The Parallel Compact Object CALculator: An Efficient General Relativistic Initial Data Solver for Compact Objects
Abstract
:1. Introduction
2. The Initial Value Equations
2.1. Rotating Neutron Star in the Waveless Formalism
2.1.1. Axisymmetric Rotating Neutron Stars
2.1.2. Triaxial Rotating Neutron Stars
2.2. Binary Neutron Stars in the IWM Formalism
3. Numerical Methods
3.1. Single Rotating Neutron Star
3.2. Binary Systems
4. Speedup and Efficiency Results
- : CPU wall-clock time of parallelized part of the code using n threads.
- : CPU wall-clock time of serial (nonparallelized) part of the code. Input/Output (IO) and copying between arrays are excluded.
- : CPU wall-clock time of serial IO.
- : CPU wall-clock time of memory copy between arrays.
4.1. Single Rotating Neutron Star
Algorithm 1 Rotating star in the waveless formalism | ||
1: | procedure RNS | |
2: | Interpolate variables to SFC | ▹ |
3: | Compute , , | ▹ |
4: | Compute volume sources , Equation (A1) | ▹ |
5: | Compute volume sources , Equation (A3) | ▹ |
6: | Compute volume sources , Equation (A2) | ▹ |
7: | Compute volume sources , Equation (A4) | ▹ |
8: | Compute right-hand side of Equation (A22) | ▹ |
9: | Compute , Equation (40) | ▹ |
10: | Variable update, Equation (42) | ▹ |
11: | Use Equation (23) to compute the rest mass density . | |
12: | Compute Equation (43) | ▹ |
13: | if then | |
14: | exit |
4.2. Binary Neutron Stars
Algorithm 2 Binary neutron star | ||
1: | procedure NSNS | |
2: | for all Coordinate Systems A do | |
3: | Interpolate variables from SFC | ▹ |
4: | Compute | ▹ |
5: | Compute volume source Equation (A1), | |
6: | Compute volume source Equation (A3), | |
7: | Compute volume source Equation (A2), | ▹ |
8: | Compute sources on excised surface | ▹ |
9: | Compute Equation (40) | ▹ |
10: | Variable update Equation (42) | ▹ |
11: | Use Equation (35) to compute the rest mass density . | |
12: | Compute Equations (36) and (40) | ▹ |
13: | Compute | ▹ |
14: | Variable copy between CSs | ▹ |
15: | if | |
for all A) then | ||
16: | exit |
5. Spinning Binary Quark Stars
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Source Terms
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed]
- Kozlova, A.; Golenetskii, S.; Aptekar, R.; Frederiks, D.; Svinkin, D.; Cline, T.; Hurley, K.; Connaughton, V.; Briggs, M.S.; Meegan, C.; et al. IPN Triangulation of GRB 170816A (short/hard). GRB Coordinates Network, Circular Service, No. 21517, #1 (2017). 2017, Volume 1517. Available online: https://ui.adsabs.harvard.edu/abs/2017GCN.21517....1K/abstract (accessed on 20 March 2024).
- Abbott, B.P. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. Astrophys. J. Lett. 2017, 850, L39. [Google Scholar] [CrossRef]
- Huang, X.; Markakis, C.; Sugiyama, N.; Uryū, K. Quasi-equilibrium models for triaxially deformed rotating compact stars. Phys. Rev. D 2008, D78, 124023. [Google Scholar] [CrossRef]
- Uryū, K.; Tsokaros, A.; Galeazzi, F.; Hotta, H.; Sugimura, M.; Taniguchi, K.; Yoshida, S. New code for equilibriums and quasiequilibrium initial data of compact objects. III. Axisymmetric and triaxial rotating stars. Phys. Rev. D 2016, D93, 044056. [Google Scholar] [CrossRef]
- Uryū, K.; Tsokaros, A.; Baiotti, L.; Galeazzi, F.; Sugiyama, N.; Taniguchi, K.; Yoshida, S. Do triaxial supramassive compact stars exist? Phys. Rev. D 2016, 94, 101302. [Google Scholar] [CrossRef]
- Uryu, K.; Tsokaros, A.; Baiotti, L.; Galeazzi, F.; Taniguchi, K.; Yoshida, S. Modeling differential rotations of compact stars in equilibriums. Phys. Rev. D 2017, 96, 103011. [Google Scholar] [CrossRef]
- Zhou, E.; Tsokaros, A.; Rezzolla, L.; Xu, R.; Uryū, K. Uniformly rotating, axisymmetric and triaxial quark stars in general relativity. Phys. Rev. 2018, D97, 023013. [Google Scholar] [CrossRef]
- Zhou, E.; Tsokaros, A.; Uryu, K.; Xu, R.; Shibata, M. Differentially rotating strange star in general relativity. Phys. Rev. 2019, D100, 043015. [Google Scholar] [CrossRef]
- Uryū, K.; Tsokaros, A. New code for equilibriums and quasiequilibrium initial data of compact objects. Phys. Rev. D 2012, 85, 064014. [Google Scholar] [CrossRef]
- Tsokaros, A.; Uryū, K. Binary black hole circular orbits computed with cocal. J. Eng. Math. 2012, 82, 133–141. [Google Scholar] [CrossRef]
- Uryū, K.; Tsokaros, A.; Grandclement, P. New code for equilibriums and quasiequilibrium initial data of compact objects. II. Convergence tests and comparisons of binary black hole initial data. Phys. Rev. D 2012, D86, 104001. [Google Scholar] [CrossRef]
- Tsokaros, A.; Uryū, K.; Rezzolla, L. New code for quasiequilibrium initial data of binary neutron stars: Corotating, irrotational, and slowly spinning systems. Phys. Rev. D 2015, 91, 104030. [Google Scholar] [CrossRef]
- Tsokaros, A.; Uryu, K.; Ruiz, M.; Shapiro, S.L. Constant circulation sequences of binary neutron stars and their spin characterization. Phys. Rev. 2018, D98, 124019. [Google Scholar] [CrossRef]
- Uryu, K.; Gourgoulhon, E.; Markakis, C.; Fujisawa, K.; Tsokaros, A.; Eriguchi, Y. Equilibrium solutions of relativistic rotating stars with mixed poloidal and toroidal magnetic fields. Phys. Rev. 2014, D90, 101501. [Google Scholar] [CrossRef]
- Uryu, K.; Yoshida, S.; Gourgoulhon, E.; Markakis, C.; Fujisawa, K.; Tsokaros, A.; Taniguchi, K.; Eriguchi, Y. New code for equilibriums and quasiequilibrium initial data of compact objects. IV. Rotating relativistic stars with mixed poloidal and toroidal magnetic fields. Phys. Rev. 2019, D100, 123019. [Google Scholar] [CrossRef]
- Uryu, K.; Yoshida, S.; Gourgoulhon, E.; Markakis, C.; Fujisawa, K.; Tsokaros, A.; Taniguchi, K.; Zamani, M. Equilibriums of extremely magnetized compact stars with force-free magnetotunnels. Phys. Rev. D 2023, 107, 103016. [Google Scholar] [CrossRef]
- Tsokaros, A.; Uryu, K.; Shapiro, S.L. Complete initial value spacetimes containing black holes in general relativity: Application to black hole-disk systems. Phys. Rev. 2019, D99, 041501. [Google Scholar] [CrossRef]
- Uryū, K.; Eriguchi, Y. New numerical method for constructing quasiequilibrium sequences of irrotational binary neutron stars in general relativity. Phys. Rev. D 2000, 61, 124023. [Google Scholar] [CrossRef]
- Tsokaros, A.A.; Uryū, K. Numerical method for binary black hole/neutron star initial data: Code test. Phys. Rev. D 2007, 75, 044026. [Google Scholar] [CrossRef]
- Komatsu, H.; Eriguchi, Y.; Hachisu, I. Rapidly rotating general relativistic stars. I-Numerical method and its application to uniformly rotating polytropes. Mon. Not. R. Astron. Soc. 1989, 237, 355–379. [Google Scholar] [CrossRef]
- Komatsu, H.; Eriguchi, Y.; Hachisu, I. Rapidly rotating general relativistic stars. II–Differentially rotating polytropes. Mon. Not. R. Astron. Soc. 1989, 239, 153–171. [Google Scholar] [CrossRef]
- Ansorg, M.; Brügmann, B.; Tichy, W. A single-domain spectral method for black hole puncture data. Phys. Rev. D 2004, 70, 064011. [Google Scholar] [CrossRef]
- Langage Objet pour la RElativité Numérique. Available online: www.lorene.obspm.fr (accessed on 1 September 2008).
- Kadath Spectral Solver. Available online: https://kadath.obspm.fr (accessed on 1 May 2010).
- Grandclement, P. Kadath: A Spectral solver for theoretical physics. J. Comput. Phys. 2010, 229, 3334–3357. [Google Scholar] [CrossRef]
- Papenfort, L.J.; Tootle, S.D.; Grandclément, P.; Most, E.R.; Rezzolla, L. New public code for initial data of unequal-mass, spinning compact-object binaries. Phys. Rev. D 2021, 104, 024057. [Google Scholar] [CrossRef]
- Tichy, W. A New numerical method to construct binary neutron star initial data. Class. Quant. Grav. 2009, 26, 175018. [Google Scholar] [CrossRef]
- Pfeiffer, H.P.; Kidder, L.E.; Scheel, M.A.; Teukolsky, S.A. A multidomain spectral method for solving elliptic equations. Comput. Phys. Commun. 2003, 152, 253–273. [Google Scholar] [CrossRef]
- Rashti, A.; Fabbri, F.M.; Brügmann, B.; Chaurasia, S.V.; Dietrich, T.; Ujevic, M.; Tichy, W. New pseudospectral code for the construction of initial data. Phys. Rev. D 2022, 105, 104027. [Google Scholar] [CrossRef]
- Assumpcao, T.; Werneck, L.R.; Jacques, T.P.; Etienne, Z.B. Fast hyperbolic relaxation elliptic solver for numerical relativity: Conformally flat, binary puncture initial data. Phys. Rev. D 2022, 105, 104037. [Google Scholar] [CrossRef]
- Tsokaros, A.; Uryū, K. Methods for relativistic self-gravitating fluids: From binary neutron stars to black hole-disks and magnetized rotating neutron stars. Gen. Rel. Grav. 2022, 54, 52. [Google Scholar] [CrossRef]
- Isenberg, J.A. Waveless Approximation Theories of Gravity. Int. J. Mod. Phys. 2008, 17, 265–273. [Google Scholar] [CrossRef]
- Wilson, J.R.; Mathews, G.J. Relativistic hydrodynamics. In Frontiers in Numerical Relativity; Evans, C.R., Finn, L.S., Hobill, D.W., Eds.; Cambridge University Press: Cambridge, UK, 1989; pp. 306–314. [Google Scholar]
- Wilson, J.R.; Mathews, G.J. Instabilities in Close Neutron Star Binaries. Phys. Rev. Lett. 1995, 75, 4161. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.R.; Mathews, G.J.; Marronetti, P. Relativistic numerical model for close neutron-star binaries. Phys. Rev. D 1996, 54, 1317–1331. [Google Scholar] [CrossRef]
- Shibata, M.; Uryu, K.; Friedman, J.L. Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits. Phys. Rev. 2004, D70, 044044. [Google Scholar] [CrossRef]
- Bonazzola, S.; Gourgoulhon, E.; Grandclement, P.; Novak, J. A constrained scheme for Einstein equations based on Dirac gauge and spherical coordinates. Phys. Rev. D 2004, 70, 104007. [Google Scholar] [CrossRef]
- Uryū, K.; Limousin, F.; Friedman, J.L.; Gourgoulhon, E.; Shibata, M. Binary Neutron Stars: Equilibrium Models beyond Spatial Conformal Flatness. Phys. Rev. Lett. 2006, 97, 171101. [Google Scholar] [CrossRef]
- Uryū, K.; Limousin, F.; Friedman, J.L.; Gourgoulhon, E.; Shibata, M. Non-conformally flat initial data for binary compact objects. Phys. Rev. D 2009, 80, 124004. [Google Scholar] [CrossRef]
- Bonazzola, S.; Gourgoulhon, E.; Marck, J.A. Relativistic formalism to compute quasiequilibrium configurations of nonsynchronized neutron star binaries. Phys. Rev. D 1997, 56, 7740–7749. [Google Scholar] [CrossRef]
- Asada, H. Formulation for the internal motion of quasiequilibrium configurations in general relativity. Phys. Rev. D 1998, 57, 7292–7298. [Google Scholar] [CrossRef]
- Shibata, M. Relativistic formalism for computation of irrotational binary stars in quasiequilibrium states. Phys. Rev. D 1998, 58, 024012. [Google Scholar] [CrossRef]
- Teukolsky, S.A. Irrotational Binary Neutron Stars in Quasi-Equilibrium in General Relativity. Astrophys. J. 1998, 504, 442–449. [Google Scholar] [CrossRef]
- Tichy, W. Initial data for binary neutron stars with arbitrary spins. Phys. Rev. D 2011, 84, 024041. [Google Scholar] [CrossRef]
- Rafelski, J. Melting Hadrons, Boiling Quarks. Eur. Phys. J. A 2015, 51, 114. [Google Scholar] [CrossRef]
- Bodmer, A.R. Collapsed Nuclei. Phys. Rev. D 1971, 4, 1601–1606. [Google Scholar] [CrossRef]
- Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272–285. [Google Scholar] [CrossRef]
- Zhou, E.; Tsokaros, A.; Rezzolla, L.; Xu, R. Maximum mass of axisymmetric rotating quark stars. Astron. Nachr. 2017, 338, 1044–1047. [Google Scholar] [CrossRef]
- Zhou, E.; Tsokaros, A.; Rezzolla, L.; Xu, R.; Uryū, K. Rotating Quark Stars in General Relativity. Universe 2018, 4, 48. [Google Scholar] [CrossRef]
- Zhou, E.; Kiuchi, K.; Shibata, M.; Tsokaros, A.; Uryu, K. Evolution of bare quark stars in full general relativity: Single star case. Phys. Rev. D 2021, 103, 123011. [Google Scholar] [CrossRef]
- Zhou, E.; Kiuchi, K.; Shibata, M.; Tsokaros, A.; Uryu, K. Evolution of equal mass binary bare quark stars in full general relativity: Could a supramassive merger remnant experience prompt collapse? Phys. Rev. D 2022, 106, 103030. [Google Scholar] [CrossRef]
- Shibata, M.; Sekiguchi, Y. Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity. Phys. Rev. D 2004, 69, 084024. [Google Scholar] [CrossRef]
- Nakamura, T.; Oohara, K.; Kojima, Y. General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes. Prog. Theor. Phys. Suppl. 1987, 90, 1–218. [Google Scholar] [CrossRef]
- Shibata, M.; Nakamura, T. Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D 1995, 52, 5428–5444. [Google Scholar] [CrossRef]
- Baumgarte, T.W.; Shapiro, S.L. Numerical integration of Einstein’s field equations. Phys. Rev. D 1999, 59, 024007. [Google Scholar] [CrossRef]
: | Radial coordinate where the grid starts. |
: | Radial coordinate where the grid ends. |
: | Radial coordinate between and where the grid changes from equidistant to non-equidistant. |
: | Total number of intervals between and . |
: | Number of intervals in . |
: | Number of intervals in . |
: | Total number of intervals for . |
: | Total number of intervals for . |
L: | Number of multipole in the Legendre expansion. |
: | Radial coordinate where the radial grids start. For the COCP-NS patch it is . |
: | Radial coordinate where the radial grids end. |
: | Center of mass point. Excised sphere is located at in the COCP patch. |
: | Radius of the excised sphere. Only in the COCP patch. |
: | Number of intervals in . |
: | Number of intervals in for the COCP-NS patch or in for the ARCP patch. |
: | Number of intervals in . |
: | Number of intervals in . |
: | Number of intervals in . |
L: | Order of included multipoles. |
Type | ||||||||
---|---|---|---|---|---|---|---|---|
H2 | 0 | 1.25 | 192 | 80 | 64 | 48 | 48 | |
H3 | 0 | 1.25 | 384 | 160 | 128 | 96 | 96 | |
H4 | 0 | 1.25 | 768 | 320 | 256 | 192 | 192 |
Type | Patch | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E2.5 | 40 | 80 | 151 | 288 | 72 | 72 | 12 | ||||
− | 24 | 30 | 288 | 72 | 72 | 12 | |||||
E3.0 | 40 | 100 | 188 | 384 | 96 | 96 | 12 | ||||
− | 32 | 40 | 384 | 96 | 96 | 12 | |||||
E3.5 | 40 | 152 | 286 | 576 | 144 | 144 | 12 | ||||
− | 48 | 60 | 576 | 144 | 144 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukas, L.; Tsokaros, A.; Uryū, K. The Parallel Compact Object CALculator: An Efficient General Relativistic Initial Data Solver for Compact Objects. Universe 2024, 10, 229. https://doi.org/10.3390/universe10050229
Boukas L, Tsokaros A, Uryū K. The Parallel Compact Object CALculator: An Efficient General Relativistic Initial Data Solver for Compact Objects. Universe. 2024; 10(5):229. https://doi.org/10.3390/universe10050229
Chicago/Turabian StyleBoukas, Lambros, Antonios Tsokaros, and Kōji Uryū. 2024. "The Parallel Compact Object CALculator: An Efficient General Relativistic Initial Data Solver for Compact Objects" Universe 10, no. 5: 229. https://doi.org/10.3390/universe10050229
APA StyleBoukas, L., Tsokaros, A., & Uryū, K. (2024). The Parallel Compact Object CALculator: An Efficient General Relativistic Initial Data Solver for Compact Objects. Universe, 10(5), 229. https://doi.org/10.3390/universe10050229