# Expanding Space, Quasars and St. Augustine’s Fireworks

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

- You’d think capricious Hebe
- feeding the eagle of Zeus,
- had raised a thunder-foaming goblet,
- unable to restrain her mirth,
- and tipped it on the earth.

## 1. Introduction

## 2. Space Expansion and Enigma of Time Non-Dilation in Quasar Light Curves

## 3. Other Quasar Mysteries

#### 3.1. The Origin of Supermassive Black Holes

#### 3.2. Evolution of Quasars and Age Problems

#### 3.3. Correlation of Quasars with Galaxies of Lower Redshifts

#### 3.4. Apparent Superluminal Motion

## 4. The Milne Model

## 5. St. Augustine’s Objects

**Figure 4.**A schematic mechanism explaining correlations of objects that have vastly different redshifts. See text for details.

## 6. Concluding Remarks

## Acknowledgements

## References and Notes

- Tyutchev, F.I. A Spring Storm. 1828. Available online: http://www.ruthenia.ru/tiutcheviana/publications/trans/springstorm.html (accessed on 28 September 2015).
- Hawkins, M.R.S. On time dilation in quasar light curves. Mon. Not. Roy. Astron. Soc.
**2010**, 405, 1940–1946. [Google Scholar] [CrossRef] - Veltman, M. Diagrammatica; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Lineweaver, C.H.; Davis, T.M. Misconceptions about the Big Bang. Sci. Am.
**2005**, 292, 36–45. [Google Scholar] [CrossRef] - Francis, M.J.; Barnes, L.A.; James, J.B.; Lewis, G.F. Expanding Space: The Root of all Evil? Publ. Astron. Soc. Austral.
**2007**, 24, 95–102. [Google Scholar] [CrossRef] - Peacock, J.A. A diatribe on expanding space. 2008; arXiv:0809.4573, [astro-ph]. [Google Scholar]
- Braeck, S.; Elgarøy, Ø. A physical interpretation of Hubble’s law and the cosmological redshift from the perspective of a static observer. Gen. Rel. Grav.
**2012**, 44, 2603–2610. [Google Scholar] [CrossRef] - Cook, R.J.; Burns, M.S. Interpretation of the Cosmological Metric. Am. J. Phys.
**2009**, 77, 59–66. [Google Scholar] [CrossRef] - Chodorowski, M. A direct consequence of the expansion of space? Mon. Not. Roy. Astron. Soc.
**2007**, 378, 239–244. [Google Scholar] [CrossRef] - Melia, F. Cosmological redshift in Friedmann-Robertson-Walker metrics with constant space-time curvature. Mon. Not. Roy. Astron. Soc.
**2012**, 422, 1418–1424. [Google Scholar] [CrossRef] - Grøn, Ø.; Elgarøy, Ø. Is space expanding in the Friedmann universe models? Am. J. Phys.
**2007**, 75, 151–157. [Google Scholar] - Roukema, B.F. There was movement that was stationary, for the four-velocity had passed around. Mon. Not. Roy. Astron. Soc.
**2010**, 404, 318–324. [Google Scholar] [CrossRef] - Hartnett, J.G. Is the universe really expanding? 2011; arXiv:1107.2485, [physics.gen-ph]. [Google Scholar]
- Lopez-Corredoira, M. Tests for the Expansion of the Universe. 2015; arXiv:1501.01487, [astro-ph.CO]. [Google Scholar]
- Mitra, A. When can an “Expanding Universe” look “Static” and vice versa: A comprehensive study. Int. J. Mod. Phys. D
**2015**, 24, 1550032. [Google Scholar] [CrossRef] - Minkowski, H. Space and Time. In The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity; Lorentz, H.A., Einstein, A., Minkowski, H., Weyl, H., Eds.; Dover Publications: New York, USA, 1952; p. 75. [Google Scholar]
- Wigner, E.P. Relativistic invariance and quantum phenomena. Rev. Mod. Phys.
**1957**, 29, 255–268. [Google Scholar] [CrossRef] - Carroll, S.M. Lecture notes on general relativity. 1997; arXiv:gr-qc/9712019. [Google Scholar]
- Giulini, D. Does cosmological expansion affect local physics? 2013; arXiv:1306.0374, [gr-qc]. [Google Scholar]
- Rindler, W. Relativity: Special, General and Cosmological; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Herranz, F.J.; Ortega, R.; Santander, M. Trigonometry of spacetimes: A new self-dual approach to a curvature/signature (in)dependent trigonometry. J. Phys. A
**2000**, 33, 4525–4551. [Google Scholar] [CrossRef] - Ballesteros, A.; Herranz, F.J.; del Olmo, M.A.; Santander, M. Quantum structure of the motion groups of the two-dimensional Cayley-Klein geometries. J. Phys. A
**1993**, 26, 5801–5823. [Google Scholar] [CrossRef] - Narlikar, J.V. An Introduction to Cosmology; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- “The great tragedy of Science: the slaying of a beautiful hypothesis by an ugly fact” (Thomas Henry Huxley, 1870). Qouted in The Yale Book of Quotations; Shapiro, F. R.; Epstein, J. (Eds.) Yale University Press: London, UK, 2006; p. 379.
- Zee, A. Einstein Gravity in a Nutshell; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Moschella, U. The de Sitter and anti-de Sitter Sightseeing Tour. In Einstein, 1905–2005, Poincaré Seminar 2005; Damour, T., Darrigol, O., Duplantier, B., Rivasseau, V., Eds.; Birkhäuser Verlag: Basel, Switzerland, 2006; pp. 120–133. [Google Scholar]
- Blondin, S.; Davis, T.M.; Krisciunas, K.; Schmidt, B.P.; Sollerman, J.; Wood-Vasey, W.M.; Becker, A.C.; Challis, P.; Clocchiatti, A.; Damke, G.; et al. Time Dilation in Type Ia Supernova Spectra at High Redshift. Astrophys. J.
**2008**, 682, 724–736. [Google Scholar] [CrossRef] - Wilson, O.C. Possible Applications of Supernovae to the Study of the Nebular Red Shifts. Astrophys. J.
**1939**, 90, 634–636. [Google Scholar] [CrossRef] - Crawford, D.F. No Evidence of Time Dilation in Gamma-Ray Burst Data. 2009; arXiv:0901.4169, [astro-ph.CO]. [Google Scholar]
- Kocevski, D.; Petrosian, V. On The Lack of Time Dilation Signatures in Gamma-ray Burst Light Curves. Astrophys. J.
**2013**, 765, 116. [Google Scholar] [CrossRef] - Littlejohns, O.M.; Butler, N.R. Investigating signatures of cosmological time dilation in duration measures of prompt gamma-ray burst light curves. Mon. Not. Roy. Astron. Soc.
**2014**, 444, 3948–3960. [Google Scholar] [CrossRef] - Zhang, F.W.; Fan, Y.Z.; Shao, L.; Wei, D.M. Cosmological Time Dilation in Durations of Swift Long Gamma-Ray Bursts. Astrophys. J.
**2013**, 778, L11. [Google Scholar] [CrossRef] - Ellis, G.F.R. Contributions of K. Gödel to relativity and cosmology. Lect. Notes Log.
**1996**, 6, 34–49. [Google Scholar] - Lanczos, K. On a Stationary Cosmology in the Sense of Einstein’s Theory of Gravitation. Gen. Rel. Grav.
**1997**, 29, 363–399. [Google Scholar] [CrossRef] - Van Stockum, W.J. The gravitational field of a distribution of particles rotating around an axis of symmetry. Proc. Roy. Soc. Edinburgh
**1937**, 57, 135–154. [Google Scholar] [CrossRef] - Hawking, S. The Existence of cosmic time functions. Proc. Roy. Soc. Lond. A
**1968**, 308, 433–435. [Google Scholar] [CrossRef] - Geroch, R.P. General relativity in the large. Gen. Rel. Grav.
**1971**, 2, 61–74. [Google Scholar] [CrossRef] - Geroch, R.; Horowitz, G.T. Global structure of spacetimes. In General Relativity: An Einstein Centenary Survey; Hawking, S., Isreal, W., Eds.; Cambridge University Press: Cambridge, UK, 1979; pp. 212–293. [Google Scholar]
- Minguzzi, E. On the global existence of time. Int. J. Mod. Phys. D
**2009**, 18, 2135–2144. [Google Scholar] [CrossRef] - Weyl, H. Raum, Zeit, Materie, 5th ed.; Springer: Berlin, Germany, 1923. [Google Scholar]
- Rugh, S.E.; Zinkernagel, H. Weyl’s principle, cosmic time and quantum fundamentalism. 2010; arXiv:1006.5848, [gr-qc]. [Google Scholar]
- Kellermann, K.I. The Discovery of Quasars. Bull. Astron. Soc. India
**2013**, 41, 1–17. [Google Scholar] - D’Onofrio, M.; Marziani, P.; Sulentic, J.W.; Collin, S.; Setti, G.; Gaskell, M.; Wampler, J.; Elvis, M.; Pronik, I.; Pronik, V.; et al. Quasars in the Life of Astronomers. In Fifty Years of Quasars: From Early Observations and Ideas to Future Research; D’Onofrio, M., Marziani, P., Sulentic, J.W., Eds.; Springer: Heidelberg, Germany, 2012; pp. 11–90. [Google Scholar]
- Zel’dovich, Ya.B. The Fate of a Star and the Evolution of Gravitational Energy Upon Accretion. Sov. Phys. Dokl.
**1964**, 9, 195–197. [Google Scholar] - Salpeter, E.E. Accretion of interstellar matter by massive objects. Astrophys. J.
**1964**, 140, 796–800. [Google Scholar] [CrossRef] - Lynden-Bell, D. Galactic nuclei as collapsed old quasars. Nature
**1969**, 223, 690–694. [Google Scholar] [CrossRef] - Ojha, R. Parsec-scale structure of quasars: dawn of the golden age? 2013; arXiv:1310.0875, [astro-ph.HE]. [Google Scholar]
- Antonucci, R. Astrophysics: Quasars still defy explanation. Nature
**2013**, 495, 165–167. [Google Scholar] [CrossRef] [PubMed] - Lopez-Corredoira, M. Pending problems in QSOs. 2009; arXiv:0910.4297, [astro-ph.CO]. [Google Scholar]
- Kocsis, B.; Loeb, A. Menus for Feeding Black Holes. 2013; arXiv:1310.0815, [astro-ph.CO]. [Google Scholar]
- Frank, J.; King, A.; Raine, D. Accretion Power in Astrophysics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Peterson, B.M. An Introduction to Active Galactic Nuclei; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Shen, Y. The Mass of Quasars. Bull. Astron. Soc. India
**2013**, 41, 61–115. [Google Scholar] - Paczyńsky, B.; Wiita, P.J. Thick accretion disks and supercritical luminosities. Astron. Astrophys.
**1980**, 88, 23–31. [Google Scholar] - Abramowicz, M.A. The Paczynski-Wiita potential: A step-by-step “derivation”. Astron. Astrophys.
**2009**, 500, 213–214. [Google Scholar] [CrossRef] - Hobson, M.P.; Efstathiou, G.P.; Lasenby, A.N. General Relativity: An Introduction for Physicists; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Alexander, D.M.; Hickox, R.C. What Drives the Growth of Black Holes? New Astron. Rev.
**2012**, 56, 93–121. [Google Scholar] [CrossRef] - Narlikar, J.V. Alternative Views and Ideas. In Fifty Years of Quasars: From Early Observations and Ideas to Future Research; D’Onofrio, M., Marziani, P., Sulentic, J.W., Eds.; Springer: Heidelberg, Germany, 2012; p. 77. [Google Scholar]
- Finkelstein, S.L.; Papovich, C.; Dickinson, M.; Song, M.; Tilvi, V.; Koekemoer, A.M.; Finkelstein, K.D.; Mobasher, B.; Ferguson, H.C.; Giavalisco, M.; et al. A Rapidly Star-forming Galaxy 700 Million Years After the Big Bang at z=7.51. 2013; arXiv:1310.6031, [astro-ph.CO]. [Google Scholar]
- Jiang, L.; Fan, J.; Brandt, W.N.; Carilli, C.L.; Egami, E.; Hines, D.C.; Kurk, J.D.; Richards, G.T.; Shen, Y.; Strauss, M.A.; et al. Dust-free quasars in the early Universe. Nature
**2010**, 46, 380–383. [Google Scholar] [CrossRef] [PubMed] - Jain, D.; Dev, A. Age of high redshift objects—a litmus test for the dark energy models. Phys. Lett. B
**2006**, 633, 436–440. [Google Scholar] [CrossRef] - Friaca, A.; Alcaniz, J.; Lima, J.A.S. An old quasar in a young dark energy-dominated Universe? Mon. Not. Roy. Astron. Soc.
**2005**, 362, 1295–1300. [Google Scholar] [CrossRef] - Kobayashi, C.; Umeda, H.; Nomoto, K.; Tominaga, N.; Ohkubo, T. Galactic chemical evolution: Carbon through Zinc. Astrophys. J.
**2006**, 653, 1145–1171. [Google Scholar] [CrossRef] - Kobayashi, C.; Nomoto, K. The Role of Type Ia Supernovae in Chemical Evolution I: Lifetime of Type Ia Supernovae and Galactic Supernova Rates. Astrophys. J.
**2009**, 707, 1466–1484. [Google Scholar] [CrossRef] - Wang, S.; Li, X.-D.; Li, M. Revisit of cosmic age problem. Phys. Rev. D
**2010**, 82, 103006. [Google Scholar] [CrossRef] - Feige, B. Elliptic integrals for cosmological constant cosmologies. Astron. Nachr.
**1992**, 313, 139–163. [Google Scholar] [CrossRef] - Thomas, R.C.; Kantowski, R. Age redshift relation for standard cosmology. Phys. Rev. D
**2000**, 62, 103507. [Google Scholar] [CrossRef] - Arp, H. Quasars, Redshifts and Controversies; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Kembhavi, A.K.; Narlikar, J.V. Quasars and Active Galactic Nuclei: An Introduction; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Lopez-Corredoira, M. Apparent discordant redshift QSO-galaxy associations. 2009; arXiv:0901.4534, [astro-ph.CO]. [Google Scholar]
- Lopez-Corredoira, M.; Gutierrez, C.M. Two emission line objects with z > 0.2 in the optical filament apparently connecting the Seyfert galaxy NGC 7603 to its companion. Astron. Astrophys.
**2002**, 390, L15–L18. [Google Scholar] [CrossRef] - Lopez-Corredoira, M.; Gutierrez, C.M. The Field surrounding NGC 7603: Cosmological or non-cosmological redshifts? Astron. Astrophys.
**2004**, 421, 407–423. [Google Scholar] [CrossRef] - Blandford, R.D.; McKee, C.F.; Rees, M.J. Super-luminal expansion in extragalactic radio sources. Nature
**1977**, 267, 211–216. [Google Scholar] [CrossRef] - Falla, D.F.; Floyd, M.J. Superluminal motion in astronomy. Eur. J. Phys.
**2002**, 23, 69–81. [Google Scholar] [CrossRef] - Rees, M.J. Appearance of Relativistically Expanding Radio Sources. Nature
**1966**, 211, 468–470. [Google Scholar] [CrossRef] - Kellermann, K.I.; Lister, M.L.; Homan, D.C.; Vermeulen, R.C.; Cohen, M.H.; Ros, E.; Kadler, M.; Zensus, J.A.; Kovalev, Y.Y. Sub-milliarcsecond imaging of quasars and Active Galactic Nuclei 3. Kinematics of parsec—scale radio jets. Astrophys. J.
**2004**, 609, 539–563. [Google Scholar] [CrossRef] - Belchenko, Yu.I.; Gilev, E.A.; Silagadze, Z.K. Problems in Mechanics of Particles and Bodies; RCD: Moscow-Izhevsk, Russia, 2008. problem 2.6. (In Russian) [Google Scholar]
- Chodorowski, M.J. Superluminal apparent motions in distant radio sources. Am. J. Phys.
**2005**, 73, 639–643. [Google Scholar] [CrossRef] - Narlikar, J.V.; Chitre, S.M. Faster-than-Light Motion in Quasars. J. Astrophys. Astron.
**1984**, 5, 495–506. [Google Scholar] [CrossRef] - Lopez-Corredoira, M.; Perucho, M. Kinetic power of quasars and statistical excess of MOJAVE superluminal motions. Astron. Astrophys.
**2012**, 544, A56. [Google Scholar] [CrossRef] - Ryle, M.; Longair, M.S. A Possible Method for Investigating the Evolution of Radio Galaxies. Mon. Not. Roy. Astron. Soc.
**1967**, 136, 123–140. [Google Scholar] [CrossRef] - Urry, C.M.; Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac.
**1995**, 107, 803–845. [Google Scholar] [CrossRef] - Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics, Vol. 2, The Classical Theory of Fields; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Debbasch, F.; Rivet, J.-P.; van Leeuwen, W. Invariance of the relativistic one-particle distribution function. Phys. A
**2001**, 301, 181–195. [Google Scholar] [CrossRef] [Green Version] - Treumann, R.A.; Nakamura, R.; Baumjohann, W. Relativistic transformation of phase-space distributions. Ann. Geophys.
**2011**, 29, 1259–1265. [Google Scholar] [CrossRef] - Castor, J.I. Radiation Hydrodynamics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Bradt, H. Astrophysics Processes: The Physics of Astronomical Phenomena; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Lind, K.R.; Blandford, R.D. Semidynamical models of radio jets—Relativistic beaming and source counts. Astrophys. J.
**1985**, 295, 358–367. [Google Scholar] [CrossRef] - Bell, M.B. Doppler Boosting May Have Played No Significant Role in the Finding Surveys of Radio-Loud Quasars. Int. J. Astron. Astrophys.
**2012**, 2, 52–61. [Google Scholar] [CrossRef] - Parker, R.H.; Wolnizer, P.W.; Nobes, C. (Eds.) Readings in True and Fair; Routledge: New York, NY, USA, 1996; p. 74.
- Milne, E.A. World-Structure and the Expansion of the Universe. Z. Astrophys.
**1933**, 6, 1–95. [Google Scholar] [CrossRef] - Milne, E.A. Relativity, Gravitation and World-Structure; Oxford University Press: London, UK, 1935. [Google Scholar]
- Milne, E.A. Kinematic Relativity; Oxford University Press: London, UK, 1948. [Google Scholar]
- Milne, E.A. Modern Cosmology and the Christian Idea of God; Clarendon Press: Oxford, UK, 1952. [Google Scholar]
- Rindler, W. Finite foliations of open FRW universes and the point-like big bang. Phys. Lett. A
**2000**, 276, 52–58. [Google Scholar] [CrossRef] - Sexl, R.U.; Urbantke, H.K. Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry in Field and Particle Physics; Springer: Vienna, Austria, 2001; p. 38. [Google Scholar]
- Hearn, A.C. Reduce User’s Manual; Rand Corporation: Santa Monica, CA, USA, 1989. [Google Scholar]
- Silberstein, L. The Theory of Relativity; MacMillan: London, UK, 1914; p. 169. [Google Scholar]
- Ungar, A.A. Beyond the Einstein Addition Law and Its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces; Kluwer Academic Publishers: New York, NY, USA, 2002; p. 18. [Google Scholar]
- Robertson, H.P. On E.A.Milne’s Theory of World Structure. Z. Astrophys.
**1933**, 7, 153–166. [Google Scholar] - Jammer, M. Concepts of Simultaneity: From Antiquity to Einstein and Beyond; Johns Hopkins University Press: Baltimore, MA, USA, 2006. [Google Scholar]
- Grøn, Ø. Big bang in a universe with infinite extension. Eur. J. Phys.
**2006**, 27, 561–565. [Google Scholar] - Dirac, P.A.M. Forms of Relativistic Dynamics. Rev. Mod. Phys.
**1949**, 21, 392–399. [Google Scholar] [CrossRef] - Czachor, M.; Wrzask, K. Automatic regularization by quantization in reducible representations of CCR: Point-form quantum optics with classical sources in the Milne universe. Int. J. Theor. Phys.
**2009**, 48, 2511–2549. [Google Scholar] [CrossRef] - Wald, R.M. General Relativity; The university of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Rindler, W. Kruskal Space and the Uniformly Accelerated Frame. Am. J. Phys.
**1966**, 34, 1174–1178. [Google Scholar] [CrossRef] - Koks, D. Explorations in Mathematical Physics: The Concepts Behind an Elegant Language; Springer: New York, NY, USA, 2006. [Google Scholar]
- Culetu, H. Kinematic parameters in the spherical Rindler frame spacetime. 2008; arXiv:0804.3754. [Google Scholar]
- Aurelius, A. The Confessions of St. Augustine; Sheed & Ward: New York, NY, USA, 1943. [Google Scholar]
- Vilenkin, A. Quantum Origin of the Universe. Nucl. Phys. B
**1985**, 252, 141–151. [Google Scholar] [CrossRef] - Vilenkin, A. Many Worlds in One: The Search for Other Universes; Hill & Wang: New York, NY, USA, 2006. [Google Scholar]
- Aurelius, A. City of God; Penguin Books: London, UK, 1984. [Google Scholar]
- Hawking, S.W. The edge of spacetime. In The New Physics; Davies, P., Ed.; Cambridge University Press: Cambridge, UK, 1989; p. 69. [Google Scholar]
- Grünbaum, A. Creation As a Pseudo-Explanation in Current Physical Cosmology. Erkenntnis
**1991**, 35, 233–254. [Google Scholar] - Hawking, S.W. Quantum Cosmology. In Three Hundred Years of Gravitation; Hawking, S.W., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1987; pp. 631–651. [Google Scholar]
- Flügge, S. Practical Quantum Mechanics, Vol. 1; Springer: Berlin, Germany, 1994; pp. 196–197. [Google Scholar]
- Luke, Y.L. Integrals of Bessel Functions; McGraw-Hili Book Co.: New York, NY, USA, 1962. [Google Scholar]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Ford, L.H. Quantum field theory in curved space-time. In Particles and Fields. Proceedings of the 9th Jorge Andre Swieca Summer School, Campos do Jordao, Brazil, 1997; Barata, J.C.A., Malbouisson, A.P.C., Novaes, S.F., Eds.; World Scientific: Singapore, 1998; pp. 345–388. [Google Scholar]
- Schutz, B.F. A First Course in General Relativity; Cambridge University Press: Cambridge, UK, 2009; p. 153. [Google Scholar]
- Padmanabhan, T. Physical interpretation of quantum field theory in noninertial coordinate systems. Phys. Rev. Lett.
**1990**, 64, 2471–2474. [Google Scholar] [CrossRef] [PubMed] - Tolley, A.J.; Turok, N. Quantum fields in a big crunch / big bang space-time. Phys. Rev. D
**2002**, 66, 106005. [Google Scholar] [CrossRef] - Parker, L. Quantized fields and particle creation in expanding universes. Phys. Rev.
**1969**, 183, 1057–1068. [Google Scholar] [CrossRef] - Chitre, D.M.; Hartle, J.B. Path Integral Quantization and Cosmological Particle Production: An Example. Phys. Rev. D
**1977**, 16, 251–260. [Google Scholar] [CrossRef] - Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1922; p. 180. [Google Scholar]
- Nikishov, A.I.; Ritus, V.I. Rindler solutions and their physical interpretation. J. Exp. Theor. Phys.
**1998**, 87, 421–425. [Google Scholar] [CrossRef] - Nikishov, A.I.; Ritus, V.I. Processes induced by a charged particle in an electric field, and the Unruh heat-bath concept. Sov. Phys. JETP
**1988**, 68, 1313–1321. [Google Scholar] - Bilić, N.; Tolić, D. FRW universe in the laboratory. Phys. Rev. D
**2013**, 88, 105002. [Google Scholar] [CrossRef] - Custodio, P.S.; Horvath, J.E. The Evolution of primordial black hole masses in the radiation dominated era. Gen. Rel. Grav.
**2002**, 34, 1895–1907. [Google Scholar] [CrossRef] - Arp, H. Ambartsumian’s greatest insight—the origin of galaxies. In Active Galactic Nuclei and Related Phenomena; Proceedings of the International Astronomical Union Syposium 194, Yerevan, Armenia, 17–21 August 1998; Terzian, Y., Weedman, D., Khachikian, E., Eds.; Astronomical Society of the Pacific: San Francisco, USA, 1999; pp. 473–477. [Google Scholar]
- Vishwakarma, R.G. A curious explanation of some cosmological phenomena. Phys. Scripta
**2013**, 5, 055901. [Google Scholar] [CrossRef] - Chodorowski, M.J. Cosmology under Milne’s shadow. Publ. Astron. Soc. Austral.
**2005**, 22, 287–291. [Google Scholar] [CrossRef] - Bondi, H. Cosmology; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
- Gale, G. Cosmology: Methodological Debates in the 1930s and 1940s. In The Stanford Encyclopedia of Philosophy (Spring 2014 Edition). Zalta, E.N., Ed.; Available online: http://plato.stanford.edu/archives/spr2014/entries/cosmology-30s/ (accessed on 21 September 2015).
- Lepeltier, T. Edward Milne’s influence on modern cosmology. Ann. Sci.
**2006**, 63, 471–481. [Google Scholar] [CrossRef] - Urani, J.; Gale, G. E.A. Milne and the Origins of Modern Cosmology: An Ubiquitous Presence. In The Attraction of Gravitation: New Studies in the History of General Relativity; Earman, J., Janssen, M., Norton, J.D., Eds.; Birkhaeuser: Boston, MA, USA, 1994; pp. 390–419. [Google Scholar]
- Walker, A.G. The Principle of Least Action in Milne’s Kinematical Relativity. Proc. Roy. Soc. Lond. A
**1934**, 147, 478–490. [Google Scholar] [CrossRef] - Walker, A.G. On the formal comparison of Milne’s kinematical system with the systems of general relativity. Mon. Not. Roy. Astron. Soc.
**1935**, 95, 263–269. [Google Scholar] [CrossRef] - Ingarden, R.S. On physical applications of Finsler geometry. Contemp. Math.
**1996**, 196, 213–223. [Google Scholar] - Antonelli, P.L.; Ingarden, R.S.; Matsumoto, M. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Infeld, L.; Schild, A. A New Approach to Kinematic Cosmology. Phys. Rev.
**1945**, 68, 250–272. [Google Scholar] [CrossRef] - Grøn, Ø.; Johannesen, S. FRW Universe Models in Conformally Flat Spacetime Coordinates. II: Universe models with negative and vanishing spatial curvature. Eur. Phys. J. Plus
**2011**, 126, 29. [Google Scholar] - Eisenhart, L.P. Riemannian Geometry; Princeton University Press: Princeton, NJ, USA, 1949; p. 188. [Google Scholar]
- Robertson, H.P. Relativistic Cosmology. Rev. Mod. Phys.
**1933**, 5, 62–90. [Google Scholar] [CrossRef] - Gogberashvili, M. Our world as an expanding shell. Europhys. Lett.
**2000**, 49, 396–399. [Google Scholar] [CrossRef] - Randall, L.; Sundrum, R. An Alternative to compactification. Phys. Rev. Lett.
**1999**, 83, 4690–4693. [Google Scholar] [CrossRef] - Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B
**1998**, 429, 263–272. [Google Scholar] [CrossRef] - Penrose, R. The basic ideas of conformal cyclic cosmology. AIP Conf. Proc.
**2012**, 1446, 233–243. [Google Scholar] - Khoury, J.; Ovrut, B.A.; Steinhardt, P.J.; Turok, N. The Ekpyrotic universe: Colliding branes and the origin of the hot big bang. Phys. Rev. D
**2001**, 64, 123522. [Google Scholar] [CrossRef] - Steinhardt, P.J.; Turok, N. Cosmic evolution in a cyclic universe. Phys. Rev. D
**2002**, 65, 126003. [Google Scholar] [CrossRef] [Green Version] - Carr, B.J.; Coley, A.A. Persistence of black holes through a cosmological bounce. Int. J. Mod. Phys. D
**2011**, 20, 2733–2738. [Google Scholar] [CrossRef] - Khoury, J.; Ovrut, B.A.; Seiberg, N.; Steinhardt, P.J.; Turok, N. From big crunch to big bang. Phys. Rev. D
**2002**, 65, 086007. [Google Scholar] [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chashchina, O.I.; Silagadze, Z.K.
Expanding Space, Quasars and St. Augustine’s Fireworks. *Universe* **2015**, *1*, 307-356.
https://doi.org/10.3390/universe1030307

**AMA Style**

Chashchina OI, Silagadze ZK.
Expanding Space, Quasars and St. Augustine’s Fireworks. *Universe*. 2015; 1(3):307-356.
https://doi.org/10.3390/universe1030307

**Chicago/Turabian Style**

Chashchina, Olga I., and Zurab K. Silagadze.
2015. "Expanding Space, Quasars and St. Augustine’s Fireworks" *Universe* 1, no. 3: 307-356.
https://doi.org/10.3390/universe1030307