On the Apparent Discretization of Spacetime and Its Connection with the Cosmological Constant
Abstract
:1. Introduction
2. The Minimal Measurable Length
3. Discreteness of Spacetime and Cosmological Constant
3.1. The Unruh Effect
3.2. Cosmological Constant
3.3. Analysis in the Cosmological Horizon
3.4. Analysis in the Bulk of the Universe
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | For our purposes of estimating the order of magnitude of the minimal length, it is enough to resort to semiclassical arguments. Clearly, a more rigorous derivation would require considerations from relativistic scattering theory, in which collisions between particles are examined using the principles of special relativity, considering that the particles involved might be moving at velocity close to the speed of light. Since this framework often employs techniques from quantum field theory to describe the scattering amplitudes and cross-sections of particles, we reserve for future investigation exploring whether our result is affected in this context. |
References
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory. Volume 1: Introduction; Cambridge Monographs on Mathematical Physics; Cambridge Univeristy Press: Cambridge, UK; New York, NY, USA, 1988. [Google Scholar]
- Mukhi, S. String theory: A perspective over the last 25 years. Class. Quant. Grav. 2011, 28, 153001. [Google Scholar] [CrossRef]
- Duff, M.J. M theory (The Theory formerly known as strings). Int. J. Mod. Phys. A 1996, 11, 5623–5642. [Google Scholar] [CrossRef]
- Kakushadze, Z.; Tye, S.H.H. Brane world. Nucl. Phys. B 1999, 548, 180–204. [Google Scholar] [CrossRef]
- Rovelli, C. Loop quantum gravity. Living Rev. Rel. 1998, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, S. Ultraviolet Divergences in Quantum Theories of Gravitation. In General Relativity: An Einstein Centenary Survey; Univeristy Press: Cambridge, UK, 1980; pp. 790–831. [Google Scholar]
- Addazi, A.; Alvarez-Muniz, J.; Batista, R.A.; Amelino-Camelia, G.; Antonelli, V.; Arzano, M.; Asorey, M.; Atteia, J.-L.; Bahamonde, S.; Bajardi, F.; et al. Quantum gravity phenomenology at the dawn of the multi-messenger era—A review. Prog. Part. Nucl. Phys. 2022, 125, 103948. [Google Scholar] [CrossRef]
- Khodadi, M.; Nozari, K.; Dey, S.; Bhat, A.; Faizal, M. A new bound on polymer quantization via an opto-mechanical setup. Sci. Rep. 2018, 8, 1659. [Google Scholar] [CrossRef]
- Petruzziello, L.; Illuminati, F. Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale. Nat. Commun. 2021, 12, 4449. [Google Scholar] [CrossRef]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Susskind, L. Copenhagen vs Everett, Teleportation, and ER = EPR. Fortsch. Phys. 2016, 64, 551–564. [Google Scholar] [CrossRef]
- Van Raamsdonk, M. Building up spacetime with quantum entanglement. Gen. Rel. Grav. 2010, 42, 2323–2329. [Google Scholar] [CrossRef]
- Tamburini, F.; Licata, I. General Relativistic Wormhole Connections from Planck-Scales and the ER = EPR Conjecture. Entropy 2019, 22, 3. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73–77. [Google Scholar] [CrossRef]
- Bosso, P.; Petruzziello, L.; Wagner, F. The minimal length is physical. Phys. Lett. B 2022, 834, 137415. [Google Scholar] [CrossRef]
- Scardigli, F. Some heuristic semiclassical derivations of the Planck length, the Hawking effect and the Unruh effect. Nuovo Cim. B 1995, 110, 1029–1034. [Google Scholar] [CrossRef]
- Lambiase, G.; Scardigli, F. Lorentz violation and generalized uncertainty principle. Phys. Rev. D 2018, 97, 075003. [Google Scholar] [CrossRef]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L.; Scardigli, F. Heuristic derivation of Casimir effect in minimal length theories. Int. J. Mod. Phys. D 2020, 29, 2050011. [Google Scholar] [CrossRef]
- Nozari, K.; Gorji, M.A.; Hosseinzadeh, V.; Vakili, B. Natural Cutoffs via Compact Symplectic Manifolds. Class. Quant. Grav. 2016, 33, 025009. [Google Scholar] [CrossRef]
- Amati, D.; Ciafaloni, M.; Veneziano, G. Superstring Collisions at Planckian Energies. Phys. Lett. B 1987, 197, 81. [Google Scholar] [CrossRef]
- Konishi, K.; Paffuti, G.; Provero, P. Minimum Physical Length and the Generalized Uncertainty Principle in String Theory. Phys. Lett. B 1990, 234, 276–284. [Google Scholar] [CrossRef]
- Maggiore, M. The Algebraic structure of the generalized uncertainty principle. Phys. Lett. B 1993, 319, 83–86. [Google Scholar] [CrossRef]
- Capozziello, S.; Lambiase, G.; Scarpetta, G. Generalized uncertainty principle from quantum geometry. Int. J. Theor. Phys. 2000, 39, 15–22. [Google Scholar] [CrossRef]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Scardigli, F. Generalized uncertainty principle in quantum gravity from micro-black hole Gedanken experiment. Phys. Lett. B 1999, 452, 39–44. [Google Scholar] [CrossRef]
- Scardigli, F.; Blasone, M.; Luciano, G.; Casadio, R. Modified Unruh effect from Generalized Uncertainty Principle. Eur. Phys. J. C 2018, 78, 728. [Google Scholar] [CrossRef] [PubMed]
- Bosso, P.; Luciano, G.G.; Petruzziello, L.; Wagner, F. 30 years in: Quo vadis generalized uncertainty principle? Class. Quant. Grav. 2023, 40, 195014. [Google Scholar] [CrossRef]
- Hossenfelder, S.; Bleicher, M.; Hofmann, S.; Ruppert, J.; Scherer, S.; Stoecker, H. Collider signatures in the Planck regime. Phys. Lett. B 2003, 575, 85–99. [Google Scholar] [CrossRef]
- Buoninfante, L.; Luciano, G.G.; Petruzziello, L. Generalized Uncertainty Principle and Corpuscular Gravity. Eur. Phys. J. C 2019, 79, 663. [Google Scholar] [CrossRef]
- Scardigli, F. The deformation parameter of the generalized uncertainty principle. J. Phys. Conf. Ser. 2019, 1275, 012004. [Google Scholar] [CrossRef]
- Luciano, G.G. Tsallis statistics and generalized uncertainty principle. Eur. Phys. J. C 2021, 81, 672. [Google Scholar] [CrossRef]
- Luciano, G.G.; Petruzziello, L. Generalized uncertainty principle and its implications on geometric phases in quantum mechanics. Eur. Phys. J. Plus 2021, 136, 179. [Google Scholar] [CrossRef]
- Iorio, A.; Ivetić, B.; Mignemi, S.; Pais, P. Three “layers” of graphene monolayer and their analog generalized uncertainty principles. Phys. Rev. D 2022, 106, 116011. [Google Scholar] [CrossRef]
- Nenmeli, V.; Shankaranarayanan, S.; Todorinov, V.; Das, S. Maximal momentum GUP leads to quadratic gravity. Phys. Lett. B 2021, 821, 136621. [Google Scholar] [CrossRef]
- Petruzziello, L. Generalized uncertainty principle with maximal observable momentum and no minimal length indeterminacy. Class. Quant. Grav. 2021, 38, 135005. [Google Scholar] [CrossRef]
- Ali, A.F.; Das, S.; Vagenas, E.C. Discreteness of Space from the Generalized Uncertainty Principle. Phys. Lett. B 2009, 678, 497–499. [Google Scholar] [CrossRef]
- Park, M.I. The Generalized Uncertainty Principle in (A)dS Space and the Modification of Hawking Temperature from the Minimal Length. Phys. Lett. B 2008, 659, 698–702. [Google Scholar] [CrossRef]
- Mignemi, S. Extended uncertainty principle and the geometry of (anti)-de Sitter space. Mod. Phys. Lett. A 2010, 25, 1697–1703. [Google Scholar] [CrossRef]
- Giné, J.; Luciano, G.G. Modified inertia from extended uncertainty principle(s) and its relation to MoND. Eur. Phys. J. C 2020, 80, 1039. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef]
- Giné, J. Hawking effect and Unruh effect from the uncertainty principle. EPL 2018, 121, 10001. [Google Scholar] [CrossRef]
- Giné, J. Quantum fluctuations and the slow accelerating expansion of the Universe. Europhys. Lett. 2019, 125, 50002. [Google Scholar] [CrossRef]
- Bishop, M.; Contreras, J.; Martin, P.; Singleton, D. Comments on the cosmological constant in generalized uncertainty models. Front. Astron. Space Sci. 2022, 9, 978898. [Google Scholar] [CrossRef]
- Alsing, P.M.; Milonni, P.W. Simplified derivation of the Hawking-Unruh temperature for an accelerated observer in vacuum. Am. J. Phys. 2004, 72, 1524–1529. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar] [CrossRef]
- Takagi, S. Vacuum Noise and Stress Induced by Uniform Acceleration: Hawking-Unruh Effect in Rindler Manifold of Arbitrary Dimension. Prog. Theor. Phys. Suppl. 1986, 88, 1–142. [Google Scholar] [CrossRef]
- Blasone, M.; Lambiase, G.; Luciano, G.G. Nonthermal signature of the Unruh effect in field mixing. Phys. Rev. D 2017, 96, 025023. [Google Scholar] [CrossRef]
- McCulloch, M.E. Modelling the Pioneer anomaly as modified inertia. Mon. Not. R. Astron. Soc. 2007, 376, 338–342. [Google Scholar] [CrossRef]
- Giné, J.; Mcculloch, M.E. Inertial mass from Unruh temperatures. Mod. Phys. Lett. A 2016, 31, 1650107. [Google Scholar] [CrossRef]
- Giné, J.; Luciano, G.G. Modeling inertia through the interaction with quantum fluctuations. Results Phys. 2021, 28, 104543. [Google Scholar] [CrossRef]
- Giné, J. Modified Hawking effect from generalized uncertainty principle. Commun. Theor. Phys. 2021, 73, 015201. [Google Scholar] [CrossRef]
- Particle Data Group; Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; et al. Review of Particle Physics. PTEP 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Yamamoto, H. Discrete Space-Time and Lorentz Invariance. Nucl. Phys. B Proc. Suppl. 1989, 6, 154–156. [Google Scholar] [CrossRef]
- Dowker, F.; Henson, J.; Sorkin, R.D. Quantum gravity phenomenology, Lorentz invariance and discreteness. Mod. Phys. Lett. A 2004, 19, 1829–1840. [Google Scholar] [CrossRef]
- Bosso, P.; Das, S. Lorentz invariant mass and length scales. Int. J. Mod. Phys. D 2019, 28, 1950068. [Google Scholar] [CrossRef]
- Johnston, S. Particle propagators on discrete spacetime. Class. Quant. Grav. 2008, 25, 202001. [Google Scholar] [CrossRef]
- Das, A.; Das, S.; Vagenas, E.C. Discreteness of Space from GUP in Strong Gravitational Fields. Phys. Lett. B 2020, 809, 135772. [Google Scholar] [CrossRef]
- Das, S.; Vagenas, E.C.; Ali, A.F. Discreteness of Space from GUP II: Relativistic Wave Equations. Phys. Lett. B 2010, 690, 407–412, Erratum in Phys. Lett. B 2010, 692, 342. [Google Scholar] [CrossRef]
- Surya, S. The causal set approach to quantum gravity. Living Rev. Rel. 2019, 22, 5. [Google Scholar] [CrossRef]
- Dowker, F. Causal sets as discrete spacetime. Contemp. Phys. 2006, 47, 1–9. [Google Scholar] [CrossRef]
- Brun, T.A.; Mlodinow, L. Detecting discrete spacetime via matter interferometry. Phys. Rev. D 2019, 99, 015012. [Google Scholar] [CrossRef]
- Richardson, J.W.; Kwon, O.; Gustafson, H.R.; Hogan, C.; Kamai, B.L.; McCuller, L.P.; Meyer, S.S.; Stoughton, C.; Tomlin, R.E.; Weiss, R. Interferometric Constraints on Spacelike Coherent Rotational Fluctuations. Phys. Rev. Lett. 2021, 126, 241301. [Google Scholar] [CrossRef] [PubMed]
- Shababi, H.; Ourabah, K. Non-Gaussian statistics from the generalized uncertainty principle. Eur. Phys. J. Plus 2020, 135, 697. [Google Scholar] [CrossRef]
- Jizba, P.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. Decoherence limit of quantum systems obeying generalized uncertainty principle: New paradigm for Tsallis thermostatistics. Phys. Rev. D 2022, 105, L121501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giné, J.; Luciano, G.G. On the Apparent Discretization of Spacetime and Its Connection with the Cosmological Constant. Universe 2024, 10, 142. https://doi.org/10.3390/universe10030142
Giné J, Luciano GG. On the Apparent Discretization of Spacetime and Its Connection with the Cosmological Constant. Universe. 2024; 10(3):142. https://doi.org/10.3390/universe10030142
Chicago/Turabian StyleGiné, Jaume, and Giuseppe Gaetano Luciano. 2024. "On the Apparent Discretization of Spacetime and Its Connection with the Cosmological Constant" Universe 10, no. 3: 142. https://doi.org/10.3390/universe10030142
APA StyleGiné, J., & Luciano, G. G. (2024). On the Apparent Discretization of Spacetime and Its Connection with the Cosmological Constant. Universe, 10(3), 142. https://doi.org/10.3390/universe10030142