Super Virasoro Algebras From Chiral Supergravity
Abstract
:1. Introduction
2. Cosmologically Topologically Massive Supergravity
3. Currents for the CTMSG
3.1. Current for the General Coordinate Invariance
3.2. Supercurrent
4. Asymptotic Symmetry Group for AdS Geometry
5. Super Virasoro Algebras from Chiral Supergravity
6. Conclusions and Discussion
Acknowledgments
Conflicts of Interest
References
- Deser, S.; Jackiw, R. Three-Dimensional Cosmological Gravity: Dynamics of Constant Curvature. Ann. Phys. 1984, 153, 405–416. [Google Scholar] [CrossRef]
- Brown, J.D.; Henneaux, M. Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity. Commun. Math. Phys. 1986, 104, 207–226. [Google Scholar] [CrossRef]
- Maldacena, J.M. The Large N Limit of Superconformal Field Theories and Supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar]
- Banados, M.; Teitelboim, C.; Zanelli, J. The Black Hole in Three-Dimensional Space-Time. Phys. Rev. Lett. 1992, 69, 1849–1851. [Google Scholar] [CrossRef] [PubMed]
- Banados, M.; Henneaux, M.; Teitelboim, C.; Zanelli, J. Geometry of the (2+1) Black Hole. Phys. Rev. D 1993, 48, 1506–1525. [Google Scholar] [CrossRef]
- Strominger, A. Black Hole Entropy from Near Horizon Microstates. J. High Energy Phys. 1998. [Google Scholar] [CrossRef]
- Achucarro, A.; Townsend, P.K. A Chern–Simons Action for Three-Dimensional Anti-de Sitter Supergravity Theories. Phys. Lett. B 1986, 180, 89–92. [Google Scholar] [CrossRef]
- Witten, E. (2+1)-Dimensional Gravity as an Exactly Soluble System. Nucl. Phys. B 1988, 311, 46–78. [Google Scholar] [CrossRef]
- Banados, M. Global Charges in Chern–Simons Field Theory and the (2+1) Black Hole. Phys. Rev. D 1996, 52, 5816–5825. [Google Scholar] [CrossRef]
- Carlip, S. The Statistical Mechanics of the (2+1)-Dimensional Black Hole. Phys. Rev. D 1995, 51, 632–637. [Google Scholar] [CrossRef]
- Coussaert, O.; Henneaux, M. Supersymmetry of the (2+1) Black Holes. Phys. Rev. Lett. 1994, 72, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Banados, M.; Bautier, K.; Coussaert, O.; Henneaux, M.; Ortiz, M. Anti-de Sitter-CFT Correspondence in Three-Dimensional Supergravity. Phys. Rev. D 1998, 58, 085020. [Google Scholar] [CrossRef]
- Henneaux, M.; Maoz, L.; Schwimmer, A. Asymptotic Dynamics and Asymptotic Symmetries of Three-Dimensional Extended AdS Supergravity. Ann. Phys. 2000, 282, 31–66. [Google Scholar] [CrossRef]
- Deser, S.; Jackiw, R.; Templeton, S. Three-Dimensional Massive Gauge Theories. Phys. Rev. Lett. 1982, 48, 975–978. [Google Scholar] [CrossRef]
- Deser, S.; Jackiw, R.; Templeton, S. Topologically Massive Gauge Theories. Ann. Phys. 1982, 140, 372–411. [Google Scholar] [CrossRef]
- Maldacena, J.; Strominger, A.; Witten, E. Black Hole Entropy in M Theory. J. High Energy Phys. 1997. [Google Scholar] [CrossRef]
- Kraus, P.; Larsen, F. Microscopic Black Hole Entropy in Theories with Higher Derivatives. J. High Energy Phys. 2005. [Google Scholar] [CrossRef]
- Kraus, P.; Larsen, F. Holographic Gravitational Anomalies. J. High Energy Phys. 2006. [Google Scholar] [CrossRef]
- Solodukhin, S.N. Holography with Gravitational Chern–Simons. Phys. Rev. D 2006, 74, 024015. [Google Scholar] [CrossRef]
- Sahoo, B.; Sen, A. BTZ Black Hole with Chern–Simons and Higher Derivative Terms. J. High Energy Phys. 2006. [Google Scholar] [CrossRef]
- Park, M.I. BTZ Black Hole with Gravitational Chern–Simons: Thermodynamics and Statistical Entropy. Phys. Rev. D 2008, 77, 026011. [Google Scholar] [CrossRef]
- Li, W.; Song, W.; Strominger, A. Chiral Gravity in Three Dimensions. J. High Energy Phys. 2008. [Google Scholar] [CrossRef]
- Carlip, S.; Deser, S.; Waldron, A.; Wise, D.K. Cosmological Topologically Massive Gravitons and Photons. Class. Quant. Grav. 2009, 26, 075008. [Google Scholar] [CrossRef]
- Hotta, K.; Hyakutake, Y.; Kubota, T.; Tanida, H. Brown-Henneaux’s Canonical Approach to Topologically Massive Gravity. J. High Energy Phys. 2008. [Google Scholar] [CrossRef]
- Saida, H.; Soda, J. Statistical Entropy of BTZ Black Hole in Higher Curvature Gravity. Phys. Lett. B 2000, 471, 358–366. [Google Scholar] [CrossRef]
- Azeyanagi, T.; Compere, G.; Ogawa, N.; Tachikawa, Y.; Terashima, S. Higher-Derivative Corrections to the Asymptotic Virasoro Symmetry of 4D Extremal Black Holes. Prog. Theor. Phys. 2009, 122, 355–384. [Google Scholar] [CrossRef]
- Deser, S.; Kay, J.H. Topologically Massive Supergravity. Phys. Lett. B 1983, 120, 97–100. [Google Scholar] [CrossRef]
- Deser, S. Cosmological topological supergravity. In Quantum Theory Gravity; Adam Hilger Ltd.: Bristol, England, 1984; pp. 374–381. [Google Scholar]
- Becker, M.; Bruillard, P.; Downes, S. Chiral Supergravity. J. High Energy Phys. 2009. [Google Scholar] [CrossRef]
- Wald, R.M. Black Hole Entropy is the Noether Charge. Phys. Rev. D 1993, 48, R3427–R3431. [Google Scholar] [CrossRef]
- Iyer, V.; Wald, R.M. Some Properties of Noether Charge and a Proposal for Dynamical Black Hole Entropy. Phys. Rev. D 1994, 50, 846–864. [Google Scholar] [CrossRef]
- Tachikawa, Y. Black Hole Entropy in the Presence of Chern–Simons Terms. Class. Quant. Grav. 2007, 24, 737–744. [Google Scholar] [CrossRef]
- Hyakutake, Y. Super Virasoro Algebra From Supergravity. Phys. Rev. D 2013, 87, 045028. [Google Scholar] [CrossRef]
- Hyakutake, Y. Quantum M-wave and Black 0-brane. J. High Energy Phys. 2014. [Google Scholar] [CrossRef]
- Hanada, M.; Hyakutake, Y.; Ishiki, G.; Nishimura, J. Holographic Description of Quantum Black Hole on a Computer. Science 2014, 344, 882–885. [Google Scholar] [CrossRef] [PubMed]
- Hyakutake, Y. Quantum Near-horizon Geometry of a Black 0-brane. Prog. Theor. Exp. Phys 2014, 2014, 033B04. [Google Scholar] [CrossRef]
- Carlip, S. What We Don’t Know about BTZ Black Hole Entropy. Class. Quant. Grav. 1998. [Google Scholar] [CrossRef]
- Anninos, D.; Li, W.; Padi, M.; Song, W.; Strominger, A. Warped AdS(3) Black Holes. J. High Energy Phys. 2009. [Google Scholar] [CrossRef]
- Compere, G.; Detournay, S. Semi-classical Central Charge in Topologically Massive Gravity. Class. Quant. Grav. 2009, 26, 012001. [Google Scholar] [CrossRef]
- Guica, M.; Hartman, T.; Song, W.; Strominger, A. The Kerr/CFT Correspondence. Phys. Rev. D 2009, 80, 124008. [Google Scholar] [CrossRef]
- Barnich, G.; Brandt, F. Covariant Theory of Asymptotic Symmetries, Conservation Laws and Central Charges. Nucl. Phys. B 2002, 633, 3–82. [Google Scholar] [CrossRef]
- Barnich, G.; Compere, G. Surface Charge Algebra in Gauge Theories and Thermodynamic Integrability. J. Math. Phys. 2008, 49, 042901. [Google Scholar] [CrossRef]
- Creutzig, T.; Hikida, Y.; Ronne, P.B. Higher Spin AdS3 Supergravity and Its Dual CFT. J. High Energy Phys. 2012. [Google Scholar] [CrossRef]
- Henneaux, M.; Lucena Gomez, G.; Park, J.; Rey, S.J. Super-W∞ Asymptotic Symmetry of Higher-Spin AdS3 Supergravity. J. High Energy Phys. 2012. [Google Scholar] [CrossRef]
- Hanaki, K.; Peng, C. Symmetries of Holographic Super-Minimal Models. J. High Energy Phys. 2013. [Google Scholar] [CrossRef]
- Gaberdiel, M.R.; Peng, C. The Symmetry of Large Holography. J. High Energy Phys. 2014. [Google Scholar] [CrossRef]
© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyakutake, Y. Super Virasoro Algebras From Chiral Supergravity. Universe 2015, 1, 292-306. https://doi.org/10.3390/universe1020292
Hyakutake Y. Super Virasoro Algebras From Chiral Supergravity. Universe. 2015; 1(2):292-306. https://doi.org/10.3390/universe1020292
Chicago/Turabian StyleHyakutake, Yoshifumi. 2015. "Super Virasoro Algebras From Chiral Supergravity" Universe 1, no. 2: 292-306. https://doi.org/10.3390/universe1020292
APA StyleHyakutake, Y. (2015). Super Virasoro Algebras From Chiral Supergravity. Universe, 1(2), 292-306. https://doi.org/10.3390/universe1020292