT Gamma-Ray Blazars Using Novel Nonparametric Methods. Universe. 2024; 10(9):340. https://doi.org/10.3390/universe10090340
Chicago/Turabian StyleYin, Xuhang, and Houdun Zeng. 2024. "Source Count Distribution of Fermi LAT Gamma-Ray Blazars Using Novel Nonparametric Methods" Universe 10, no. 9: 340. https://doi.org/10.3390/universe10090340
APA StyleYin, X., & Zeng, H. (2024). Source Count Distribution of Fermi LAT Gamma-Ray Blazars Using Novel Nonparametric Methods. Universe, 10(9), 340. https://doi.org/10.3390/universe10090340