Editorial to the Special Issue “Universe: Feature Papers 2023—Cosmology”
Funding
Acknowledgments
Conflicts of Interest
References
- Perlmutter, S. et al. [SNCP Collaboration] Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Riess, A.G. et al. [Supernova Search Team Collaboration] Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Spergel, D.N. et al. [WMAP Collaboration] First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. 2003, 148, 175. [Google Scholar] [CrossRef]
- Spergel, D.N. et al. [WMAP Collaboration] Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology. Astrophys. J. Suppl. 2007, 170, 377. [Google Scholar] [CrossRef]
- Komatsu, E. et al. [WMAP Collaboration] Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys. J. Suppl. 2009, 180, 330. [Google Scholar] [CrossRef]
- Komatsu, E. et al. [WMAP Collaboration] Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys. J. Suppl. 2011, 192, 18. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar]
- Akrami, Y. et al. [Planck] Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef]
- Tegmark, M. et al. [SDSS Collaboration] Cosmological parameters from SDSS and WMAP. Phys. Rev. D 2004, 69, 103501. [Google Scholar] [CrossRef]
- Seljak, U. et al. [SDSS Collaboration] Cosmological parameter analysis including SDSS Ly-alpha forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy. Phys. Rev. D 2005, 71, 103515. [Google Scholar] [CrossRef]
- Tsagas, C.G.; Challinor, A.; Maartens, R. Relativistic cosmology and large-scale structure. Phys. Rept. 2008, 465, 61–147. [Google Scholar] [CrossRef]
- Eisenstein, D.J. et al. [SDSS Collaboration] Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 2005, 633, 560. [Google Scholar] [CrossRef]
- Alam, S. et al. [eBOSS] Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys. Rev. D 2021, 103, 083533. [Google Scholar] [CrossRef]
- Jain, B.; Taylor, A. Cross-correlation Tomography: Measuring Dark Energy Evolution with Weak Lensing. Phys. Rev. Lett. 2003, 91, 141302. [Google Scholar] [CrossRef]
- Munshi, D.; Valageas, P.; Waerbeke, L.V.; Heavens, A. Cosmology with Weak Lensing Surveys. Phys. Rept. 2008, 462, 67–121. [Google Scholar] [CrossRef]
- Troxel, M.A.; Ishak, M. The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology. Phys. Rept. 2014, 558, 1–59. [Google Scholar] [CrossRef]
- Abbott, T.M.C. et al. [DES] Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2018, 98, 043526. [Google Scholar] [CrossRef]
- Abbott, T.M.C. et al. [DES] Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2022, 105, 023520. [Google Scholar] [CrossRef]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Sato, K. First Order Phase Transition of a Vacuum and Expansion of the Universe. Mon. Not. Roy. Astron. Soc. 1981, 195, 467–479. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. 1980, 91B, 99. [Google Scholar] [CrossRef]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. 1982, 108B, 389. [Google Scholar] [CrossRef]
- Available online: https://www.esa.int/Science_Exploration/Space_Science/Euclid (accessed on 16 September 2024).
- Laureijs, R. et al. [EUCLID] Euclid Definition Study Report. arXiv 2011, arXiv:1110.3193. [Google Scholar]
- Amendola, L. et al. [Euclid Theory Working Group] Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel. 2013, 16, 6. [Google Scholar] [CrossRef] [PubMed]
- Amendola, L.; Appleby, S.; Avgoustidis, A.; Bacon, D.; Baker, T.; Baldi, M.; Bartolo, N.; Blanchard, A.; Bonvin, C.; Borgani, S.; et al. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel. 2018, 21, 2. [Google Scholar]
- Blanchard, A. et al. [Euclid] Euclid preparation. VII. Forecast validation for Euclid cosmological probes. Astron. Astrophys. 2020, 642, A191. [Google Scholar] [CrossRef]
- Nesseris, S. et al. [Euclid] Euclid: Forecast constraints on consistency tests of the ΛCDM model. Astron. Astrophys. 2022, 660, A67. [Google Scholar] [CrossRef]
- Casas, S. et al. [Euclid] Euclid: Constraints on f(R) cosmologies from the spectroscopic and photometric primary probes. arXiv 2023, arXiv:2306.11053. [Google Scholar]
- Ballardini, M. et al. [Euclid] Euclid: The search for primordial features. arXiv 2024, arXiv:2309.17287. [Google Scholar]
- Eifler, T.; Miyatake, H.; Krause, E.; Heinrich, C.; Miranda, V.; Hirata, C.; Xu, J.; Hemmati, S.; Simet, M.; Capak, P.; et al. Cosmology with the Roman Space Telescope–multiprobe strategies. Mon. Not. Roy. Astron. Soc. 2021, 507, 1746–1761. [Google Scholar] [CrossRef]
- Available online: https://simonsobservatory.org/ (accessed on 16 September 2024).
- Ade, P. et al. [Simons Observatory] The Simons Observatory: Science goals and forecasts. JCAP 2019, 2, 056. [Google Scholar]
- Available online: https://webbtelescope.org/home (accessed on 16 September 2024).
- Gardner, J.P.; Mather, J.C.; Clampin, M.; Doyon, R.; Greenhouse, M.A.; Hammel, H.B.; Hutchings, J.B.; Jakobsen, P.; Lilly, S.J.; Long, K.S.; et al. The James Webb Space Telescope. Space Sci. Rev. 2006, 123, 485. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific and Virgo] Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific and Virgo] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR and SKA South Africa/MeerKAT] Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Barack, L.; Cardoso, V.; Nissanke, S.; Sotiriou, T.P.; Askar, A.; Belczynski, C.; Bertone, G.; Bon, E.; Blas, D.; Brito, R.; et al. Black holes, gravitational waves and fundamental physics: A roadmap. Class. Quant. Grav. 2019, 36, 143001. [Google Scholar] [CrossRef]
- Nakar, E. The electromagnetic counterparts of compact binary mergers. Phys. Rept. 2020, 886, 1–84. [Google Scholar] [CrossRef]
- Yokoyama, J. Implication of pulsar timing array experiments on cosmological gravitational wave detection. AAPPS Bull. 2021, 31, 17. [Google Scholar] [CrossRef]
- Domènech, G. Scalar Induced Gravitational Waves Review. Universe 2021, 7, 398. [Google Scholar] [CrossRef]
- Mandel, I.; Farmer, A. Merging stellar-mass binary black holes. Phys. Rept. 2022, 955, 1–24. [Google Scholar] [CrossRef]
- Agazie, G. et al. [NANOGrav] The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115. [Google Scholar] [CrossRef]
- Lue, A. The phenomenology of dvali-gabadadze-porrati cosmologies. Phys. Rept. 2006, 423, 1–48. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936. [Google Scholar] [CrossRef]
- Fujii, Y.; Maeda, K. The Scalar-Tensor Theory of Gravitation; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Padmanabhan, T. Dark energy and gravity. Gen. Rel. Grav. 2008, 40, 529–564. [Google Scholar] [CrossRef]
- Durrer, R.; Maartens, R. Dark energy and dark gravity: Theory overview. Gen. Rel. Grav. 2008, 40, 301–328. [Google Scholar] [CrossRef]
- Alexander, S.; Yunes, N. Chern-Simons Modified General Relativity. Phys. Rept. 2009, 480, 1–55. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories of Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- Cai, Y.F.; Saridakis, E.N.; Setare, M.R.; Xia, J.Q. Quintom Cosmology: Theoretical implications and observations. Phys. Rept. 2010, 493, 1–60. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. f(R) theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef]
- Amendola, L.; Tsujikawa, S. Dark Energy; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Faraoni, V.; Capozziello, S. Beyond Einstein Gravity; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Capozziello, S.; Laurentis, M.D. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept. 2012, 513, 1–189. [Google Scholar]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
- Padmanabhan, T.; Kothawala, D. Lanczos-Lovelock models of gravity. Phys. Rept. 2013, 531, 115–171. [Google Scholar] [CrossRef]
- Weinberg, D.H.; Mortonson, M.J.; Eisenstein, D.J.; Hirata, C.; Riess, A.G.; Rozo, E. Observational Probes of Cosmic Acceleration. Phys. Rept. 2013, 530, 87–255. [Google Scholar]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef]
- Joyce, A.; Jain, B.; Khoury, J.; Trodden, M. Beyond the Cosmological Standard Model. Phys. Rept. 2015, 568, 1–98. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D. Inflationary cosmology in modified gravity theories. Symmetry 2015, 7, 220–240. [Google Scholar] [CrossRef]
- Cai, Y.F.; Capozziello, S.; Laurentis, M.D.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rept. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Li, M. Holographic Dark Energy. Phys. Rept. 2017, 696, 1–57. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. Born–Infeld inspired modifications of gravity. Phys. Rept. 2018, 727, 1–129. [Google Scholar] [CrossRef]
- Bahamonde, S.; Böhmer, C.G.; Carloni, S.; Copeland, E.J.; Fang, W.; Tamanini, N. Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rept. 2018, 775–777, 1–122. [Google Scholar] [CrossRef]
- Adami, H.; Setare, M.R.; Sisman, T.C.; Tekin, B. Conserved Charges in Extended Theories of Gravity. Phys. Rept. 2019, 834, 1. [Google Scholar] [CrossRef]
- Heisenberg, L. A systematic approach to generalisations of General Relativity and their cosmological implications. Phys. Rept. 2019, 796, 1–113. [Google Scholar] [CrossRef]
- Langlois, D. Dark energy and modified gravity in degenerate higher-order scalar–tensor (DHOST) theories: A review. Int. J. Mod. Phys. D 2019, 28, 1942006. [Google Scholar] [CrossRef]
- Frusciante, N.; Perenon, L. Effective field theory of dark energy: A review. Phys. Rept. 2020, 857, 1–63. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. Stellar structure models in modified theories of gravity: Lessons and challenges. Phys. Rept. 2020, 876, 1–75. [Google Scholar] [CrossRef]
- Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Moniz, P.V.; Capozziello, S.; Jimenez, J.B.; Laurentis, M.D.; Olmo, G.J. Modified Gravity and Cosmology; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Faraoni, V.; Giusti, A.; Fahim, B.H. Spherical inhomogeneous solutions of Einstein and scalar–tensor gravity: A map of the land. Phys. Rept. 2021, 925, 1–58. [Google Scholar] [CrossRef]
- Bamba, K. Review on Dark Energy Problem and Modified Gravity Theories. LHEP 2022, 2022, 352. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.L.; Mifsud, J.; Valentino, E.D. Teleparallel gravity: From theory to cosmology. Rept. Prog. Phys. 2023, 86, 026901. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Aoki, K.; Chinone, Y.; Kimura, R.; Kobayashi, T.; Miyatake, H.; Yamauchi, D.; Yokoyama, S.; Akitsu, K.; Hiramatsu, T.; et al. Cosmological gravity probes: Connecting recent theoretical developments to forthcoming observations. PTEP 2023, 2023, 072E01. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Giannakoudi, I.; Fronimos, F.P.; Lymperiadou, E.C. Recent Advances in Inflation. Symmetry 2023, 15, 1701. [Google Scholar] [CrossRef]
- de Haro, J.; Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K.; Pan, S. Finite-time cosmological singularities and the possible fate of the Universe. Phys. Rept. 2023, 1034, 1–114. [Google Scholar] [CrossRef]
- Heisenberg, L. Review on f(Q) gravity. Phys. Rept. 2024, 1066, 1–78. [Google Scholar] [CrossRef]
- Avsajanishvili, O.; Chitov, G.Y.; Kahniashvili, T.; Mandal, S.; Samushia, L. Observational Constraints on Dynamical Dark Energy Models. Universe 2024, 10, 122. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bamba, K.; Bhatti, M.Z.; Farwa, U. Quasi-static evolution of axially and reflection symmetric large-scale configuration. Int. J. Geom. Meth. Mod. Phys. 2024, 21, 2430005. [Google Scholar] [CrossRef]
- Gasperini, M.; Veneziano, G. The Pre-big bang scenario in string cosmology. Phys. Rept. 2003, 373, 1–212. [Google Scholar] [CrossRef]
- Kiritsis, E. D-branes in standard model building, gravity and cosmology. Phys. Rept. 2005, 421, 105–190, Erratum in Phys. Rept. 2006, 429, 121–122. [Google Scholar] [CrossRef]
- Davidson, S.; Nardi, E.; Nir, Y. Leptogenesis. Phys. Rept. 2008, 466, 105–177. [Google Scholar] [CrossRef]
- Novello, M.; Bergliaffa, S.E.P. Bouncing Cosmologies. Phys. Rept. 2008, 463, 127–213. [Google Scholar] [CrossRef]
- Lehners, J.L. Ekpyrotic and Cyclic Cosmology. Phys. Rept. 2008, 465, 223–263. [Google Scholar] [CrossRef]
- Mazumdar, A.; Rocher, J. Particle physics models of inflation and curvaton scenarios. Phys. Rept. 2011, 497, 85–215. [Google Scholar] [CrossRef]
- Maleknejad, A.; Sheikh-Jabbari, M.M.; Soda, J. Gauge Fields and Inflation. Phys. Rept. 2013, 528, 161–261. [Google Scholar] [CrossRef]
- Battefeld, D.; Peter, P. A Critical Review of Classical Bouncing Cosmologies. Phys. Rept. 2015, 571, 1–66. [Google Scholar] [CrossRef]
- Sato, K.; Yokoyama, J. Inflationary cosmology: First 30+ years. Int. J. Mod. Phys. D 2015, 24, 1530025. [Google Scholar] [CrossRef]
- Asadi, P.; Bansal, S.; Berlin, A.; Co, R.T.; Croon, D.; Cui, Y.; Curtin, D.; Cyr-Racine, F.Y.; Davoudiasl, H.; Rose, L.D.; et al. Early-Universe Model Building. arXiv 2022, arXiv:2203.06680. [Google Scholar]
- Cicoli, M.; Conlon, J.P.; Maharana, A.; Parameswaran, S.; Quevedo, F.; Zavala, I. String cosmology: From the early universe to today. Phys. Rept. 2024, 1059, 1–155. [Google Scholar]
- Donnay, L. Celestial holography: An asymptotic symmetry perspective. Phys. Rept. 2024, 1073, 1–41. [Google Scholar] [CrossRef]
- Kodama, H.; Sasaki, M. Cosmological Perturbation Theory. Prog. Theor. Phys. Suppl. 1984, 78, 1–166. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 1992, 215, 203–333. [Google Scholar] [CrossRef]
- Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R. Large scale structure of the universe and cosmological perturbation theory. Phys. Rept. 2002, 367, 1–248. [Google Scholar] [CrossRef]
- Malik, K.A.; Wands, D. Cosmological perturbations. Phys. Rept. 2009, 475, 1–51. [Google Scholar] [CrossRef]
- Palti, E. The Swampland: Introduction and Review. Fortsch. Phys. 2019, 67, 1900037. [Google Scholar] [CrossRef]
- van Beest, M.; Calderón-Infante, J.; Mirfendereski, D.; Valenzuela, I. Lectures on the Swampland Program in String Compactifications. Phys. Rept. 2022, 989, 1–50. [Google Scholar] [CrossRef]
- Van Riet, T.; Zoccarato, G. Beginners lectures on flux compactifications and related Swampland topics. Phys. Rept. 2024, 1049, 1–51. [Google Scholar] [CrossRef]
- Padmanabhan, T. Cosmological constant: The Weight of the vacuum. Phys. Rept. 2003, 380, 235–320. [Google Scholar] [CrossRef]
- Dolgov, A.D. Neutrinos in cosmology. Phys. Rept. 2002, 370, 333–535. [Google Scholar] [CrossRef]
- Lesgourgues, J.; Pastor, S. Massive neutrinos and cosmology. Phys. Rept. 2006, 429, 307–379. [Google Scholar] [CrossRef]
- Kusenko, A. Sterile neutrinos: The Dark side of the light fermions. Phys. Rept. 2009, 481, 1–28. [Google Scholar] [CrossRef]
- Abazajian, K.N. Sterile neutrinos in cosmology. Phys. Rept. 2017, 711–712, 1–28. [Google Scholar] [CrossRef]
- Dasgupta, B.; Kopp, J. Sterile Neutrinos. Phys. Rept. 2021, 928, 1–63. [Google Scholar] [CrossRef]
- Marsh, D.J.E. Axion Cosmology. Phys. Rept. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Yokoyama, J. Formation of primordial black holes in the inflationary universe. Phys. Rept. 1998, 307, 133–139. [Google Scholar] [CrossRef]
- Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on primordial black holes. Rept. Prog. Phys. 2021, 84, 116902. [Google Scholar] [CrossRef]
- Özsoy, O.; Tasinato, G. Inflation and Primordial Black Holes. Universe 2023, 9, 203. [Google Scholar] [CrossRef]
- Carr, B.; Clesse, S.; Garcia-Bellido, J.; Hawkins, M.; Kuhnel, F. Observational evidence for primordial black holes: A positivist perspective. Phys. Rept. 2024, 1054, 1–68. [Google Scholar] [CrossRef]
- Domènech, G. Lectures on Gravitational Wave Signatures of Primordial Black Holes. arXiv 2023, arXiv:2307.06964. [Google Scholar]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rept. 2005, 405, 279–390. [Google Scholar] [CrossRef]
- Hooper, D.; Profumo, S. Dark Matter and Collider Phenomenology of Universal Extra Dimensions. Phys. Rept. 2007, 453, 29–115. [Google Scholar] [CrossRef]
- Zurek, K.M. Asymmetric Dark Matter: Theories, Signatures, and Constraints. Phys. Rept. 2014, 537, 91–121. [Google Scholar] [CrossRef]
- Baer, H.; Choi, K.Y.; Kim, J.E.; Roszkowski, L. Dark matter production in the early Universe: Beyond the thermal WIMP paradigm. Phys. Rept. 2015, 555, 1–60. [Google Scholar] [CrossRef]
- Aramaki, T.; Boggs, S.; Bufalino, S.; Dal, L.; von Doetinchem, P.; Donato, F.; Fornengo, N.; Fuke, H.; Grefe, M.; Hailey, C.; et al. Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuterons. Phys. Rept. 2016, 618, 1–37. [Google Scholar] [CrossRef]
- Mayet, F.; Green, A.M.; Battat, J.B.R.; Billard, J.; Bozorgnia, N.; Gelmini, G.B.; Gondolo, P.; Kavanagh, B.J.; Lee, S.K.; Loomba, D.; et al. A review of the discovery reach of directional Dark Matter detection. Phys. Rept. 2016, 627, 1–49. [Google Scholar] [CrossRef]
- Tulin, S.; Yu, H.B. Dark Matter Self-interactions and Small Scale Structure. Phys. Rept. 2018, 730, 1–57. [Google Scholar] [CrossRef]
- Buckley, M.R.; Peter, A.H.G. Gravitational probes of dark matter physics. Phys. Rept. 2018, 761, 1–60. [Google Scholar] [CrossRef]
- Arcadi, G.; Djouadi, A.; Raidal, M. Dark Matter through the Higgs portal. Phys. Rept. 2020, 842, 1–180. [Google Scholar] [CrossRef]
- Buen-Abad, M.A.; Essig, R.; McKeen, D.; Zhong, Y.M. Cosmological constraints on dark matter interactions with ordinary matter. Phys. Rept. 2022, 961, 1–35. [Google Scholar] [CrossRef]
- Ahluwalia, D.V.; da Silva, J.M.H.; Lee, C.Y.; Liu, Y.X.; Pereira, S.H.; Sorkhi, M.M. Mass dimension one fermions: Constructing darkness. Phys. Rept. 2022, 967, 1–43. [Google Scholar] [CrossRef]
- Bramante, J.; Raj, N. Dark matter in compact stars. Phys. Rept. 2024, 1052, 1–48. [Google Scholar] [CrossRef]
- Grasso, D.; Rubinstein, H.R. Magnetic fields in the early universe. Phys. Rept. 2001, 348, 163–266. [Google Scholar] [CrossRef]
- Barrow, J.D.; Maartens, R.; Tsagas, C.G. Cosmology with inhomogeneous magnetic fields. Phys. Rept. 2007, 449, 131–171. [Google Scholar] [CrossRef]
- Subramanian, K. Magnetic fields in the early universe. Astron. Nachr. 2010, 331, 110–120. [Google Scholar] [CrossRef]
- Kandus, A.; Kunze, K.E.; Tsagas, C.G. Primordial magnetogenesis. Phys. Rept. 2011, 505, 1–58. [Google Scholar] [CrossRef]
- Yamazaki, D.G.; Kajino, T.; Mathew, G.J.; Ichiki, K. The Search for a Primordial Magnetic Field. Phys. Rept. 2012, 517, 141–167. [Google Scholar] [CrossRef]
- Iocco, F.; Mangano, G.; Miele, G.; Pisanti, O.; Serpico, P.D. Primordial Nucleosynthesis: From precision cosmology to fundamental physics. Phys. Rept. 2009, 472, 1–76. [Google Scholar] [CrossRef]
- Pitrou, C.; Coc, A.; Uzan, J.P.; Vangioni, E. Precision big bang nucleosynthesis with improved Helium-4 predictions. Phys. Rept. 2018, 754, 1–66. [Google Scholar] [CrossRef]
- Knox, L.; Millea, M. Hubble constant hunter’s guide. Phys. Rev. D 2020, 101, 043533. [Google Scholar] [CrossRef]
- Asgari, M. et al. [KiDS] KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. 2021, 645, A104. [Google Scholar] [CrossRef]
- Valentino, E.D.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An update. New Astron. Rev. 2022, 95, 101659. [Google Scholar]
- Schöneberg, N.; Abellán, G.F.; Sánchez, A.P.; Witte, S.J.; Poulin, V.; Lesgourgues, J. The H0 Olympics: A fair ranking of proposed models. Phys. Rept. 2022, 984, 1–55. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, O.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 2022, 34, 49–211. [Google Scholar]
- Poulin, V.; Smith, T.L.; Karwal, T. The Ups and Downs of Early Dark Energy solutions to the Hubble tension: A review of models, hints and constraints circa 2023. Phys. Dark Univ. 2023, 42, 101348. [Google Scholar] [CrossRef]
- Furlanetto, S.; Oh, S.P.; Briggs, F. Cosmology at Low Frequencies: The 21 cm Transition and the High-Redshift Universe. Phys. Rept. 2006, 433, 181–301. [Google Scholar] [CrossRef]
- Barkana, R. The Rise of the First Stars: Supersonic Streaming, Radiative Feedback, and 21-cm Cosmology. Phys. Rept. 2016, 645, 1–59. [Google Scholar] [CrossRef]
- Bartelmann, M.; Schneider, P. Weak gravitational lensing. Phys. Rept. 2001, 340, 291–472. [Google Scholar] [CrossRef]
- Lewis, A.; Challinor, A. Weak gravitational lensing of the CMB. Phys. Rept. 2006, 429, 1–65. [Google Scholar] [CrossRef]
- Barnacka, A. Gravitational Lenses as High-Resolution Telescopes. Phys. Rept. 2018, 778–779, 1–46. [Google Scholar] [CrossRef]
- Durrer, R.; Kunz, M.; Melchiorri, A. Cosmic structure formation with topological defects. Phys. Rept. 2002, 364, 1–81. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity and the thermodynamics of horizons. Phys. Rept. 2005, 406, 49–125. [Google Scholar] [CrossRef]
- Hollands, S.; Wald, R.M. Quantum fields in curved spacetime. Phys. Rept. 2015, 574, 1–35. [Google Scholar] [CrossRef]
- Porto, R.A. The effective field theorist’s approach to gravitational dynamics. Phys. Rept. 2016, 633, 1–104. [Google Scholar] [CrossRef]
- Dayal, P.; Ferrara, A. Early galaxy formation and its large-scale effects. Phys. Rept. 2018, 780–782, 1–64. [Google Scholar] [CrossRef]
- Adams, F.C. The degree of fine-tuning in our universe—And others. Phys. Rept. 2019, 807, 1–111. [Google Scholar] [CrossRef]
- Perlick, V.; Tsupko, O.Y. Calculating black hole shadows: Review of analytical studies. Phys. Rept. 2022, 947, 1–39. [Google Scholar] [CrossRef]
- Brout, D.; Scolnic, D.; Popovic, B.; Riess, A.G.; Zuntz, J.; Kessler, R.; Carr, A.; Davis, T.M.; Hinton, S.; Jones, D.; et al. The Pantheon+ Analysis: Cosmological Constraints. Astrophys. J. 2022, 938, 110. [Google Scholar] [CrossRef]
- Giovannetti, E.; Maione, F.; Montani, G. Quantum Big Bounce of the Isotropic Universe Using Relational Time. Universe 2023, 9, 373. [Google Scholar] [CrossRef]
- Marochnik, L. Nothing into Something and Vice Versa: A Cosmological Scenario. Universe 2023, 9, 445. [Google Scholar] [CrossRef]
- Capistrano, A.J.S.; Cabral, L.A. Effective Potential for Quintessential Inflation Driven by Extrinsic Gravity. Universe 2023, 9, 497. [Google Scholar] [CrossRef]
- Staicova, D.; Stoilov, M. Electromagnetic Waves in Cosmological Spacetime. Universe 2023, 9, 292. [Google Scholar] [CrossRef]
- Fanizza, G.; Gasperini, M.; Marozzi, G. A Simple, Exact Formulation of Number Counts in the Geodesic-Light-Cone Gauge. Universe 2023, 9, 327. [Google Scholar] [CrossRef]
- Medel-Esquivel, R.; Gómez-Vargas, I.; Sánchez, A.A.M.; García-Salcedo, R.; Vázquez, J.A. Cosmological Parameter Estimation with Genetic Algorithms. Universe 2024, 10, 11. [Google Scholar] [CrossRef]
- Stenflo, J.O. Cosmological Constant from Boundary Condition and Its Implications beyond the Standard Model. Universe 2023, 9, 103. [Google Scholar] [CrossRef]
- Socorro, J.; Rosales, J.J. Quantum Fractionary Cosmology: K-Essence Theory. Universe 2023, 9, 185. [Google Scholar] [CrossRef]
- Yershov, V.N. Fitting Type Ia Supernova Data to a Cosmological Model Based on Einstein-Newcomb-De Sitter Space. Universe 2023, 9, 204. [Google Scholar] [CrossRef]
- Paliathanasis, A. Revise the Phase-Space Analysis of the Dynamical Spacetime Unified Dark Energy Cosmology. Universe 2023, 9, 406. [Google Scholar] [CrossRef]
- Ong, Y.C. An Effective Sign Switching Dark Energy: Lotka–Volterra Model of Two Interacting Fluids. Universe 2023, 9, 437. [Google Scholar] [CrossRef]
- Majumder, B.; Khlopov, M.; Ray, S.; Manna, G. Geodesic Structure of Generalized Vaidya Spacetime through the K-Essence. Universe 2023, 9, 510. [Google Scholar] [CrossRef]
- Alcántara-Pérez, Y.B.; García-Aspeitia, M.A.; Martínez-Huerta, H.; Hernández-Almada, A. MeV Dark Energy Emission from a De Sitter Universe. Universe 2023, 9, 513. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Vernieri, D.; Lobo, F.S.N. Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction. Universe 2023, 9, 181. [Google Scholar] [CrossRef]
- Alfaro, J.; Rubio, C.; Martín, M.S. Cosmological Fluctuations in Delta Gravity. Universe 2023, 9, 315. [Google Scholar] [CrossRef]
- Tabatabaei, J.; Banihashemi, A.; Baghram, S.; Mashhoon, B. Anisotropic Cosmology in the Local Limit of Nonlocal Gravity. Universe 2023, 9, 377. [Google Scholar] [CrossRef]
- Brito, F.A.; Borges, C.H.A.B.; Campos, J.A.V.; Costa, F.G. Weak Coupling Regime in Dilatonic Cosmology. Universe 2024, 10, 134. [Google Scholar] [CrossRef]
- Zhao, Z.C.; Wang, S. Bayesian Implications for the Primordial Black Holes from NANOGrav’s Pulsar-Timing Data Using the Scalar-Induced Gravitational Waves. Universe 2023, 9, 157. [Google Scholar] [CrossRef]
- Gaztanaga, E. Do White Holes Exist? Universe 2023, 9, 194. [Google Scholar] [CrossRef]
- Triantafyllopoulos, A.; Kapsabelis, E.; Stavrinos, P.C. Raychaudhuri Equations, Tidal Forces, and the Weak-Field Limit in Schwarzshild–Finsler–Randers Spacetime. Universe 2024, 10, 26. [Google Scholar] [CrossRef]
- Cervantes-Cota, J.L.; Galindo-Uribarri, S.; Smoot, G.F. The Unsettled Number: Hubble’s Tension. Universe 2023, 9, 501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamba, K. Editorial to the Special Issue “Universe: Feature Papers 2023—Cosmology”. Universe 2024, 10, 380. https://doi.org/10.3390/universe10100380
Bamba K. Editorial to the Special Issue “Universe: Feature Papers 2023—Cosmology”. Universe. 2024; 10(10):380. https://doi.org/10.3390/universe10100380
Chicago/Turabian StyleBamba, Kazuharu. 2024. "Editorial to the Special Issue “Universe: Feature Papers 2023—Cosmology”" Universe 10, no. 10: 380. https://doi.org/10.3390/universe10100380
APA StyleBamba, K. (2024). Editorial to the Special Issue “Universe: Feature Papers 2023—Cosmology”. Universe, 10(10), 380. https://doi.org/10.3390/universe10100380