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Abstract: We reconstruct type II supergravities by using building blocks of O(d)× O(d) invariants.
These invariants are obtained by explicitly analyzing O(d)× O(d) transformations of 10 dimensional
massless fields. Similar constructions are performed by employing double field theory or generalized
geometry, but we completed the reconstruction within the framework of the supergravities.
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1. Introduction

Dualities among superstring theories play important roles to reveal both perturbative
and non-perturbative aspects of superstring theories. Especially, type IIA superstring
theory is related to type IIB superstring theory by T-duality, which interchanges Kaluza–
Klein modes (KK modes) and winding modes of a compactified circle direction [1,2]. In the
low energy limit, massive modes in the type II superstring theories are decoupled, and the
effective actions are well described by corresponding type II supergravity theories [3,4].
The T-duality transformations of background massless fields are well known as Buscher
rule [5,6].

When the superstring theories are toroidally compactified on Td, the duality trans-
formation can be generalized to O(d, d) duality [7,8]. Actually it is argued in ref. [9] that,
by assuming all fields depend only on a time coordinate, NS-NS sector in the low energy
effective action, which consists of a graviton, a dilaton and Kalb–Ramond B field (B field),
can be rewritten in manifestly O(d, d) invariant expression. In addition, O(d, d) invariance
of the NS-NS sector in general background was confirmed in refs. [10,11]. Furthermore, it
is also proven that O(d, d) invariance can be extended to all orders in α′ corrections to the
low energy effective action [12].

O(d, d) transformation of the R-R sector has been investigated in refs. [13–20]. One
approach is to note that R-R potentials fill up a spinor representation of SO(d, d) duality
transformation [13,14]. The spinor representation of R-R potentials combined with B field
was explicitly constructed when the compactified space was T3 [15], and a general case
of Td compactification was completed in ref. [16]. Another approach was investigated
by Hassan in refs. [17–20], where the consistency of the duality transformation with local
supersymmetry transformation is imposed. In this approach, the O(d, d) transformations of
dilatinos and gravitinos are explicitly written in terms of 10 dimensional forms, and those
of R-R potentials are derived in a bispinor form. In the type II superstring theories,
the formulation of superspace that is compatible with T-duality was discussed in ref. [21],
and inclusion of R-R fields and an application to AdS background were investigated
in refs. [22,23]. Generalization of ref. [20] to non-abelian T-duality was performed in
refs. [24,25].

Although the type II supergravities possess O(d, d) duality invariance, forms of the
action are not manifestly invariant in terms of 10 dimensional fields. There are two for-
malisms to improve this point. The first one is a double field theory, which treats internal
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coordinates of winding modes and KK modes simultaneously [26–28]. O(d, d) transfor-
mation is realized as a rotation among these 2d coordinates, and fields are generalized to
behave as tensors under this coordinate transformation. O(d, d) invariant forms of the type
II supergravities are discussed in the framework of the double field theory in refs. [29–31].
The second one is a generalized geometry, which treats tangent and cotangent bundles
of compactified manifold on equal footing [32–34]. Lie brackets of two vector fields are
also modified to Courant brackets to incorporate B field transformation with the general
coordinate one. O(d, d) invariant forms of the type II supergravities are discussed in the
framework of the generalized geometry in ref. [35].

The double field theory or the generalized geometry played important roles to reveal
the O(d, d) invariant structure, however, it is not so clear to derive such structure within
the framework of the type II supergravities. In this paper, we revisit the O(d) × O(d)
subgroup of the duality transformation discussed in ref. [20] to construct O(d) × O(d)
invariants within the framework of the type II supergravities. We review that O(d)× O(d)
transformations of NS-NS fields and fermionic fields are completely written in terms of 10
dimensional fields and construct O(d)×O(d) invariants by evaluating these. The actions of
the type II supergravities are completely written by combinations of these building blocks,
which are consistent with ones obtained in refs. [31,35].

This paper is organized as follows. In Section 2, we review the O(d)× O(d) duality
transformations of fields shown in ref. [20]. Especially, we show that these transformations
can be written by using 10 dimensional fields1. In Section 3, we construct O(d)× O(d)
duality invariants for NS-NS fields and fermionic ones. We also check these duality
invariants in the background of fundamental strings and wave solutions, or NS5-branes and
KK monopoles. In Section 4, we construct NS-NS bosonic terms in the type II supergravities
by using the duality invariants. In Section 5, we construct fermionic bilinear terms in
the type II supergravities by duality invariants. Section 6 is devoted to conclusions and
discussions. In Appendix A, we review the actions of the type II supergravities for the
NS-NS sector and fermionic bilinear terms.

2. Brief Review of O(d)× O(d) Transformations

In this section, we briefly review O(d)× O(d) transformations of massless fields in
the type II supergravities. NS-NS fields of the type II supergravities consist of the graviton
GMN , the Kalb–Ramon field BMN and the dilaton Φ. First, we take into account these
fields to show a standard dimensional reduction of 10 dimensional supergravity action to
10 − d non-compact dimensions [11]. The reduced action is written in a manifestly O(d, d)
invariant form, and O(d, d) transformations of reduced fields can be obtained by using 2d×
2d matrix notation. Among O(d, d) transformations of NS-NS fields, O(d)× O(d)/O(d)
transformations are non-trivial if we ignore general linear coordinate transformations and
shift of the B field [12]. Thus, we focus on the transformations of O(d)× O(d), and it is
possible to express the duality transformations in terms of the original 10 dimensional
fields. Then, we review the O(d)×O(d) transformations of fermionic fields, two gravitinos
and two dilatinos, which are compatible with local supersymmetry transformations in the
type II supergravities.

We denote the 10 dimensional spacetime indices as K, L, M, N, · · · . Non-compact
spacetime directions are labeled by µ, ν, · · · and compact d dimensions are done by α, β, · · · .
On the other hand, local Lorentz indices are denoted as A, B, C, D, · · · . Non-compact local
Lorentz indices are labeled by i, j, · · · , and those for compact d dimensions are noted by
a, b, · · · . The explanation in this section is based on ref. [20], but some of the transformations
are not written in 10 dimensional fields there, which are repaired below.

The bosonic part of the action for NS-NS fields is common to both type II supergravities,
and the explicit form is written as

S10 =
1

2κ2
10

∫
d10x

√
−G e−2Φ

(
R + 4∂MΦ∂MΦ − 1

2 · 3!
HMNPHMNP

)
, (1)



Universe 2024, 10, 28 3 of 16

where M, N, P = 0, 1, · · · , 9 and κ2
10 is the gravitational constant in 10 dimensions. R is a

scalar curvature and HMNP = 3∂[MBNP] is a three-form field strength of the B field. Now,
we consider the dimensional reduction of the above action on d dimensional torus. The
dimensional reduction of the metric is given by

GMN =

(
gµν + gγδ Aγ

µ Aδ
ν −gβγ Aγ

µ

−gαγ Aγ
ν gαβ

)
, (2)

where µ, ν = 0, 1, · · · , 9 − d and α, β, γ, δ = 10 − d, · · · , 9. Here, gµν is a metric, Aγ
µ are

U(1) gauge fields and gαβ are scalars for non-compact spacetime directions. Note that all
fields are assumed to be dependent on xµ directions but not on xα ones. The dimensional
reduction of the three-form field strength is a little bit complicated, and it is easier to
consider in the local Lorentz frame. By using a vielbein EM

A in 10 dimensions, the three-
form field in the local Lorentz frame is defined as HABC = EM

AEN
BEP

C HMNP, and the
dimensional reduction of each component is written as

Hijk = eµ
ieν

jeρ
k

(
hµνρ −

3
2

Ãα[ρFα
µν] −

3
2

F̃α[µν Aα
ρ]

)
,

Hija = eµ
ieν

jeα
a
(
− F̃αµν + BαβFβ

µν

)
, (3)

Hiab = eµ
ieα

aeβ
b∂µBαβ.

Note that Habc = 0 since all fields are dependent only on xµ. Here, Fα
µν = 2∂[µ Aα

ν]
are

gauge field strengths. Gauge fields, which originate from B field, are defined as Ãαµ =

Bαµ + Bαβ Aβ
µ, and F̃αµν = ∂µ Ãαν − ∂ν Ãαµ are corresponding gauge field strengths. The

dimensional reduction of the dilaton field is defined as√
det(gαβ)e−2Φ = e−2ϕ. (4)

ϕ is a dilaton field in non-compact directions. Substituting Equations (2)–(4) into the
10-dimensional action (1), we obtain the action for the non-compact directions of the form

S10−d =
Vd

2κ2
10

∫
d10−dx

√
−det(gµν) e−2ϕ

[
r + 4∂iϕ∂iϕ

− 1
8

Tr
(
η̂ ∂iH η̂ ∂iH

)
− 1

4
(

Fij F̃ij
)
η̂Hη̂

(
Fij

F̃ij

)
− 1

2 · 3!
Hijk Hijk

]
, (5)

where Vd is a volume of the d dimensional torus and r is a scalar curvature constructed out
of gµν. The indices for the compact directions are expressed by the matrix notation, as will
be explained below.

Since O(d, d) transformations act on indices for compactified directions, fields only
with non-compact directions, gµν, ϕ and hµνρ, are invariant under O(d, d) transformations.
The first line of action (5) consists of kinetic terms of gµν and ϕ, so this line is invariant
under O(d, d) transformation. In the second line, scalar fields with compact spatial indices
gαβ and Bαβ are gathered into

H =

(
g−1 −g−1B

Bg−1 g − Bg−1B

)
, (6)

and the O(d, d) transformation O for massless NS-NS fields is defined by [9]

H′ = OHOT ,
(

A′
i

Ã′
i

)
= O

(
Ai
Ãi

)
, OT η̂ O = η̂, η̂ =

(
0 1d
1d 0

)
. (7)
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Here, H and O are 2d × 2d matrices and O acts on the gauge indices of Aα
i and Ãαi. It is

obvious that the first and second terms in the second line of Equation (5) are invariant
under these transformations. As for the third term in the second line, Hijk contains Aα

µ, Ãαµ

and their field strengths, which transform under O(d, d) transformation, but still Hijk is
O(d, d) invariant.

There are d(2d − 1) elements for the duality transformations of O(d, d), but some of
them are trivial in the sense that these do not mix NS-NS fields. Actually, d2 elements of
general linear coordinate transformation GL(d) and 1

2 d(d − 1) elements for the shift of the
B field are trivial. The remaining 1

2 d(d − 1) elements are non-trivial, and these construct a
subgroup of O(d)× O(d)/O(d). The O(d)× O(d) subgroup is expressed as [12]

O =
1
2

(
S +R S −R
S −R S +R

)
, STS = RTR = 1d. (8)

The case of S = R corresponds to a part of general linear coordinate transformation.
From Equation (7), it is possible to extract duality transformations of dimension-

ally reduced fields. These are then gathered into duality transformations of the original
10 dimensional fields. Below, we summarize O(d) × O(d) transformations of fields in
10 dimensions [18]. By introducing 10 × 10 matrices as

Q± =
1
2
(S + R)∓ 1

2
(S − R)(G ∓ B), (9)

S =

(
110−d 0

0 S

)
, R =

(
110−d 0

0 R

)
,

the 10-dimensional inverse metric transforms as

G′−1
= Q±G−1QT

±. (10)

Since the duality invariant, which includes the dilaton field, is written by Φ − 1
4 log detG,

the duality transformation of the dilaton field is given by

Φ′ = Φ − 1
2

log detQ±. (11)

The ± sign originates from actions to the world-sheet left and right moving modes, re-
spectively. From Equation (10), it is possible to define O(d)× O(d) transformation of the
vielbein as

E′M
(±)A = QM

±N EN
A. (12)

Notice that E′M
(±)A are related by local Lorenz transformation of

E′M
(+)A = E′M

(−)BΛB
A, ΛB

A = EB
MQ−1M

− NQN
+KEK

A. (13)

Thus, the local Lorentz frame of the left moving sector is obtained by twisting that of the
right moving sector by ΛA

B. Therefore, invariants under local Lorentz transformation,
which are constructed out of E′M

(+)A, can always be written in terms of E′M
(−)A.

Since two kinds of vielbein can be used after the duality transformation, the three-form
field strength HABC = EM

AEN
BEK

C HMNK also transforms in two ways as [20]

H′
(±)ABC = E′M

(±)AE′N
(±)BE′K

(±)C H′
MNK

= HABC − 3GKMQ−1
±

M
N(S − R)NLW±

L[BCEK
A]. (14)
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Here, W±
M

A
B are connections defined by using torsionless spin connection ΩM

A
B as

W±A
M B = ΩM

A
B ∓ 1

2
HM

A
B, (15)

and the duality transformations are calculated as

W ′± A
(±)M B = W±A

N BQ−1N
∓ M. (16)

Notice that W ′± A
(±)M B are constructed out of E′M

(±)A, respectively. Similarly, Γ±K
MN are

connections defined by using affine connection ΓK
MN as

Γ±K
MN = ΓK

MN ± 1
2

HK
MN , (17)

and the duality transformations are derived as

Γ′±K
MN = QK

±K′Γ±K′
M′N′Q−1M′

∓ MQ−1N′
± N − ∂M(QK

±L)Q
−1L
± N . (18)

Since the vielbein is not used in Equation (17), there are no (±) subscriptions in the above.
Next, let us summarize duality transformations of gravitinos Ψ±M and dilatinos

λ±. In ref. [20], these transformations are derived so as to be consistent with the local
supersymmetry (A4). It is easy to check this for the gravitino Ψ−M, and the result is

Ψ′
−M = Ψ−NQ−1N

+ M, ϵ′− = ϵ−. (19)

To derive the above, we used QN
±M∂N = ∂M. This holds because the derivatives of fields

with respect to the compact directions are zero. For the gravitino Ψ+M, the duality transfor-
mation Ψ′

+M is defined by using E′M
(−)A and the susy transformation becomes

δ+Ψ′
+M = 2

(
∂M +

1
4

W ′+
(−)MABΓAB

)
ϵ′+ + · · ·

= 2U+

(
∂M +

1
4

W ′+
(+)MABΓAB

)
U−1
+ ϵ′+ + · · · , (20)

where ΓA is a gamma matrix in 10 dimensions. In the above, we ignored R-R fields and used
local Lorentz transformation to change E′M

(−)A to E′M
(+)A. U+ is a spinor representation of the

local Lorentz transformation of Λ−1 and satisfies U+ΓAU−1
+ = Λ−1A

BΓB. Equation (20) is
compatible with the duality transformation if we define

Ψ′
+M = U+Ψ+NQ−1N

− M, ϵ′+ = U+ϵ+. (21)

Finally, we consider O(d)× O(d) duality transformations of dilatinos. As in the case
of the gravitinos, the duality transformations are derived so as to be consistent with the
local supersymmetry (A4).

δ−λ′
− = 2

(
Γ′M
(−)∂MΦ′ +

1
12

ΓABC H′
(−)ABC

)
ϵ′− + · · ·

= 2
{

ΓM∂MΦ − 1
2

ΓBEA
MQ−1

−
M

N(S − R)NLW−
LAB

+
1

12
ΓABC HABC − 1

4
ΓABCECMQ−1M

− N(S − R)NLW−
LAB

}
ϵ− + · · ·

= 2
(

ΓM∂MΦ +
1

12
ΓABC HABC

)
ϵ− − 1

2
ΓCΓABECMQ−1M

− N(S − R)NLW−
LABϵ− + · · ·

= δ−
(
λ− − Q−1M

− N(S − R)NLΓMΨ−L
)
. (22)
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In the second equality, we used Equation (14) and employed the fifth line of Equation (32).
Thus, the duality transformation of the dilatino λ− is compatible with the local supersym-
metry if we define

λ′
− = λ− − Q−1M

− N(S − R)NLΓMΨ−L. (23)

As in the case of the gravitino, the duality transformation λ′
+ is defined by using E′M

(−)A. By
taking into account the local Lorentz transformation, we obtain

λ′
+ = U+

(
λ+ + Q−1M

+ N(S − R)NLΓMΨ+L
)
. (24)

3. O(d)× O(d) Duality Invariants

In this section, we construct O(d)× O(d) duality invariants. In order to find these, let
us prepare useful relations for QM

± N . Q± are defined in the 10 × 10 matrix notation as (9),
and by noting STS = RT R = 1, we obtain

Q±(S − R)T =
1
2
(S + R)(S − R)T ∓ 1

2
(S − R)(G ∓ B)(S − R)T

= −(S − R)
{1

2
(S + R)± 1

2
(S − R)(G ± B)

}T

= −(S − R)QT
∓. (25)

It is often useful to express the above as follows.

Q−1
± (S − R) = −

{
Q−1

∓ (S − R)
}T . (26)

On the other hand, from Equation (9), Q+ is written by Q− as

Q+ = Q− − (S − R)G. (27)

By multiplying Q−1
∓ from the left, we find

Q−1
∓ (S − R)G = ±(1 − Q−1

∓ Q±). (28)

Combining Equations (26) and (28), we obtain a useful relation

GQ−1
± (S − R) = −

{
Q−1

∓ (S − R)G
}T

= ∓1 ±
{

Q−1
∓ Q±

}T . (29)

This relation is often used to construct O(d)× O(d) duality invariants.

3.1. Duality Invariants S±
ABC and T±

A for NS-NS Bosonic Fields

Now, we construct duality invariants for NS-NS bosonic fields. O(d)× O(d) transfor-
mation of HABC in 10 dimensions is evaluated as follows.

H′
(±)ABC = HABC − 3GKMQ−1

±
M

N(S − R)NLW±
L[BCEK

A]

= HABC ± 3W±
[ABC] ∓ 3Q−1

∓
L

NQN
±KW±

L[BCEK
A]

= HABC ± 3W±
[ABC] ∓ 3W ′±

(±)[ABC], (30)

where W±
ABC = EM

AW±
MBC and W ′±

ABC = E′M
(±)AW ′±

(±)MBC. In the second line, we used
Equation (29). Thus, we find O(d)× O(d) duality invariant of the form

S±
ABC ≡ HABC ± 3W±

[ABC] = −1
2

HABC ± 3Ω[ABC]. (31)
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Note that these do not behave as tensors under general coordinate transformation and
E′M
(+)A is used for the + mode of the dual theory. This means that S′±

(±)ABC = S±
ABC.

O(d)×O(d) transformation of the dilaton is given by Equation (11), and the derivative
of that equation is evaluated as

∂µΦ′ − ∂µΦ = −1
2

∂µ log det Q±

= −1
2

Q−1
±

α
β∂µQ±

β
α

= ±1
4

Q−1
±

α
β(S − R)βγ∂µ(G ∓ B)γα

= ±1
2

ea
αQ−1

±
α

β(S − R)βγW±
γaie

i
µ

= ±1
2

EA
MQ−1

±
M

N(S − R)NLW±
LABEB

µ

= −1
2

EMAW±
MABEB

µ +
1
2

EMAQ−1
∓

L
NQN

±MW±
LABEB

µ

= −1
2

EMAW±
MABEB

µ +
1
2

E′MA
(±) W ′±

(±)MABE′B
(±)µ. (32)

Equation (29) is used in the sixth line, and E′ i
(±)µ = Ei

(±)µ is used in the last line. Since

∂αΦ = 0 and EMAW±
MABEB

α = 0, we find O(d)× O(d) invariant of the form

T±
N ≡ ∂NΦ − 1

2
W±A

AN = ∂NΦ − 1
2

ΩA
AN , (33)

where W±A
AN = EMAW±

MABEB
N . Notice that in the dual theory, E′M

(+)A is used for the

+ mode, so we obtained T′±
(±)N = T±

N . Since T±
MQM

± N = T±
N holds, T±

A = EM
AT±

M is also

O(d)× O(d) invariant. Invariants thar are similar to S±
ABC and T±

A are also constructed in
the flux formulation of the double field theory [36].

3.2. Duality Invariants Θ± for Fermionic Fields

O(d)× O(d) transformations of the dilatinos in 10 dimensions are given by

λ′
± = U±

{
λ± ± GKMQ−1M

± N(S − R)NLEK
AΓAΨ±L

}
= U±

{
λ± − EM

AΓAΨ±M + Q−1
∓

L
NQN

±MEM
AΓAΨ±L

}
= U±

{
λ± − EM

AΓAΨ±M + E′M
(±)AΓAU−1

± Ψ′
±M

}
= U±

{
λ± − EM

AΓAΨ±M
}
+ E′M

(−)AΓAΨ′
±M, (34)

where U− = 1 and U+ is a spinor representation of local Lorentz transformation whose
corresponding vector representation is given by ΛA

B = EA
MQ−1M

− NQN
+LEL

B. We used
Equation (29) in the second line and U+ΓAU−1

+ = Λ−1A
BΓB in the fourth line. Thus, we

find duality invariants up to local Lorentz transformation U±.

Θ± = λ± − EM
AΓAΨ±M. (35)

Notice that the dual theory is written by E′M
(−)A for Θ±. This means Θ′

(−)± = U±Θ±, which

is different from S±
ABC and T±

A . Similar expressions to the above are also obtained in the
framework of the double field theory [31] or generalized geometry [35].

3.3. Check of Duality Invariants for Classical Solutions

Since we have constructed O(d)× O(d) invariants, let us evaluate these values for
classical solutions that exchange under T-duality. We examine two pairs of solutions in the
type II supergravities. The first one is fundamental strings stretching along the X9 direction
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and waves propagating along the same direction. The fundamental strings carry charges
with respect to B field, and B09 becomes non-trivial. On the other hand, the wave solution
has a non-trivial component of G09. It is well known that these two solutions are exchanged
under Buscher rule. The second pair is smeared NS5-branes and KK monopoles. The
NS5-branes are stretching along X1, · · · , X5 directions and smeared along the X9 direction.
Thus, the smeared NS5-branes are localized at the origin of (X6, X7, X8) directions. On the
other hand, if we compactify the type II supergravities along the X9 direction, there is a
U(1) gauge field in the dimensionally reduced theory. KK monopoles are magnetically
charged with respect to this U(1) gauge field and localized at the origin of (X6, X7, X8)
directions. It is also well known that these two solutions are exchanged under Buscher rule.

First, we consider classical solutions of fundamental strings and waves. The solution
of the fundamental strings is given by

ds2 = −h−1
1 (dX0)2 +

8

∑
i=1

(dXi)2 + h−1
1 (dX9)2, (36)

eΦ = h−
1
2

1 , B09 = −1 + h−1
1 , h1 = 1 +

c1

r6 ,

where r2 = ∑8
i=1(Xi)2. Moreover, non-trivial components of O(d)× O(d) invariants for

this solution are evaluated as

S±
î0̂9̂

=
1
2

h−1
1 ∂ih1. (37)

On the other hand, the dual solution of the wave along the X9 direction is given by

ds2 = −h−1
w (dX0)2 +

8

∑
i=1

(dXi)2 + hw
(
dX9 − (1 − h−1

w )dX0)2, hw = 1 +
cw

r6 . (38)

And non-trivial components of O(d)× O(d) invariants for this solution are calculated as

S′±
(−)î0̂9̂

= ∓1
2

h−1
w ∂ihw. (39)

Here, we used hats for local Lorentz indices. If we set h1 = hw, we obtain S±
ABC = S′±

(±)ABC

because E′M
(−)A = E′M

(+)A except for E′9
(−)9̂

= −E′9
(+)9̂

.
Second, we consider classical solutions of smeared NS5-branes and KK monopoles.

The solution of the NS5-branes smeared along the X9 direction is given by

ds2 = −(dX0)2 + (dX1)2 + · · ·+ (dX5)2 + h5 ∑
i=6,7,8

(dXi)2 + h5(dX9)2, (40)

eΦ = h
1
2
5 , Hij9 = ϵijk∂kh5, h5 = 1 +

c5

r6 ,

where r2 = ∑i=6,7,8(Xi)2. Then, non-trivial components of O(d)× O(d) invariants for this
solution are evaluated as

S±
î ĵ9̂

= −1
2

h−
3
2

5 ϵijk∂kh5, Tî= −1
4

h−
3
2

5 ∂ih5. (41)

On the other hand, the dual solution of the KK monopoles is given by

ds2 = −(dX0)2 + (dX1)2 + · · ·+ (dX5)2 + hm ∑
i=6,7,8

(dXi)2 + h−1
m

(
dX9 − AidXi)2, (42)

Fij = ∂i Aj − ∂j Ai = −ϵijk∂khm, hm = 1 +
cm

r6 .
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And non-trivial components of O(d)× O(d) invariants for this solution become

S′±
(−)î ĵ9̂

= ±1
2

h−
3
2

m ϵijk∂khm, T′
(−)î = −1

4
h−

3
2

m ∂ihm. (43)

Here, we used hats for local Lorentz indices. If we set h5 = hm, we obtain S±
ABC = S′±

(±)ABC

because E′M
(−)A = E′M

(+)A except for E′9
(−)9̂

= −E′9
(+)9̂

.

4. Construction of NS-NS Bosonic Terms in Type II Supergravity via Duality Invariants

Let us construct NS-NS bosonic terms in the type II supergravities by using duality
invariants. Building blocks are S±

ABC, TA and W±
MAB. The action consists of two deriva-

tive terms, so candidates are S±
ABCS±ABC, TATA and GMNW±

MABW±
N

AB = W±ABCW±
ABC

multiplied by Ee−2Φ.
First, we evaluate Ee−2ΦS±

ABCS±ABC.

Ee−2ΦS±
ABCS±ABC

= Ee−2Φ{HABC HABC ± 6HABCW±
ABC + 9W±ABCW±

[ABC]

}
= Ee−2Φ{HABC HABC ± 6HABCW±

ABC + 3W±ABCW±
ABC − 6W±ABCW±

BAC
}

. (44)

Next, we calculate Ee−2ΦTATA.

4Ee−2ΦTATA

= Ee−2ΦGMN(
2∂MΦ − EKAW±

KABEB
M
)(

2∂NΦ − ELCW±
LCDED

N
)

= Ee−2Φ{4∂AΦ∂AΦ + W±A
ACW±B

B
C}− 2E∂M(e−2Φ)EMAENBW±

NAB

= Ee−2Φ{4∂AΦ∂AΦ + W±A
ACW±B

B
C + 2EMAENB∂MW±

NAB

+ 2EK
C(∂MEC

K)EMAENBW±
NAB + 2(∂MEMA)ENBW±

NAB

+ 2EMA(∂MENB)W±
NAB

}
− 2∂M

(
Ee−2ΦEMAENBW±

NAB
)

= Ee−2Φ{4∂AΦ∂AΦ + W±A
ACW±B

B
C

+ EMAENB(R±
MNAB − W±

MA
CW±

NCB + W±
NA

CW±
MCB)

− 2ΩA
A

CW±B
BC + 2ΩACBW±

CAB
}
+ 2∂M

(
Ee−2ΦW±A

A
M)

= Ee−2Φ{4∂AΦ∂AΦ + R± ∓ HABCW±
ABC + W±ABCW±

BAC
}

(45)

+ 2∂M
(
Ee−2ΦW±A

A
M)

,

where

R±
ABMN ≡ ∂MW±

NAB − ∂NW±
MAB + W±

MA
CW±

NCB − W±
NA

CW±
MCB. (46)

In the fourth equality, we used

∂MEM
A + EK

C(∂MEC
K)EM

A = ENBΩNBA = ΩB
BA,

EMA(∂MENB)W±
NAB = −EMAENB(∂MEC

N)W±
CAB = ΩACBW±

CAB. (47)

Now, we require invariance under general coordinate transformation. This means that
HW± and W±2 terms should be removed by combining Ee−2ΦS±

ABCS±ABC, Ee−2ΦTATA

and Ee−2ΦW±ABCW±
ABC. This uniquely constrains the form of the combination up to the

overall factor, and the result becomes
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Ee−2Φ
(1

6
SABCSABC + 4TATA − 1

2
W±ABCW±

ABC

)
= Ee−2Φ

(
4∂AΦ∂AΦ + R± +

1
6

HABC HABC

)
+ 2∂M

(
Ee−2ΦW±A

A
M)

= Ee−2Φ
(

4∂AΦ∂AΦ + R − 1
2 · 3!

HABC HABC

)
+ 2∂M

(
Ee−2ΦW±A

A
M)

. (48)

Thus, we construct NS-NS bosonic terms of the type II supergravities via O(d) × O(d)
duality invariants. The Lagrangian is O(d, d) invariant since it behaves as a scalar under
general coordinate transformation and invariant under a constant shift of B field. Notice
that the dual theory for + mode is written in terms of E′M

(+)A, but it is possible to use local

Lorentz transformation E′M
(+)A = E′M

(−)BΛB
A to write the + mode of the dual theory in terms

of E′M
(−)A.

5. Construction of Fermionic Bilinear Terms in Type II Supergravities via
Duality Invariants

Let us construct fermionic bilinear terms in the type II supergravities by using duality
invariants. First, we consider bilinear terms of the dilatinos. Since the duality invariant
forms of the dilatinos are given by Θ±, we would like to construct duality invariants that
partially contain

Θ±ΓM∂MΘ±. (49)

These are not duality invariants nor scalars under local Lorentz transformation. In order to
recover the latter covariance, we add the connection S±

ABC as follows.

Θ±ΓM∂MΘ± ± 1
12

Θ±ΓABCS±
ABCΘ±

= Θ±ΓM
(

∂M +
1
4

W±
MABΓAB

)
Θ± ± 1

12
Θ±ΓABC HABCΘ±

= Θ±ΓMDMΘ± ∓ 1
24

Θ±ΓABC HABCΘ±. (50)

Here, we used Θ±ΓAΘ± = 0 for Majorana fermions, and DM is a covariant derivative with
respect to the connection of ΩMAB. In this case, DM = ∂M + 1

4 ΩMABΓAB. Thus, the terms
in Equation (50) are scalars under local Lorentz transformation. Furthermore, these are
O(d)× O(d) duality invariant, as we show below. The dual theory is written by E′M

(−)A for
the vielbein, and the dual of the above is written as

Θ′
(−)±Γ′M

(−)∂MΘ′
(−)± ± 1

12
Θ′

(−)±ΓABCS′±
(−)ABCΘ′

(−)±

= Θ′
(−)±Γ′M

(−)

(
∂M +

1
4

W ′±
(−)MABΓAB

)
Θ′

(−)± ± 1
12

Θ′
(−)±ΓABC H′

(−)ABCΘ′
(−)±

= Θ±U−1
± Γ′M

(−)

(
∂M +

1
4

W ′±
(−)MABΓAB

)
U±Θ± ± 1

12
Θ±U−1

± ΓABC H′
(−)ABCU±Θ±

= Θ±Γ′M
(±)

(
∂M +

1
4

W ′±
(±)MABΓAB

)
Θ± ± 1

12
Θ±ΓABC H′

(±)ABCΘ±

= Θ±Γ′M
(±)∂MΘ± ± 1

12
Θ±ΓABCS′±

(±)ABCΘ±

= Θ±ΓM∂MΘ± ± 1
12

Θ±ΓABCS±
ABCΘ±. (51)

In the third equality, we used local Lorentz covariance for the + mode, such as
U−1
+ Γ′M

(−)
U+ = Γ′M

(+)
. Thus, the terms of Equation (50) are O(d, d) invariant.
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Next, we consider two derivative terms, which consist of Ψ±M and Θ±. The duality
invariants should partially contain

Ψ±MGMN∂NΘ±. (52)

These are not duality invariants nor scalars under local Lorentz transformation. In order to
make scalars under local Lorentz transformation, we need to add the connection term to
the above.

Ψ±MGMN
(

∂N +
1
4

W±
NABΓAB

)
Θ±

= ΨM
± DMΘ± ∓ 1

8
ΨM
± HMABΓABΘ±. (53)

Furthermore, these are duality invariants, as we show below.

Ψ′±MG′MN
(

∂N +
1
4

W ′±
(−)NABΓAB

)
Θ′

(−)±

= Ψ±MGMKQN
∓KU−1

±

(
∂N +

1
4

W ′±
(−)NABΓAB

)
U±Θ±

= Ψ±MGMKQN
∓K

(
∂N +

1
4

W ′±
(±)NABΓAB

)
Θ±

= Ψ±MGMN
(

∂N +
1
4

W±
NABΓAB

)
Θ±. (54)

Thus, the terms of Equation (53) are O(d, d) invariant.
Finally, let us investigate two derivative terms that are bilinear of Majorana gravitinos.

These should partially contain the following terms.

Ψ±LGLNΓM∂MΨ±N . (55)

These are not duality invariants nor scalars under local Lorentz transformation. In order to
recover the latter covariance, we add connection terms S±

ABC and Γ∓K
MN as follows.

Ψ±LGLNΓM∂MΨ±N ± 1
12

Ψ±LGLNΓABCS±
ABCΨ±N − Ψ±LGLNΓMΓ∓K

MNΨ±K

= Ψ±LGLNΓM
(

∂M +
1
4

W±
MABΓAB

)
Ψ±N ± 1

12
Ψ±LGLNΓABC HABCΨ±N

− Ψ±LGLNΓMΓ∓K
MNΨ±K

= ΨN
±ΓMDMΨ±N ∓ 1

24
ΨN
±ΓABC HABCΨ±N ∓ 1

2
Ψ±NΓM HNMKΨ±K. (56)

Note that DMΨ±N = (∂M + 1
4 ΩMABΓAB)Ψ±N − ΓK

MNΨ±K. These are scalars under local
Lorentz transformation. The first two terms are similar to Equation (51), so the transforma-
tions under O(d)× O(d) are also similar. One difference is in the derivative of Q−1

∓ , which
is written as

Ψ′±LG′LNΓ′M
(−)∂MΨ′

±N ± 1
12

Ψ′±LG′LNΓABCS′±
(−)ABCΨ′

±N

= Ψ±LGLNΓM∂MΨ±N ± 1
12

Ψ±LGLNΓABCS±
ABCΨ±N

+ (∂MQ−1N′
∓ N)QN

∓KΨ±LGLKΓMΨ±N′ . (57)
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On the other hand, the O(d)× O(d) transformations of the connections Γ∓K
MN are given

by Equation (18), and the third term in Equation (56) transforms as

− Ψ′±LG′LNΓ′M
(−)Γ

′∓K
MNΨ′

±K

= −Ψ±LGLN′
QN

∓N′U−1
± Γ′M

(−)U±Γ′∓K
MNΨ±K′Q−1K′

∓ K

= −Ψ±LGLN′
ΓM′

Q−1K′
∓ KΓ′∓K

MNQM
±M′QN

∓N′Ψ±K′

= −Ψ±LGLNΓMΓ∓K
MNΨ±K + Q−1K′

∓ K(∂MQK
∓N)Ψ±LGLNΓMΨ±K′ . (58)

In the second equality, we used U−1
± Γ′M

(−)
U± = Γ′M

(±)
= QM

±M′ΓM′
. Thus, we see that the last

term in Equation (57) is cancelled by the last term in Equation (58). The combinations of
Equation (56) are O(d, d) invariant.

So far, we constructed O(d, d) invariants of (50), (53) and (56). Then, up to overall
factor, the Lagrangian is expressed as

Ee−2Φ
[

Θ±ΓMDMΘ± ∓ 1
24

Θ±ΓABC HABCΘ± + c1

{
ΨM
± DMΘ± ∓ 1

8
ΨM
± HMABΓABΘ±

}
+ c2

{
ΨN
±ΓMDMΨ±N ∓ 1

24
ΨN
±ΓABC HABCΨ±N ∓ 1

2
Ψ±NΓM HNMKΨ±K

}]
= Ee−2Φ

[
λ±ΓMDMλ± − λ±ΓMDM(ΓAΨ±A) + Ψ±AΓAΓMDMλ± − Ψ±AΓAΓMDM(ΓBΨ±B)

∓ 1
24

λ±ΓABC HABCλ± ∓ 1
12

Ψ±DΓDΓABC HABCλ± ± 1
24

Ψ±DΓDΓABCΓEHABCΨ±E

+ c1

{
ΨM
± DMλ± − ΨM

± DM(ΓAΨ±A)∓
1
8

ΨM
± HMABΓABλ± ± 1

8
ΨM
± HMABΓABΓCΨ±C

}
+ c2

{
ΨN
±ΓMDMΨ±N ∓ 1

24
ΨN
±ΓABC HABCΨ±N ∓ 1

2
Ψ±NΓM HNMKΨ±K

}]
= Ee−2Φ

[
λ±ΓMDMλ± − λ±ΓMΓADMΨ±A − Ψ±AΓMΓADMλ± + Ψ±AΓMΓABDMΨ±B

∓ 1
24

λ±ΓABC HABCλ± ∓ 1
12

Ψ±DΓDABC HABCλ± ± 1
24

Ψ±DΓDABCE HABCΨ±E

+ (2 + c1)Ψ
M
± DMλ± − (2 + c1)Ψ

M
± ΓADMΨ±A + (1 + c2)Ψ

A
±ΓMDMΨ±A

∓ 2 + c1

8
ΨM
± HMABΓABλ± ± 2 + c1

8
ΨM
± HMABΓABΓCΨ±C

∓ 1 + c2

24
ΨN
±ΓABC HABCΨ±N ∓ 1 + 2c2

4
Ψ±NΓM HNMKΨ±K

]
. (59)

In the last equality, if we choose c1 = −2 and c2 = −1, it is possible to express the
derivative of the Majorana gravitinos as field strengths of D[MΨ±N] up to partial integral.
Since this prescription is important to realize local supersymmetry, we employ these values.
Then, the O(d, d) invariant action of the fermionic bilinear is uniquely determined as

Ee−2Φ
[

Θ±ΓMDMΘ± ∓ 1
24

Θ±ΓABC HABCΘ± − 2
{

ΨM
± DMΘ± ∓ 1

8
ΨM
± HMABΓABΘ±

}
−

{
ΨN
±ΓMDMΨ±N ∓ 1

24
ΨN
±ΓABC HABCΨ±N ∓ 1

2
Ψ±NΓM HNMKΨ±K

}]
= Ee−2Φ

[
λ±ΓMDMλ± − λ±ΓMΓADMΨ±A − Ψ±AΓMΓADMλ± + Ψ±AΓMΓABDMΨ±B

∓ 1
24

λ±ΓABC HABCλ± ∓ 1
12

Ψ±DΓDABC HABCλ± ± 1
24

Ψ±DΓDABCE HABCΨ±E

± 1
4

Ψ±NΓM HNMKΨ±K

]
. (60)
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Of course, a linear combination of these terms is consistent with the type II supergravi-
ties. Thus, we showed that fermionic bilinears without R-R fields can be written in terms of
the duality invariants within the framework of the type II supergravities. Invariant forms
of fermionic bilinears with R-R fluxes are obtained in the framework of the double field
theory [31] or generalized geometry [35].

6. Conclusions and Discussion

In this paper, within the framework of the type II supergravities, we have constructed
O(d)× O(d) duality invariants of Equations (31), (33) and (35) by examining O(d)× O(d)
transformations of three-form H field, dilaton and dilatino. These invariants are checked
in the background of fundamental strings and wave solutions, or NS5-branes and KK
monopoles. By using these duality invariants, we reconstructed the actions of type II
supergravities in a manifestly O(d)× O(d) invariant form in Sections 4 and 5. Since these
actions are also invariant under linear GL(d) transformation and shift of the B field, these
are exactly O(d, d) invariant. As for the kinetic terms on R-R fields, SO(d, d) invariant
construction was already discussed within the framework of the type II supergravities in
ref. [20].

As we have checked the duality invariants in the background of strings and wave
solutions, or NS5-branes and KK monopoles, it is easy to apply to other non-geometric
backgrounds [37–40]. It is interesting to see corrections to the non-geometric background,
which was studied from the viewpoint of world-sheet instantons [41]. It is also interesting
to investigate β-twisted solutions of the double field theory [42] by evaluating O(d)×O(d)
invariants in this paper.

Since we have constructed O(d)× O(d) duality invariants within the framework of
the type II supergravities, it is natural to generalize these formulations to higher derivative
corrections in the type II superstring theories. However, this is not a simple task, and it is
shown that higher derivative corrections in bosonic or heterotic string theory cannot be
written in terms of generalized metric [43,44]. We should take into account total derivative
terms and field redefinitions, which consist of dimensionally reduced fields. Constraint on
R2 terms via cosmological ansatz was investigated in ref. [45], was executed via T-duality in
refs. [46] and was performed via O(d, d) duality in ref. [47]. In our formalism, the difficulty
can be seen by duality transformation of the Riemann tensor (46), which is calculated as

R′±
(±)ABCD = E′M

(±)CE′N
(±)DR′±

(±)ABMN

= R±
ABCD ± 2R±

ABN[CXN
∓D] + 2XM

∓[CXN
∓D]W

±
MAEW±

N
E

B

∓ 2W±
KABW±

[CD]EXKE
∓ + 2W±

KABW±
LE[CXL

∓D]X
KE
∓ (61)

+ XKE
∓ SECDW±

KAB,

where XKE
∓ = Q−1K

∓ L(S − R)LE = −XEK
± . If we consider R±

ABCDS±ABES±CD
E, which exists

as a part of higher derivative terms in bosonic string theory, the duality transformation of
this term contains ±2R±

ABN[CXN
∓D]

S±ABES±CD
E. However, this cannot be cancelled by other

terms even if we consider total derivatives and field redefinitions of 10 dimensional fields.
Although we should decompose Equation (61) in terms of dimensionally reduced

fields, SABC, TA and W±
µAB are invariant under O(d, d) transformations. Thus, we should

only take care of W±
αAB. It is also useful to consult a frame formalism of the double field

theory [48]. If we find nice structure on total derivatives and field redefinitions in terms of
these fields, it will be possible to apply our O(d)× O(d) construction to higher derivative
terms such as R4 terms [49–55].
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Appendix A. Review of Type II Supergravities

The type II supergravities consist of massless fields of corresponding type II super-
string theories. Bosonic massless fields are the graviton GMN , the dilaton Φ, NS-NS B field
BMN and R-R fields, but in this appendix we ignore R-R fields of the type II supergravities.
Fermionic massless fields are two gravitinos Ψ±M and two dilatinos λ±. Physical degrees
of freedom for bosonic fields and fermionic ones are 128, so it is possible to relate bosonic
and fermionic fields via local supersymmetry.

Historically, the Lagrangian of the type IIA supergravity is derived by the dimensional
reduction of 11 dimensional supergravity into 10 dimensions, and its explicit form is given
by [4]

L = Ee−2Φ
[

4∂AΦ∂AΦ + R − 1
2 · 3!

HABC HABC

+ λΓMDMλ − λΓMΓADMΨA − ΨAΓMΓADMλ + ΨAΓMΓABDMΨB

− 1
24

λΓABC HABCΓ11λ − 1
12

ΨDΓDABC HABCΓ11λ − 1
24

ΨDΓDABCE HABCΓ11ΨE

− 1
4

ΨNΓM HNMKΓ11ΨK

= Ee−2Φ
[

4∂AΦ∂AΦ + R − 1
2 · 3!

HABC HABC

+ λ+ΓMDMλ+ − λ+ΓMΓADMΨ+A − Ψ+AΓMΓADMλ+ + Ψ+AΓMΓABDMΨ+B

− 1
24

λ+ΓABC HABCλ+ − 1
12

Ψ+DΓDABC HABCλ+ +
1
24

Ψ+DΓDABCEHABCΨ+E

+
1
4

Ψ+NΓM HNMKΨ+K (A1)

+ λ−ΓMDMλ− − λ−ΓMΓADMΨ−A − Ψ−AΓMΓADMλ− + Ψ−AΓMΓABDMΨ−B

+
1

24
λ−ΓABC HABCλ− +

1
12

Ψ−DΓDABC HABCλ− − 1
24

Ψ−DΓDABCEHABCΨ−E

− 1
4

Ψ−NΓM HNMKΨ−K

]
.

In the above, we neglected quartic terms on fermionic fields. Here, λ and ΨM are
Majorana fermions and satisfy

λ = λ+ + λ−, ΨM = Ψ+M + Ψ−M,

Γ11λ± = ±λ±, Γ11Ψ±M = ∓Ψ±M. (A2)

We chose similar notations as in ref. [56,57]. The Lagrangian of the type IIB supergravity
takes a similar form as Equation (A1), but ± modes of the dilatinos or the gravitinos have
the same chirality.

Γ11λ± = −λ±, Γ11Ψ±M = Ψ±M. (A3)
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In the case of the type IIA supergravity, transformations of massless fields under local
supersymmetry are given by

δEA
M = ϵ̄ΓAΨM = ϵ̄+ΓAΨ+M + ϵ̄−ΓAΨ−M,

δΦ =
1
2

ϵ̄λ =
1
2

ϵ̄+λ− +
1
2

ϵ̄−λ+,

δBMN = 2ϵ̄Γ11Γ[MΨN] = 2ϵ̄+Γ[MΨ+N] − 2ϵ̄−Γ[MΨ−N], (A4)

δλ = 2(∂MΦ)ΓMϵ +
1
6

HABCΓABCΓ11ϵ

= 2
{
(∂MΦ)ΓM − 1

12
HABCΓABC

}
ϵ+ + 2

{
(∂MΦ)ΓM +

1
12

HABCΓABC
}

ϵ−,

δΨM = 2DMϵ +
1
4

HMABΓABΓ11ϵ

= 2
(

∂M +
1
4

W+
MABΓAB

)
ϵ+ + 2

(
∂M +

1
4

W−
MABΓAB

)
ϵ−.

Again, we ignored contributions of R-R fields and cubic terms on fermionic fields. ϵ is a
Majorana fermion and satisfies

ϵ = ϵ+ + ϵ−, Γ11ϵ± = ∓ϵ±. (A5)

In the case of the type IIB supergravity, ϵ± should satisfy

Γ11ϵ± = ϵ±. (A6)

Note
1 We neglect R-R fields since these are already completed in ref. [20].
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