Automated High-Precision Recognition of Solar Filaments Based on an Improved U2-Net
Abstract
:1. Introduction
2. Data Preprocessing and Dataset Construction
2.1. Limb-Darkening Removal
2.2. Grayscale Transformation and K-Means Clustering
2.3. Particle Erosion, Multi-Closing Operations, and Hole Filling
2.4. Dataset Construction
3. Deep Learning
3.1. Neural Networks
3.1.1. U-Net Family
3.1.2. Attention Gate
3.1.3. Attention U2-Net
3.2. Experimental Setup and Training Parameters
3.3. Optimization Function and Loss Function
3.4. Evaluation Metrics
3.5. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.F.; Xu, A.; Ding, M. Some interesting topics provoked by the solar filament research in the past decade. Res. Astron. Astrophys. 2020, 20, 166. [Google Scholar] [CrossRef]
- Gilbert, H.R.; Holzer, T.E.; Burkepile, J.T.; Hundhausen, A.J. Active and Eruptive Prominences and Their Relationship to Coronal Mass Ejections. Astrophys. J. 2000, 537, 503. [Google Scholar] [CrossRef]
- Gopalswamy, N.; Shimojo, M.; Lu, W.; Yashiro, S.; Shibasaki, K.; Howard, R.A. Prominence Eruptions and Coronal Mass Ejection: A Statistical Study Using Microwave Observations. Astrophys. J. 2003, 586, 562. [Google Scholar] [CrossRef]
- Chen, P.F.; Harra, L.K.; Fang, C. Imaging and Spectroscopic Observations of a Filament Channel and the Implication to the Nature of Counter-streamings. Astrophys. J. 2014, 784, 50. [Google Scholar] [CrossRef]
- Pulkkinen, T. Space Weather: Terrestrial Perspective. Living Rev. Sol. Phys. 2007, 4, 1. [Google Scholar] [CrossRef]
- Steinegger, M.; Hanslmeier, A.; Otruba, W.; Freislich, H.; Denker, C.; Goode, P.R.; Marquette, W.M.; Varied, J.; Wang, H.; Luo, G.; et al. An Overview of the New Global High-Resolution H-alpha Network. Hvar Obs. Bull. 2000, 24, 179. [Google Scholar]
- Wöger, F.; Rimmele, T.; Ferayorni, A. The Daniel K. Inouye Solar Telescope (DKIST)/Visible Broadband Imager (VBI). Solar Phys. 2021, 296, 1–25. [Google Scholar] [CrossRef]
- Noda, C.Q.; Schlichenmaier, R.; Rubio, L.B.; Löfdahl, M.G.; Khomenko, E.; Jurčák, J.; Leenaarts, J.; Kuckein, C.; Manrique, S.G.; Gunár, S.; et al. The European Solar Telescope. Astron. Astrophys. 2022, 666, A21. [Google Scholar] [CrossRef]
- Li, C.; Fang, C.; Li, Z. Chinese H-alpha Solar Explorer (CHASE)—A complementary space mission to the ASO-S. Res. Astron. Astrophys. 2019, 19, 165–170. [Google Scholar] [CrossRef]
- Li, C.; Fang, C.; Li, Z. The Chinese Ha Solar Explorer (CHASE) mission: An overview. Sci. China Phys. Mech. Astron. 2022, 65, 289602. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. Int. Conf. Med. Image Comput. Comput.-Assist. Interv. 2015, 9351, 234–241. [Google Scholar]
- Iglovikov, V.; Mushinskiy, S.; Osin, V. Satellite Imagery Feature Detection using Deep Convolutional Neural Network: A Kaggle Competition. arXiv 2017, arXiv:1706.06169. [Google Scholar]
- Vojtekova, A.; Lieu, M. Learning to Denoise Astronomical Images with U-Nets. Mon. Not. R. Astron. Soc. 2020, 503, 3204–3215. [Google Scholar] [CrossRef]
- Asensio Ramos, A.; Cheung, M.C.M.; Chifu, I.; Gafeira, R. Machine learning in solar physics. Living Rev. Sol. Phys. 2023, 20, 4. [Google Scholar] [CrossRef]
- Zhu, G.; Lin, G.; Wang, D.; Liu, S.; Yang, X. Solar Filament Recognition Based on Deep Learning. Sol. Phys. 2019, 294, 117. [Google Scholar] [CrossRef]
- Liu, D.; Wei, S.; Lin, G.; Wang, H. Solar Filament Segmentation Based on Improved U-Nets. Sol. Phys. 2021, 296, 176. [Google Scholar] [CrossRef]
- Xin, Z.; Shang, Z. Solar Filament Recognition Based on Improved VNet. Astron. Res. Technol. 2022, 9, 54–64. [Google Scholar]
- Guo, X.; Yang, Y.; Feng, S.; Bai, X.; Liang, B.; Dai, W. Solar-Filament Detection and Classification Based on Deep Learning. Sol. Phys. 2007, 297, 104. [Google Scholar] [CrossRef]
- Zheng, Z.; Hao, Q.; Qiu, Y.; Hong, J.; Li, C.; Ding, M.D. Developing an Automated Detection, Tracking, and Analysis Method for Solar Filaments Observed by CHASE via Machine Learning. Astrophys. J. 2024, 965, 150. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June–18 July 1965; University of California Press: Berkeley, CA, USA, 1967. Volume I—Theory of Statistics. p. 281. [Google Scholar]
- The Solar Science Data Center of Nanjing University. Available online: https://www.ssdc.nju.edu.cn/home (accessed on 1 August 2023).
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. In Proceedings of the 1st Conference on Medical Imaging with Deep Learning, Amsterdam, The Netherlands, 11 April 2018. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection. Pattern Recognit. 2020, 106, 107404. [Google Scholar] [CrossRef]
- Li, W.; Lambert-Garcia, R.; Getley, A.C.M.; Kim, K.; Bhagavath, S.; Majkut, M.; Leung, C.L.A. AM-SegNet for additive manufacturing in situ X-ray image segmentation and feature quantification. Virtual Phys. Prototyp. 2024, 19, e2325572. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
Net | Non Attention Gate | With Attention Gate |
---|---|---|
Classic U-Net | U-Net | Attention U-Net |
RSU Nested U-Net | U2-Net | Attention U2-Net |
Evaluation Metrics | Formula |
---|---|
IoU | |
Precision | |
Recall | |
F1 | |
Accuracy |
Net | Precision | Recall | IoU | F1 | Accuracy |
---|---|---|---|---|---|
U-Net | 0.8041 | 0.8198 | 0.6790 | 0.8077 | 0.9985 |
Attention U-Net | 0.8072 | 0.8336 | 0.6883 | 0.8143 | 0.9985 |
U2-Net | 0.8137 | 0.8270 | 0.6924 | 0.8171 | 0.9986 |
Attention U2-Net (ours) | 0.8221 | 0.8469 | 0.7139 | 0.8323 | 0.9987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Li, Z. Automated High-Precision Recognition of Solar Filaments Based on an Improved U2-Net. Universe 2024, 10, 381. https://doi.org/10.3390/universe10100381
Jiang W, Li Z. Automated High-Precision Recognition of Solar Filaments Based on an Improved U2-Net. Universe. 2024; 10(10):381. https://doi.org/10.3390/universe10100381
Chicago/Turabian StyleJiang, Wendong, and Zhengyang Li. 2024. "Automated High-Precision Recognition of Solar Filaments Based on an Improved U2-Net" Universe 10, no. 10: 381. https://doi.org/10.3390/universe10100381
APA StyleJiang, W., & Li, Z. (2024). Automated High-Precision Recognition of Solar Filaments Based on an Improved U2-Net. Universe, 10(10), 381. https://doi.org/10.3390/universe10100381