Changes in and Recovery of the Turbulence Properties in the Magnetosheath for Different Solar Wind Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Magnetosheath Crossings Selection
2.2. Calculating a Time Lag between the Solar Wind and Magnetosheath Dataset
2.3. Spectral Analysis
2.4. On the Validity of the Taylor Hypothesis
3. Results
3.1. Statistics
3.2. Modification of Spectral Slopes
4. Discussion
5. Conclusions
- Interaction of any type of the SW with the quasi-perpendicular BS results in the modification of the turbulence properties at the MHD scales in the dayside MSH; the spectra in this region are substantially flatter than those observed in the SW and predicted for the developed turbulence;
- At the kinetic scales, the spectra of magnetic field fluctuations may either become steeper at the quasi-perpendicular BS or stay unchanged; scaling at the frequencies above the ion spectral break is preserved in fast SW streams and in the CIR regions; the ICMEs are characterized by the most significant steepening in the dayside MSH;
- Distinct SW regimes are accompanied by different ways of spectra modification during plasma tailward propagation; the MHD-scale properties of spectra restore for the Fast and CIR streams and stay slightly changed for Slow SW and ICMEs.
- The kinetic-scale properties of the spectra for Slow and Fast SW at the MSH flanks are similar to those observed in the SW; ICME streams are characterized by a slightly steeper spectrum at the flanks, while compressed CIR flows exhibit a slight flattening at the kinetic scales.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borovsky, J.E.; Denton, M.H. The differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 2006, 111, A07S08. [Google Scholar] [CrossRef]
- Denton, M.H.; Borovsky, J.E.; Skoug, R.M.; Thomsen, M.F.; Lavraud, B.; Henderson, M.G.; McPherron, R.L.; Zhang, J.C.; Liemohn, M.W. Geomagnetic storms driven by ICME- and CIR-dominated solar wind. J. Geophys. Res. 2006, 111, A07S07. [Google Scholar] [CrossRef]
- Pulkkinen, T.I.; Goodrich, C.C.; Lyon, J.G. Solar wind electric field driving of magnetospheric activity: Is it velocity or magnetic field? Geophys. Res. Lett. 2007, 34, L21101. [Google Scholar] [CrossRef]
- Lavraud, B.; Borovsky, J.E. Altered solar wind-magnetosphere interaction at low Mach numbers: Coronal mass ejections. J. Geophys. Res. 2008, 113, A00B08. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Nikolaeva, N.S.; Lodkina, I.G.; Yermolaev, M.Y. Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann. Geophys. 2010, 28, 2177–2186. [Google Scholar] [CrossRef]
- Carbone, F.; Telloni, D.; Yordanova, E.; Sorriso-Valvo, L. Modulation of SolarWind Impact on the Earth’s Magnetosphere during the Solar Cycle. Universe 2022, 8, 330. [Google Scholar] [CrossRef]
- Podladchikova, T.V.; Petrukovich, A.A. Extended geomagnetic storm forecast ahead of available solar wind measurements. Space Weather. 2012, 10, S07001. [Google Scholar] [CrossRef]
- Boynton, R.J.; Balikhin, M.A.; Billings, S.A.; Sharma, A.S.; Amariutei, O.A. Data derived NARMAX Dst model. Ann. Geophys. 2012, 29, 965–971. [Google Scholar] [CrossRef]
- Zastenker, G.; Nozdrachev, M.; Němeček, Z.; Šafránková, J.; Paularena, K.; Richardson, J.; Lepping, R.; Mukai, T. Multispacecraft measurements of plasma and magnetic field variations in the magnetosheath: Comparison with Spreiter models and motion of the structures. Planet. Space Sci. 2002, 50, 601–612. [Google Scholar] [CrossRef]
- Hayosh, M.; Šafránková, J.; Němeček, Z. MHD-modelling of the magnetosheath ion plasma flow and magnetic field and their comparison with experiments. Adv. Space Res. 2006, 37, 507–514. [Google Scholar] [CrossRef]
- Hietala, H.; Partamies, N.; Laitinen, T.V.; Clausen, L.B.N.; Facskó, G.; Vaivads, A.; Koskinen, H.E.J.; Dandouras, I.; Rème, H.; Lucek, E.A. Supermagnetosonic subsolar magnetosheath jets and their effects: From the solar wind to the ionospheric convection. Ann. Geophys. 2012, 30, 33–48. [Google Scholar]
- Dmitriev, A.V.; Lalchand, B.; Ghosh, S. Mechanisms and Evolution of Geoeffective Large-Scale Plasma Jets in the Magnetosheath. Universe 2021, 7, 152. [Google Scholar] [CrossRef]
- Rakhmanova, L.; Riazantseva, M.; Zastenker, G. Correlation level between solar wind and magnetosheath plasma and magnetic field parameters. Adv. Space Res. 2016, 58, 157–165. [Google Scholar] [CrossRef]
- Pulkkinen, T.I.; Dimmock, A.P.; Lakka, A.; Osmane, A.; Kilpua, E.; Myllys, M.; Tanskanen, E.I.; Viljanen, A. Magnetosheath control of solar wind–magnetosphere coupling efficiency. J. Geophys. Res. Space Phys. 2016, 121, 8728–8739. [Google Scholar] [CrossRef]
- Šafránková, J.; Hayosh, M.; Gutynska, O.; Němeček, Z.; Přech, L. Reliability of prediction of the magnetosheath Bz component from interplanetary magnetic field observations. J. Geophys. Res. Space Phys. 2009, 114, A12213. [Google Scholar] [CrossRef]
- Pulinets, M.S.; Antonova, E.E.; Riazantseva, M.O.; Znatkova, S.S.; Kirpichev, I.P. Comparison of the magnetic field before the subsolar magnetopause with the magnetic field in the solar wind before the bow shock. Adv. Space Res. 2014, 54, 604–616. [Google Scholar] [CrossRef]
- Turc, L.; Fontaine, D.; Escoubet, C.P.; Kilpua, E.K.J.; Dimmock, A.P. Statistical study of the alteration of the magnetic structure of magnetic clouds in the Earth’s magnetosheath. J. Geophys. Res. Space Phys. 2017, 122, 2956–2972. [Google Scholar] [CrossRef]
- Alexandrova, O.; Chen, C.H.K.; Sorriso-Valvo, L.; Horbury, T.S.; Bale, S.D. Solar wind turbulence and the role of ion instabilities. Space Sci. Rev. 2013, 178, 101–139. [Google Scholar] [CrossRef]
- Bruno, R.; Carbone, V. The Solar Wind as a Turbulence Laboratory. Living Rev. Sol. Phys. 2013, 10, 2. [Google Scholar] [CrossRef]
- Zimbardo, G.; Greco, A.; Sorriso-Valvo, L.; Perri, S.; Vörös, Z.; Aburjania, G.; Chargazia, K.; Alexandrova, O. Magnetic turbulence in the geospace environment. Space Sci. Rev. 2010, 156, 89–134. [Google Scholar] [CrossRef]
- Huang, S.Y.; Hadid, L.Z.; Sahraoui, F.; Yuan, Z.G.; Deng, X.H. On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence. Astrophys. J. Lett. 2017, 836, L10. [Google Scholar] [CrossRef]
- Rakhmanova, L.S.; Riazantseva, M.O.; Zastenker, G.N.; Verigin, M.I. Effect of the magnetopause and bow shock on characteristics of plasma turbulence in the Earth’s magnetosheath. Geomagn. Aeron. 2018, 58, 718–727. [Google Scholar] [CrossRef]
- Li, H.; Jiang, W.; Wang, C.; Verscharen, D.; Zeng, C.; Russell, C.T.; Giles, B.; Burch, J.L. Evolution of the Earth’s magnetosheath turbulence: A statistical study based on MMS observations. Astrophys. J. 2020, 898, L43. [Google Scholar] [CrossRef]
- Rakhmanova, L.; Riazantseva, M.; Zastenker, G.; Yermolaev, Y. Large-scale solar wind phenomena affecting the turbulent cascade evolution behind the quasi-perpendicular bow shock. Universe 2022, 8, 611. [Google Scholar] [CrossRef]
- Rakhmanova, L.; Riazantseva, M.; Zastenker, G.; Yermolaev, Y.; Lodkina, I. Dynamics of plasma turbulence at Earth’s bow shock and through the magnetosheath. Astrophys. J. 2020, 901, 30. [Google Scholar] [CrossRef]
- Rakhmanova, L.; Riazantseva, M.; Zastenker, G.; Verigin, M. Kinetic scale ion flux fluctuations behind the quasi-parallel and quasi-perpendicular bow shock. J. Geophys. Res. Space Phys. 2018, 123, 5300–5314. [Google Scholar] [CrossRef]
- Breuillard, H.; Matteini, L.; Argall, M.R.; Sahraoui, F.; Andriopoulou, M.; Le Contel, O.; Retinò, A.; Mirioni, L.; Huang, S.Y.; Gershman, D.J.; et al. New insights into the nature of turbulence in the Earth’s magnetosheath using magnetospheric multiscale mission data. Astrophys. J. 2018, 859, 127. [Google Scholar] [CrossRef]
- Yordanova, E.; Vörös, Z.; Raptis, S.; Karlsson, T. Current sheet statistics in the magnetosheath. Front. Astron. Space Sci. 2020, 7, 2. [Google Scholar] [CrossRef]
- Plank, J.; Gingell, I.L. Intermittency at Earth’s bow shock: Measures of turbulence in quasi-parallel and quasi-perpendicular shocks. Phys. Plasmas 2023, 30, 082906. [Google Scholar] [CrossRef]
- Gurchumelia, A.; Sorriso-Valvo, L.; Burgess, D.; Yordanova, E.; Elbakidze, K.; Kharshiladze, O.; Kvaratskhelia, D. Comparing quasi-parallel and quasi-perpendicular configuration in the terrestrial magnetosheath: Multifractal analysis. Front. Phys. 2022, 10, 903632. [Google Scholar] [CrossRef]
- Angelopoulos, V. The THEMIS mission. Space Sci. Rev. 2008, 141, 5–34. [Google Scholar] [CrossRef]
- McFadden, J.P.; Carlson, C.W.; Larson, D.; Ludlam, M.; Abiad, R.; Elliott, B.; Turin, P.; Marckwordt, M.; Angelopoulos, V. The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev. 2008, 141, 277–302. [Google Scholar] [CrossRef]
- Auster, H.U.; Glassmeier, K.H.; Magnes, W.; Aydogar, O.; Baumjohann, W.; Constantinescu, D.; Fischer, D.; Fornacon, K.H.; Georgescu, E.; Harvey, P.; et al. The THEMIS Fluxgate Magnetometer. Space Sci. Rev. 2008, 141, 235–264. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Nikolaeva, N.S.; Lodkina, I.G.; Yermolaev, M.Y. Catalog of large-scale solar wind phenomena during 1976–2000. Cosm. Res. 2009, 47, 81–94. [Google Scholar] [CrossRef]
- Shevyrev, N.N.; Zastenker, G.N. Some features of the plasma flow in the magnetosheath behind quasi-parallel and quasi-perpendicular bow shocks. Planet. Space Sci. 2005, 53, 95–102. [Google Scholar] [CrossRef]
- Spreiter, J.R.; Summers, A.L.; Alksne, A.Y. Hydromagnetic flow around the magnetosphere. Planet. Space Sci. 1966, 14, 223–250, IN1–IN2, 251–253. [Google Scholar] [CrossRef]
- Karlsson, T.; Raptis, S.; Trollvik, H.; Nilsson, H. Classifying the Magnetosheath Behind the Quasi-Parallel and Quasi-Perpendicular Bow Shock by Local Measurements. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029269. [Google Scholar] [CrossRef]
- Koller, F.; Raptis, S.; Temmer, M.; Karlsson, T. The Effect of Fast Solar Wind on Ion Distribution Downstream of Earth’s Bow Shock. Astrophys. J. Lett. 2024, 964, L5. [Google Scholar] [CrossRef]
- Case, N.A.; Wild, J.A. A statistical comparison of solar wind propagation delays derived from multispacecraft techniques. J. Geophys. Res. Space Phys. 2012, 117, A2. [Google Scholar] [CrossRef]
- Ogilvie, K.W.; Chornay, D.J.; Fritzenreiter, R.J.; Hunsaker, F.; Keller, J.; Lobell, J.; Miller, G.; Scudder, J.D.; Sittler, E.C.; Torbert, R.B.; et al. SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 1995, 71, 55–77. [Google Scholar] [CrossRef]
- Lepping, R.P.; Acũna, M.H.; Burlaga, L.F.; Farrell, W.M.; Slavin, J.A.; Schatten, K.H.; Mariani, F.; Ness, N.F.; Neubauer, F.M.; Whang, Y.C.; et al. The WIND magnetic field investigation. Space Sci. Rev. 1995, 71, 207–229. [Google Scholar] [CrossRef]
- Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Piňta, A.; Chen, C.H.K.; Zastenker, G.N. Solar wind density spectra around the ion spectral break. Astrophys. J. 2015, 803, 107. [Google Scholar] [CrossRef]
- Markovskii, S.A.; Vasquez, B.; Smith, C. Statistical Analysis of the High-Frequency Spectral Break of the Solar Wind Turbulence at 1 AU. Astrophys. J. 2008, 675, 1576. [Google Scholar] [CrossRef]
- Chen, C.H.K.; Leung, L.; Boldyrev, S.; Maruca, B.A.; Bale, S.D. Ion-scale spectral break of solar wind turbulence at high and low beta. Geophys. Res. Lett. 2014, 41, 8081–8088. [Google Scholar] [CrossRef] [PubMed]
- Woodham, L.D.; Wicks, R.T.; Verscharen, D.; Owen, C.J. The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales. Astrophys. J. 2018, 856, 49. [Google Scholar] [CrossRef]
- Smith, C.; Hamilton, K.; Vasquez, B.; Leamon, R. Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. 2006, 645, L85–L88. [Google Scholar] [CrossRef]
- Sahraoui, F.; Huang, S.Y.; Belmont, G.; Goldstein, M.L.; Rétino, A.; Robert, P.; De Patoul, J. Scaling of the electron dissipation range of solar wind turbulence. Astrophys. J. 2013, 777, 15. [Google Scholar] [CrossRef]
- Šafránková, J.; Němeček, Z.; Němec, F.; Verscharen, D.; Chen, C.H.K.; Ďurovcová, T.; Riazantseva, M. Scale-dependent Polarization of Solar Wind Velocity Fluctuations at the Inertial and Kinetic Scales. Astrophys. J. 2019, 870, 40. [Google Scholar] [CrossRef]
- Alexandrova, O. Solar wind vs magnetosheath turbulence and Alfvén vortices. Nonlinear Process. Geophys. 2008, 15, 95–108. [Google Scholar] [CrossRef]
- Boldyrev, S.; Perez, J.C. Spectrum of kinetic alfven turbulence. Astrophys. J. Lett. 2012, 758, 5. [Google Scholar] [CrossRef]
- Goldreich, P.; Sridhar, S. Toward a theory of interstellar turbulence. II. Strong alfvenic turbulence. Astrophys. J. 1995, 438, 763. [Google Scholar] [CrossRef]
- Taylor, G.I. The spectrum of turbulence. Proc. R. Soc. A Math. Phys. Eng. Sci. 1938, 164, 476–490. [Google Scholar] [CrossRef]
- Klein, K.G.; Howes, G.G.; Tenbarge, J.M. The violation of the taylor hypothesis in measurements of solar wind turbulence. Astrophys. J. Lett. 2014, 790, 20. [Google Scholar] [CrossRef]
- Mangeney, A.; Lacombe, C.; Maksimovic, M.; Samsonov, A.A.; Cornilleau-Wehrlin, N.; Harvey, C.C.; Bosqued, J.-M.; Trávníček, P. Cluster observations in the magnetosheath. Part 1: Anisotropies of the wave vector distribution of the turbulence at electron scales. Ann. Geophys. 2006, 24, 3507–3521. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Denton, M.H.; Smith, C.W. Some properties of the solar wind turbulence at 1 AU statistically examined in the different types of solar wind plasma. J. Geophys. Res. Space Phys. 2019, 124, 2406–2424. [Google Scholar] [CrossRef]
- Bruno, R.; Trenchi, L.; Telloni, D. Spectral slope variation at proton scales from fast to slow solar wind. Astrophys. J. Lett. 2014, 793, L15. [Google Scholar] [CrossRef]
- Riazantseva, M.O.; Rakhmanova, L.S.; Yermolaev, Y.I.; Lodkina, I.G.; Zastenker, G.N.; Chesalin, L.S. Characteristics of Turbulent Solar Wind Flow in Plasma Compression Regions. Cosm. Res. 2020, 58, 468–477. [Google Scholar] [CrossRef]
- Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C.H.K.; Zastenker, G.N. Density fluctuations upstream and downstream of interplanetary shocks. Astrophys. J. 2016, 819, 41. [Google Scholar] [CrossRef]
- Alexandrova, O.; Mangeney, A.; Maksimovic, M.; Cornilleau-Wehrlin, N.; Bosqued, J.-M.; André, M. Alfvén vortex filaments observed in magnetosheath downstream of a quasiperpendicular bow shock. J. Geophys. Res. 2006, 111, A12208. [Google Scholar] [CrossRef]
- D’Amicis, R.; Telloni, D.; Bruno, R. The Effect of Solar-Wind Turbulence on magnetospheric Activity. Front. Phys. 2020, 8, 604857. [Google Scholar] [CrossRef]
- D’Amicis, R.; Perrone, D.; Velli, M.; Sorriso-Valvo, L.; Telloni, D.; Bruno, R.; De Marco, R. Investigating Alfvénic Turbulence in Fast and Slow Solar Wind Streams. Universe 2022, 8, 352. [Google Scholar] [CrossRef]
Scale Range | Location | Parameter | Slow | Fast | HCS | ICME | CIR |
---|---|---|---|---|---|---|---|
MHD | Dayside MSH | mean | −0.30 | −0.30 | −0.37 | −0.35 | −0.27 |
median | −0.29 | −0.32 | −0.37 | −0.38 | −0.27 | ||
std | 0.21 | 0.20 | 0.20 | 0.25 | 0.16 | ||
Flank MSH | mean | −0.17 | −0.10 | − | −0.17 | −0.07 | |
median | −0.18 | −0.07 | − | −0.24 | −0.07 | ||
std | 0.23 | 0.20 | 0.22 | 0.20 | |||
Kinetic | Dayside MSH | mean | 0.26 | −0.05 | 0.16 | 0.3 | 0.04 |
median | 0.25 | −0.07 | 0.14 | 0.32 | 0.01 | ||
std | 0.21 | 0.19 | 0.15 | 0.3 | 0.26 | ||
Flank MSH | mean | −0.01 | −0.03 | − | 0.08 | −0.08 | |
median | −0.06 | −0.04 | − | 0.03 | −0.13 | ||
std | 0.19 | 0.21 | 0.20 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhmanova, L.; Khokhlachev, A.; Riazantseva, M.; Yermolaev, Y.; Zastenker, G. Changes in and Recovery of the Turbulence Properties in the Magnetosheath for Different Solar Wind Streams. Universe 2024, 10, 194. https://doi.org/10.3390/universe10050194
Rakhmanova L, Khokhlachev A, Riazantseva M, Yermolaev Y, Zastenker G. Changes in and Recovery of the Turbulence Properties in the Magnetosheath for Different Solar Wind Streams. Universe. 2024; 10(5):194. https://doi.org/10.3390/universe10050194
Chicago/Turabian StyleRakhmanova, Liudmila, Alexander Khokhlachev, Maria Riazantseva, Yuri Yermolaev, and Georgy Zastenker. 2024. "Changes in and Recovery of the Turbulence Properties in the Magnetosheath for Different Solar Wind Streams" Universe 10, no. 5: 194. https://doi.org/10.3390/universe10050194
APA StyleRakhmanova, L., Khokhlachev, A., Riazantseva, M., Yermolaev, Y., & Zastenker, G. (2024). Changes in and Recovery of the Turbulence Properties in the Magnetosheath for Different Solar Wind Streams. Universe, 10(5), 194. https://doi.org/10.3390/universe10050194