Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = Friedmann cosmology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 317 KiB  
Article
Phenomenological Charged Extensions of the Quantum Oppenheimer–Snyder Collapse Model
by S. Habib Mazharimousavi
Universe 2025, 11(8), 257; https://doi.org/10.3390/universe11080257 - 4 Aug 2025
Viewed by 48
Abstract
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within [...] Read more.
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within full loop quantum gravity (LQG). Building upon the quantum Oppenheimer–Snyder (qOS) model, which replaces the classical singularity with a nonsingular bounce via a modified Friedmann equation, we introduce electric and magnetic charges concentrated on a massive thin shell at the boundary of the dust ball. The resulting exterior spacetime generalizes the Schwarzschild solution to a charged, regular black hole geometry akin to a quantum-corrected Reissner–Nordström metric. The Israel junction conditions are applied to match the interior APS (Ashtekar–Pawlowski–Singh) cosmological solution to the charged exterior, yielding constraints on the shell’s mass, pressure, and energy. Stability conditions are derived, including a minimum radius preventing full collapse and ensuring positivity of energy density. This study also examines the geodesic structure around the black hole, focusing on null circular orbits and effective potentials, with implications for the observational signatures of such quantum-corrected compact objects. Full article
Show Figures

Figure 1

23 pages, 556 KiB  
Review
Evolving Wormholes in a Cosmological Background
by Mahdi Kord Zangeneh and Francisco S. N. Lobo
Universe 2025, 11(7), 236; https://doi.org/10.3390/universe11070236 - 19 Jul 2025
Viewed by 157
Abstract
Wormholes are non-trivial topological structures that arise as exact solutions to Einstein’s field equations, theoretically connecting distinct regions of spacetime via a throat-like geometry. While static traversable wormholes necessarily require exotic matter that violates the classical energy conditions, subsequent studies have sought to [...] Read more.
Wormholes are non-trivial topological structures that arise as exact solutions to Einstein’s field equations, theoretically connecting distinct regions of spacetime via a throat-like geometry. While static traversable wormholes necessarily require exotic matter that violates the classical energy conditions, subsequent studies have sought to minimize such violations by introducing time-dependent geometries embedded within cosmological backgrounds. This review provides a comprehensive survey of evolving wormhole solutions, emphasizing their formulation within both general relativity and alternative theories of gravity. We explore key developments in the construction of non-static wormhole spacetimes, including those conformally related to static solutions, as well as dynamically evolving geometries influenced by scalar fields. Particular attention is given to the wormholes embedded into Friedmann–Lemaître–Robertson–Walker (FLRW) universes and de Sitter backgrounds, where the interplay between the cosmic expansion and wormhole dynamics is analyzed. We also examine the role of modified gravity theories, especially in hybrid metric–Palatini gravity, which enable the realization of traversable wormholes supported by effective stress–energy tensors that do not violate the null or weak energy conditions. By systematically analyzing a wide range of time-dependent wormhole solutions, this review identifies the specific geometric and physical conditions under which wormholes can evolve consistently with null and weak energy conditions. These findings clarify how such configurations can be naturally integrated into cosmological models governed by general relativity or modified gravity, thereby contributing to a deeper theoretical understanding of localized spacetime structures in an expanding universe. Full article
(This article belongs to the Special Issue Experimental and Observational Constraints on Wormhole Models)
Show Figures

Figure 1

44 pages, 683 KiB  
Review
Structural Stability and General Relativity
by Spiros Cotsakis
Universe 2025, 11(7), 209; https://doi.org/10.3390/universe11070209 - 26 Jun 2025
Viewed by 204
Abstract
We review recent developments in structural stability as applied to key topics in general relativity. For a nonlinear dynamical system arising from the Einstein equations by a symmetry reduction, bifurcation theory fully characterizes the set of all stable perturbations of the system, known [...] Read more.
We review recent developments in structural stability as applied to key topics in general relativity. For a nonlinear dynamical system arising from the Einstein equations by a symmetry reduction, bifurcation theory fully characterizes the set of all stable perturbations of the system, known as the ‘versal unfolding’. This construction yields a comprehensive classification of qualitatively distinct solutions and their metamorphoses into new topological forms, parametrized by the codimension of the bifurcation in each case. We illustrate these ideas through bifurcations in the simplest Friedmann models, the Oppenheimer-Snyder black hole, the evolution of causal geodesic congruences in cosmology and black hole spacetimes, crease flow on event horizons, and the Friedmann–Lemaître equations. Finally, we list open problems and briefly discuss emerging aspects such as partial differential equation stability of versal families, the general relativity landscape, and potential connections between gravitational versal unfoldings and those of the Maxwell, Dirac, and Schrödinger equations. Full article
Show Figures

Figure 1

30 pages, 440 KiB  
Article
A Metric Approach to Newtonian Cosmology and Its Applications to Gravitational Systems
by Jaume de Haro and Supriya Pan
Symmetry 2025, 17(7), 1000; https://doi.org/10.3390/sym17071000 - 25 Jun 2025
Viewed by 284
Abstract
We explore a modified, including some relativistic effects, Newtonian formalism in cosmology, using a system of constituent equations that includes a modified first Friedmann equation—incorporating its homogeneous counterpart—alongside the classical Poisson equation. Furthermore, we include the dynamical equations arising from stress-energy tensor conservation. [...] Read more.
We explore a modified, including some relativistic effects, Newtonian formalism in cosmology, using a system of constituent equations that includes a modified first Friedmann equation—incorporating its homogeneous counterpart—alongside the classical Poisson equation. Furthermore, we include the dynamical equations arising from stress-energy tensor conservation. Within this framework, we examine stellar equilibrium under spherical symmetry. By specifying the equation of state, we derive the corresponding equilibrium configurations. Finally, we investigate gravitational collapse in this context. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

50 pages, 8738 KiB  
Review
From Barthel–Randers–Kropina Geometries to the Accelerating Universe: A Brief Review of Recent Advances in Finslerian Cosmology
by Amine Bouali, Himanshu Chaudhary, Lehel Csillag, Rattanasak Hama, Tiberiu Harko, Sorin V. Sabau and Shahab Shahidi
Universe 2025, 11(7), 198; https://doi.org/10.3390/universe11070198 - 20 Jun 2025
Viewed by 376
Abstract
We present a review of recent developments in cosmological models based on Finsler geometry, as well as geometric extensions of general relativity formulated within this framework. Finsler geometry generalizes Riemannian geometry by allowing the metric tensor to depend not only on position but [...] Read more.
We present a review of recent developments in cosmological models based on Finsler geometry, as well as geometric extensions of general relativity formulated within this framework. Finsler geometry generalizes Riemannian geometry by allowing the metric tensor to depend not only on position but also on an additional internal degree of freedom, typically represented by a vector field at each point of the spacetime manifold. We examine in detail the possibility that Finsler-type geometries can describe the physical properties of the gravitational interaction, as well as the cosmological dynamics. In particular, we present and review the implications of a particular implementation of Finsler geometry, based on the Barthel connection, and of the (α,β) geometries, where α is a Riemannian metric, and β is a one-form. For a specific construction of the deviation part β, in these classes of geometries, the Barthel connection coincides with the Levi–Civita connection of the associated Riemann metric. We review the properties of the gravitational field, and of the cosmological evolution in three types of geometries: the Barthel–Randers geometry, in which the Finsler metric function F is given by F=α+β, in the Barthel–Kropina geometry, with F=α2/β, and in the conformally transformed Barthel–Kropina geometry, respectively. After a brief presentation of the mathematical foundations of the Finslerian-type modified gravity theories, the generalized Friedmann equations in these geometries are written down by considering that the background Riemannian metric in the Randers and Kropina line elements is of Friedmann–Lemaitre–Robertson–Walker type. The matter energy balance equations are also presented, and they are interpreted from the point of view of the thermodynamics of irreversible processes in the presence of particle creation. We investigate the cosmological properties of the Barthel–Randers and Barthel–Kropina cosmological models in detail. In these scenarios, the additional geometric terms arising from the Finslerian structure can be interpreted as an effective geometric dark energy component, capable of generating an effective cosmological constant. Several cosmological solutions—both analytical and numerical—are obtained and compared against observational datasets, including Cosmic Chronometers, Type Ia Supernovae, and Baryon Acoustic Oscillations, using a Markov Chain Monte Carlo (MCMC) analysis. A direct comparison with the standard ΛCDM model is also carried out. The results indicate that Finslerian cosmological models provide a satisfactory fit to the observational data, suggesting they represent a viable alternative to the standard cosmological model based on general relativity. Full article
(This article belongs to the Special Issue Cosmological Models of the Universe)
Show Figures

Figure 1

13 pages, 243 KiB  
Article
Complex Riemannian Spacetime and Singularity-Free Black Holes and Cosmology
by John W. Moffat
Axioms 2025, 14(6), 459; https://doi.org/10.3390/axioms14060459 - 12 Jun 2025
Viewed by 613
Abstract
An approach is presented to address singularities in general relativity using a complex Riemannian spacetime extension. We demonstrate how this method can be applied to both black hole and cosmological singularities, specifically focusing on the Schwarzschild and Kerr black holes and the Friedmann–Lemaître–Robertson–Walker [...] Read more.
An approach is presented to address singularities in general relativity using a complex Riemannian spacetime extension. We demonstrate how this method can be applied to both black hole and cosmological singularities, specifically focusing on the Schwarzschild and Kerr black holes and the Friedmann–Lemaître–Robertson–Walker (FLRW) Big Bang cosmology. By extending the relevant coordinates into the complex plane and carefully choosing integration contours, we show that it is possible to regularize these singularities, resulting in physically meaningful, singularity-free solutions when projected back onto real spacetime. The removal of the singularity at the Big Bang allows for a bounce cosmology. The approach offers a potential bridge between classical general relativity and quantum gravity effects, suggesting a way to resolve longstanding issues in gravitational physics without requiring a full theory of quantum gravity. Full article
(This article belongs to the Special Issue Complex Variables in Quantum Gravity)
Show Figures

Figure 1

17 pages, 1201 KiB  
Article
Time Dilation Observed in Type Ia Supernova Light Curves and Its Cosmological Consequences
by Václav Vavryčuk
Galaxies 2025, 13(3), 55; https://doi.org/10.3390/galaxies13030055 - 3 May 2025
Viewed by 2114
Abstract
The cosmic time dilation observed in Type Ia supernova light curves suggests that the passage of cosmic time varies throughout the evolution of the Universe. This observation implies that the rate of proper time is not constant, as assumed in the standard FLRW [...] Read more.
The cosmic time dilation observed in Type Ia supernova light curves suggests that the passage of cosmic time varies throughout the evolution of the Universe. This observation implies that the rate of proper time is not constant, as assumed in the standard FLRW metric, but instead is time-dependent. Consequently, the commonly used FLRW metric should be replaced by a more general framework, known as the Conformal Cosmology (CC) metric, to properly account for cosmic time dilation. The CC metric incorporates both spatial expansion and time dilation during cosmic evolution. As a result, it is necessary to distinguish between comoving and proper (physical) time, similar to the distinction made between comoving and proper distances. In addition to successfully explaining cosmic time dilation, the CC metric offers several further advantages: (1) it preserves Lorentz invariance, (2) it maintains the form of Maxwell’s equations as in Minkowski spacetime, (3) it eliminates the need for dark matter and dark energy in the Friedmann equations, and (4) it successfully predicts the expansion and morphology of spiral galaxies in agreement with observations. Full article
(This article belongs to the Special Issue Cosmology and the Quantum Vacuum—2nd Edition)
Show Figures

Figure 1

19 pages, 288 KiB  
Article
On the Perturbed Friedmann Equations in Newtonian Gauge
by Jaume de Haro, Emilio Elizalde and Supriya Pan
Universe 2025, 11(2), 64; https://doi.org/10.3390/universe11020064 - 13 Feb 2025
Cited by 1 | Viewed by 657
Abstract
Based on Newtonian mechanics, in this article, we present a heuristic derivation of the Friedmann equations, providing an intuitive foundation for these fundamental relations in cosmology. Additionally, using the first law of thermodynamics and Euler’s equation, we derive a set of equations that, [...] Read more.
Based on Newtonian mechanics, in this article, we present a heuristic derivation of the Friedmann equations, providing an intuitive foundation for these fundamental relations in cosmology. Additionally, using the first law of thermodynamics and Euler’s equation, we derive a set of equations that, at linear order, coincide with those obtained from the conservation of the stress-energy tensor in general relativity. This approach not only highlights the consistency between Newtonian and relativistic frameworks in certain limits, but also serves as a pedagogical bridge, offering insights into the physical principles underlying the dynamics of the universe. Full article
41 pages, 1918 KiB  
Review
Semi-Symmetric Metric Gravity: A Brief Overview
by Himanshu Chaudhary, Lehel Csillag and Tiberiu Harko
Universe 2024, 10(11), 419; https://doi.org/10.3390/universe10110419 - 7 Nov 2024
Cited by 3 | Viewed by 1298
Abstract
We present a review of the Semi-Symmetric Metric Gravity (SSMG) theory, representing a geometric extension of standard general relativity, based on a connection introduced by Friedmann and Schouten in 1924. The semi-symmetric connection is a connection that generalizes the Levi-Civita one by allowing [...] Read more.
We present a review of the Semi-Symmetric Metric Gravity (SSMG) theory, representing a geometric extension of standard general relativity, based on a connection introduced by Friedmann and Schouten in 1924. The semi-symmetric connection is a connection that generalizes the Levi-Civita one by allowing for the presence of a simple form of the torsion, described in terms of a torsion vector. The Einstein field equations are postulated to have the same form as in standard general relativity, thus relating the Einstein tensor constructed with the help of the semi-symmetric connection, with the energy–momentum tensor. The inclusion of the torsion contributions in the field equations has intriguing cosmological implications, particularly during the late-time evolution of the Universe. Presumably, these effects also dominate under high-energy conditions, and thus SSMG could potentially address unresolved issues in general relativity and cosmology, such as the initial singularity, inflation, or the 7Li problem of the Big-Bang Nucleosynthesis. The explicit presence of torsion in the field equations leads to the non-conservation of the energy–momentum tensor, which can be interpreted within the irreversible thermodynamics of open systems as describing particle creation processes. We also review in detail the cosmological applications of the theory, and investigate the statistical tests for several models, by constraining the model parameters via comparison with several observational datasets. Full article
(This article belongs to the Special Issue Dark Energy and Dark Matter)
Show Figures

Figure 1

40 pages, 8293 KiB  
Article
Fractional Einstein–Gauss–Bonnet Scalar Field Cosmology
by Bayron Micolta-Riascos, Alfredo D. Millano, Genly Leon, Byron Droguett, Esteban González and Juan Magaña
Fractal Fract. 2024, 8(11), 626; https://doi.org/10.3390/fractalfract8110626 - 24 Oct 2024
Cited by 2 | Viewed by 1796
Abstract
Our paper introduces a new theoretical framework called the Fractional Einstein–Gauss–Bonnet scalar field cosmology, which has important physical implications. Using fractional calculus to modify the gravitational action integral, we derived a modified Friedmann equation and a modified Klein–Gordon equation. Our research reveals non-trivial [...] Read more.
Our paper introduces a new theoretical framework called the Fractional Einstein–Gauss–Bonnet scalar field cosmology, which has important physical implications. Using fractional calculus to modify the gravitational action integral, we derived a modified Friedmann equation and a modified Klein–Gordon equation. Our research reveals non-trivial solutions associated with exponential potential, exponential couplings to the Gauss–Bonnet term, and a logarithmic scalar field, which are dependent on two cosmological parameters, m and α0=t0H0 and the fractional derivative order μ. By employing linear stability theory, we reveal the phase space structure and analyze the dynamic effects of the Gauss–Bonnet couplings. The scaling behavior at some equilibrium points reveals that the geometric corrections in the coupling to the Gauss–Bonnet scalar can mimic the behavior of the dark sector in modified gravity. Using data from cosmic chronometers, type Ia supernovae, supermassive Black Hole Shadows, and strong gravitational lensing, we estimated the values of m and α0, indicating that the solution is consistent with an accelerated expansion at late times with the values α0=1.38±0.05, m=1.44±0.05, and μ=1.48±0.17 (consistent with Ωm,0=0.311±0.016 and h=0.712±0.007), resulting in an age of the Universe t0=19.0±0.7 [Gyr] at 1σ CL. Ultimately, we obtained late-time accelerating power-law solutions supported by the most recent cosmological data, and we proposed an alternative explanation for the origin of cosmic acceleration other than ΛCDM. Our results generalize and significantly improve previous achievements in the literature, highlighting the practical implications of fractional calculus in cosmology. Full article
Show Figures

Figure 1

12 pages, 273 KiB  
Editorial
Centenary of Alexander Friedmann’s Prediction of Universe Expansion and the Prospects of Modern Cosmology
by Galina L. Klimchitskaya, Vladimir M. Mostepanenko and Sergey V. Sushkov
Universe 2024, 10(8), 329; https://doi.org/10.3390/universe10080329 - 16 Aug 2024
Viewed by 1103
Abstract
In this Editorial to the Special Issue “The Friedmann Cosmology: A Century Later”, we consider an outstanding character of Friedmann’s prediction of Universe expansion, which laid the foundation of modern cosmology. The list of the main discoveries made in cosmology during the last [...] Read more.
In this Editorial to the Special Issue “The Friedmann Cosmology: A Century Later”, we consider an outstanding character of Friedmann’s prediction of Universe expansion, which laid the foundation of modern cosmology. The list of the main discoveries made in cosmology during the last one hundred years is followed by a formulation of the standard cosmological model. The articles contributing to the Special Issue are considered in relation to this model, and to several alternative theoretical approaches. Special attention is paid to unresolved problems, such as the nature of dark matter and dark energy, Hubble tension and the pre-inflationary stage of the Universe evolution. The conclusion is made that astrophysics and cosmology are on the threshold of new fundamental discoveries. Full article
(This article belongs to the Special Issue The Friedmann Cosmology: A Century Later)
11 pages, 276 KiB  
Article
Status of Electromagnetically Accelerating Universe
by Paul H. Frampton
Entropy 2024, 26(8), 629; https://doi.org/10.3390/e26080629 - 26 Jul 2024
Cited by 2 | Viewed by 1071
Abstract
To describe the dark side of the universe, we adopt a novel approach where dark energy is explained as an electrically charged majority of dark matter. Dark energy, as such, does not exist. The Friedmann equation at the present time coincides with that [...] Read more.
To describe the dark side of the universe, we adopt a novel approach where dark energy is explained as an electrically charged majority of dark matter. Dark energy, as such, does not exist. The Friedmann equation at the present time coincides with that in a conventional approach, although the cosmological “constant” in the Electromagnetic Accelerating Universe (EAU) Model shares a time dependence with the matter component. Its equation of state is ωP/ρ ≡ −1 within observational accuracy. Full article
18 pages, 368 KiB  
Review
Fractional Scalar Field Cosmology
by Seyed Meraj Mousavi Rasouli, Samira Cheraghchi and Paulo Moniz
Fractal Fract. 2024, 8(5), 281; https://doi.org/10.3390/fractalfract8050281 - 8 May 2024
Cited by 5 | Viewed by 1720
Abstract
Considering the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and the Einstein scalar field system as an underlying gravitational model to construct fractional cosmological models has interesting implications in both classical and quantum regimes. Regarding the former, we just review the most fundamental approach to establishing an [...] Read more.
Considering the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and the Einstein scalar field system as an underlying gravitational model to construct fractional cosmological models has interesting implications in both classical and quantum regimes. Regarding the former, we just review the most fundamental approach to establishing an extended cosmological model. We demonstrate that employing new methodologies allows us to obtain exact solutions. Despite the corresponding standard models, we cannot use any arbitrary scalar potentials; instead, it is determined from solving three independent fractional field equations. This article concludes with an overview of a fractional quantum/semi-classical model that provides an inflationary scenario. Full article
(This article belongs to the Section Mathematical Physics)
16 pages, 1262 KiB  
Article
Cosmological Inference from within the Peculiar Local Universe
by Roya Mohayaee, Mohamed Rameez and Subir Sarkar
Universe 2024, 10(5), 209; https://doi.org/10.3390/universe10050209 - 7 May 2024
Cited by 23 | Viewed by 1680
Abstract
The existence of ‘peculiar’ velocities due to the formation of cosmic structure marks a point of discord between the real universe and the usually assumed Friedmann–Lemaítre–Robertson–Walker metric, which accomodates only the smooth Hubble expansion on large scales. In the standard ΛCDM model [...] Read more.
The existence of ‘peculiar’ velocities due to the formation of cosmic structure marks a point of discord between the real universe and the usually assumed Friedmann–Lemaítre–Robertson–Walker metric, which accomodates only the smooth Hubble expansion on large scales. In the standard ΛCDM model framework, Type Ia supernovae data are routinely “corrected” for the peculiar velocities of both the observer and the supernova host galaxies relative to the cosmic rest frame, in order to infer evidence for acceleration of the expansion rate from their Hubble diagram. However, observations indicate a strong, coherent local bulk flow that continues outward without decaying out to a redshift z0.1, contrary to the ΛCDM expectation. By querying the halo catalogue of the Dark Sky Hubble-volume N-body simulation, we find that an observer placed in an unusual environment like our local universe should see correlations between supernovae in the JLA catalogue that are 2–8 times stronger than seen by a typical or Copernican observer. This accounts for our finding that peculiar velocity corrections have a large impact on the value of the cosmological constant inferred from supernova data. We also demonstrate that local universe-like observers will infer a downward biased value of the clustering parameter S8 from comparing the density and velocity fields. More realistic modelling of the peculiar local universe is thus essential for correctly interpreting cosmological data. Full article
(This article belongs to the Special Issue The Large-Scale Structure of the Universe: Theory and Observation)
Show Figures

Figure 1

10 pages, 410 KiB  
Article
Cosmological Test of an Ultraviolet Origin of Dark Energy
by Hans Christiansen, Bence Takács and Steen H. Hansen
Universe 2024, 10(5), 193; https://doi.org/10.3390/universe10050193 - 25 Apr 2024
Cited by 1 | Viewed by 1454
Abstract
The accelerated expansion of the Universe is impressively well described by a cosmological constant. However, the observed value of the cosmological constant is much smaller than expected based on quantum field theories. Recent efforts to achieve consistency in these theories have proposed a [...] Read more.
The accelerated expansion of the Universe is impressively well described by a cosmological constant. However, the observed value of the cosmological constant is much smaller than expected based on quantum field theories. Recent efforts to achieve consistency in these theories have proposed a relationship between Dark Energy and the most compact objects, such as black holes (BHs). However, experimental tests are very challenging to devise and perform. In this article, we present a testable model with no cosmological constant in which the accelerated expansion can be driven by black holes. The model couples the expansion of the Universe (the Friedmann equation) with the mass function of cosmological halos (using the Press–Schechter formalism). Through the observed link between halo masses and BH masses, one thus gets a coupling between the expansion rate of the Universe and the BHs. We compare the predictions of this simple BH model with SN1a data and find poor agreement with observations. Our method is sufficiently general to allow us to also test a fundamentally different model, also without a cosmological constant, where the accelerated expansion is driven by a new force proportional to the internal velocity dispersion of galaxies. Surprisingly enough, this model cannot be excluded using the SN1a data. Full article
(This article belongs to the Special Issue The Nature of Dark Energy)
Show Figures

Figure 1

Back to TopTop