Reconstruction of Type II Supergravities via O(d) × O(d) Duality Invariants
Abstract
:1. Introduction
2. Brief Review of Transformations
3. Duality Invariants
3.1. Duality Invariants and for NS-NS Bosonic Fields
3.2. Duality Invariants for Fermionic Fields
3.3. Check of Duality Invariants for Classical Solutions
4. Construction of NS-NS Bosonic Terms in Type II Supergravity via Duality Invariants
5. Construction of Fermionic Bilinear Terms in Type II Supergravities via Duality Invariants
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Review of Type II Supergravities
1 | We neglect R-R fields since these are already completed in ref. [20]. |
References
- Kikkawa, K.; Yamasaki, M. Casimir Effects in Superstring Theories. Phys. Lett. B 1984, 149, 357–360. [Google Scholar] [CrossRef]
- Sakai, N.; Senda, I. Vacuum Energies of String Compactified on Torus. Prog. Theor. Phys. 1986, 75, 692, Erratum in Prog. Theor. Phys. 1987, 77, 773. [Google Scholar] [CrossRef]
- Schwarz, J.H. Covariant Field Equations of Chiral N = 2 D = 10 Supergravity. Nucl. Phys. B 1983, 226, 269. [Google Scholar] [CrossRef]
- Huq, M.; Namazie, M.A. Kaluza-Klein Supergravity in Ten-dimensions. Class. Quant. Grav. 1985, 2, 293, Erratum in Class. Quant. Grav. 1985, 2, 597. [Google Scholar] [CrossRef]
- Buscher, T.H. A Symmetry of the String Background Field Equations. Phys. Lett. B 1987, 194, 59–62. [Google Scholar] [CrossRef]
- Buscher, T.H. Path Integral Derivation of Quantum Duality in Nonlinear Sigma Models. Phys. Lett. B 1988, 201, 466–472. [Google Scholar] [CrossRef]
- Narain, K.S. New Heterotic String Theories in Uncompactified Dimensions < 10. Phys. Lett. B 1986, 169, 41–46. [Google Scholar]
- Narain, K.S.; Sarmadi, M.H.; Witten, E. A Note on Toroidal Compactification of Heterotic String Theory. Nucl. Phys. B 1987, 279, 369–379. [Google Scholar] [CrossRef]
- Meissner, K.A.; Veneziano, G. Symmetries of cosmological superstring vacua. Phys. Lett. B 1991, 267, 33–36. [Google Scholar] [CrossRef]
- Hassan, S.F.; Sen, A. Twisting classical solutions in heterotic string theory. Nucl. Phys. B 1992, 375, 103–118. [Google Scholar] [CrossRef]
- Maharana, J.; Schwarz, J.H. Noncompact symmetries in string theory. Nucl. Phys. B 1993, 390, 3–32. [Google Scholar] [CrossRef]
- Sen, A. O(d) x O(d) symmetry of the space of cosmological solutions in string theory, scale factor duality and two-dimensional black holes. Phys. Lett. B 1991, 271, 295–300. [Google Scholar] [CrossRef]
- Hull, C.M.; Townsend, P.K. Unity of superstring dualities. Nucl. Phys. B 1995, 438, 109–137. [Google Scholar] [CrossRef]
- Witten, E. String theory dynamics in various dimensions. Nucl. Phys. B 1995, 443, 85–126. [Google Scholar] [CrossRef]
- Brace, D.; Morariu, B.; Zumino, B. T duality and Ramond-Ramond backgrounds in the matrix model. Nucl. Phys. B 1999, 549, 181–193. [Google Scholar] [CrossRef]
- Fukuma, M.; Oota, T.; Tanaka, H. Comments on T dualities of Ramond-Ramond potentials on tori. Prog. Theor. Phys. 2000, 103, 425–446. [Google Scholar] [CrossRef]
- Hassan, S.F. T Duality and nonlocal supersymmetries. Nucl. Phys. B 1996, 460, 362–378. [Google Scholar] [CrossRef]
- Hassan, S.F. O(d,d:R) deformations of complex structures and extended world sheet supersymmetry. Nucl. Phys. B 1995, 454, 86–102. [Google Scholar] [CrossRef]
- Hassan, S.F. T duality, space-time spinors and RR fields in curved backgrounds. Nucl. Phys. B 2000, 568, 145–161. [Google Scholar] [CrossRef]
- Hassan, S.F. SO(d,d) transformations of Ramond-Ramond fields and space-time spinors. Nucl. Phys. B 2000, 583, 431–453. [Google Scholar] [CrossRef]
- Siegel, W. Superspace duality in low-energy superstrings. Phys. Rev. D 1993, 48, 2826–2837. [Google Scholar] [CrossRef] [PubMed]
- Hatsuda, M.; Kamimura, K.; Siegel, W. Superspace with manifest T-duality from type II superstring. JHEP 2014, 6, 039. [Google Scholar] [CrossRef]
- Hatsuda, M.; Kamimura, K.; Siegel, W. Ramond-Ramond gauge fields in superspace with manifest T-duality. JHEP 2015, 2, 134. [Google Scholar] [CrossRef]
- Sfetsos, K.; Thompson, D.C. On non-abelian T-dual geometries with Ramond fluxes. Nucl. Phys. B 2011, 846, 21–42. [Google Scholar] [CrossRef]
- Lozano, Y.; Colgain, E.O.; Sfetsos, K.; Thompson, D.C. Non-abelian T-duality, Ramond Fields and Coset Geometries. JHEP 2011, 6, 106. [Google Scholar] [CrossRef]
- Siegel, W. Two vierbein formalism for string inspired axionic gravity. Phys. Rev. D 1993, 47, 5453–5459. [Google Scholar] [CrossRef] [PubMed]
- Hull, C.; Zwiebach, B. Double Field Theory. JHEP 2009, 9, 099. [Google Scholar] [CrossRef]
- Aldazabal, G.; Marques, D.; Nunez, C. Double Field Theory: A Pedagogical Review. Class. Quant. Grav. 2013, 30, 163001. [Google Scholar] [CrossRef]
- Hohm, O.; Kwak, S.K.; Zwiebach, B. Unification of Type II Strings and T-duality. Phys. Rev. Lett. 2011, 107, 171603. [Google Scholar] [CrossRef]
- Jeon, I.; Lee, K.; Park, J.H. Incorporation of fermions into double field theory. JHEP 2011, 11, 025. [Google Scholar] [CrossRef]
- Jeon, I.; Lee, K.; Park, J.H.; Suh, Y. Stringy Unification of Type IIA and IIB Supergravities under N = 2 D = 10 Supersymmetric Double Field Theory. Phys. Lett. B 2013, 723, 245–250. [Google Scholar] [CrossRef]
- Hitchin, N. Generalized Calabi-Yau manifolds. Quart. J. Math. 2003, 54, 281–308. [Google Scholar] [CrossRef]
- Gualtieri, M. Generalized complex geometry. arXiv 2004, arXiv:math/0401221. [Google Scholar]
- Hitchin, N. Lectures on generalized geometry. arXiv 2010, arXiv:1008.0973. [Google Scholar] [CrossRef]
- Coimbra, A.; Strickland-Constable, C.; Waldram, D. Supergravity as Generalised Geometry I: Type II Theories. JHEP 2011, 11, 91. [Google Scholar] [CrossRef]
- Geissbuhler, D.; Marques, D.; Nunez, C.; Penas, V. Exploring Double Field Theory. JHEP 2013, 6, 101. [Google Scholar] [CrossRef]
- de Boer, J.; Shigemori, M. Exotic branes and non-geometric backgrounds. Phys. Rev. Lett. 2010, 104, 251603. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Okada, T.; Sakatani, Y. Rotating string in doubled geometry with generalized isometries. Phys. Rev. D 2012, 86, 046001. [Google Scholar] [CrossRef]
- Hassler, F.; Lust, D. Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections. JHEP 2013, 7, 48. [Google Scholar] [CrossRef]
- Fernández-Melgarejo, J.J.; Kimura, T.; Sakatani, Y. Weaving the Exotic Web. JHEP 2018, 9, 72. [Google Scholar] [CrossRef]
- Kimura, T.; Sasaki, S. Worldsheet instanton corrections to 522-brane geometry. JHEP 2013, 8, 126. [Google Scholar] [CrossRef]
- Sakamoto, J.I.; Sakatani, Y.; Yoshida, K. Homogeneous Yang-Baxter deformations as generalized diffeomorphisms. J. Phys. A 2017, 50, 415401. [Google Scholar] [CrossRef]
- Hohm, O. Background Independence and Duality Invariance in String Theory. Phys. Rev. Lett. 2017, 118, 131601. [Google Scholar] [CrossRef] [PubMed]
- Hohm, O. Background Independent Double Field Theory at Order α’: Metric vs. Frame-like Geometry. Phys. Rev. D 2017, 95, 066018. [Google Scholar] [CrossRef]
- Meissner, K.A. Symmetries of higher order string gravity actions. Phys. Lett. B 1997, 392, 298–304. [Google Scholar] [CrossRef]
- Garousi, M.R. Four-derivative couplings via the T-duality invariance constraint. Phys. Rev. D 2019, 99, 126005. [Google Scholar] [CrossRef]
- Eloy, C.; Hohm, O.; Samtleben, H. Duality Invariance and Higher Derivatives. Phys. Rev. D 2020, 101, 126018. [Google Scholar] [CrossRef]
- Marques, D.; Nunez, C.A. T-duality and α’-corrections. JHEP 2015, 10, 84. [Google Scholar] [CrossRef]
- Hohm, O.; Zwiebach, B. Duality invariant cosmology to all orders in α’. Phys. Rev. D 2019, 100, 126011. [Google Scholar] [CrossRef]
- Codina, T.; Hohm, O.; Marques, D. String Dualities at Order α’3. Phys. Rev. Lett. 2021, 126, 171602. [Google Scholar] [CrossRef]
- David, M.; Liu, J.T. T duality and hints of generalized geometry in string α’ corrections. Phys. Rev. D 2022, 106, 106008. [Google Scholar] [CrossRef]
- David, M.; Liu, J.T. T-duality building blocks for α’ string corrections. Phys. Rev. D 2023, 107, 046008. [Google Scholar] [CrossRef]
- Garousi, M.R. Effective action of type II superstring theories at order α′3: NS-NS couplings. JHEP 2021, 2, 157. [Google Scholar] [CrossRef]
- Garousi, M.R. On NS-NS couplings at order α’3. Nucl. Phys. B 2021, 971, 115510. [Google Scholar] [CrossRef]
- Garousi, M.R. Higher-derivative couplings and torsional Riemann curvature. JHEP 2022, 12, 139. [Google Scholar] [CrossRef]
- Bergshoeff, E.; Kallosh, R.; Ortin, T.; Roest, D.; Proeyen, A.V. New formulations of D = 10 supersymmetry and D8-O8 domain walls. Class. Quant. Grav. 2001, 18, 3359–3382. [Google Scholar] [CrossRef]
- Imamura, Y. Available online: http://www.th.phys.titech.ac.jp/~imamura/note/sugra.pdf (accessed on 5 January 2024). (In Japanese).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyakutake, Y.; Maeyama, K. Reconstruction of Type II Supergravities via O(d) × O(d) Duality Invariants. Universe 2024, 10, 28. https://doi.org/10.3390/universe10010028
Hyakutake Y, Maeyama K. Reconstruction of Type II Supergravities via O(d) × O(d) Duality Invariants. Universe. 2024; 10(1):28. https://doi.org/10.3390/universe10010028
Chicago/Turabian StyleHyakutake, Yoshifumi, and Kiyoto Maeyama. 2024. "Reconstruction of Type II Supergravities via O(d) × O(d) Duality Invariants" Universe 10, no. 1: 28. https://doi.org/10.3390/universe10010028
APA StyleHyakutake, Y., & Maeyama, K. (2024). Reconstruction of Type II Supergravities via O(d) × O(d) Duality Invariants. Universe, 10(1), 28. https://doi.org/10.3390/universe10010028