Ancient Danish Apple Cultivars—A Comprehensive Metabolite and Sensory Profiling of Apple Juices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Material and Juice Preparation
2.2. Sugar and Acid Measurements: Brix and Ion Chromatography
2.3. Analysis of Aroma Compounds by Dynamic Headspace Gas Chromatography/Mass Spectrometry (GC–MS)
2.4. Sensory Evaluation
2.5. Bruker Spin Generated Fingerprint (SGF) Fruit Juice Screener
2.5.1. Quantification (Targeted Analysis)
2.5.2. Statistical Analysis (Non-Targeted)
2.6. Multivariate Data Analysis
3. Results and Discussion
3.1. Sugar and Acid Measurements
3.2. Dynamic Headspace Gas Chromatography/Mass Spectrometry (GC–MS)
3.3. Sensory Evaluation
3.4. Bruker-SGF Fruit Juice Screener
3.4.1. Metabolite Quantification
3.4.2. Raw Nuclear Magnetic Resonance (NMR) Spectra Analysis
3.5. Multivariate Analysis on Datasets Combined (Ion Chromatography, Headspace GC–MS, Sensory Evaluation, Bruker-SGF Profiling)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Apple Juice Market—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2018–2026. Available online: https://www.transparencymarketresearch.com/apple-juice-market.html (accessed on 10 July 2019).
- Ravn-Haren, G.; Dragsted, L.O.; Buch-Andersen, T.; Jensen, E.N.; Jensen, R.I.; Németh-Balogh, M.; Paulovicsová, B.; Bergström, A.; Wilcks, A.; Licht, T.R.; et al. Intake of whole apples or clear apple juice has contrasting effects on plasma lipids in healthy volunteers. Eur. J. Nutr. 2013, 52, 1875–1889. [Google Scholar] [CrossRef]
- European Fruit Juice Association Liquid Fruit Market Report. 2018. Available online: https://aijn.eu/en/publications/market-reports-1/publication-2 (accessed on 10 July 2019).
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Torello Marinoni, D.; Cerutti, A.K.; Canterino, S.; Bounous, G. Application of sensory, nutraceutical and genetic techniques to create a quality profile of ancient apple cultivars. J. Food Qual. 2012, 35, 169–181. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Bruun, S.; Donno, D.; Beccaro, G.L.; Bounous, G. Environmental sustainability of traditional foods: The case of ancient apple cultivars in Northern Italy assessed by multifunctional LCA. J. Clean. Prod. 2013, 52, 245–252. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Mohareb, F.; Redfern, S.P.; Berry, M.; Simmonds, M.S.J.; Terry, L.A. Biochemical Profile of Heritage and Modern Apple Cultivars and Application of Machine Learning Methods to Predict Usage, Age, and Harvest Season. J. Agric. Food Chem. 2017, 65, 5339–5356. [Google Scholar] [CrossRef]
- Jakobek, L.; Barron, A.R. Ancient apple varieties from Croatia as a source of bioactive polyphenolic compounds. J. Food Compos. Anal. 2016, 45, 9–15. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Gławdel, E.; Cebulak, T.; Ochmian, I. Determination of phytochemical composition and antioxidant capacity of 22 old apple cultivars grown in Poland. Eur. Food Res. Technol. 2018, 244, 647–662. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T. Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef]
- Korsgaard, M.; Toldam-Andersen, T.B.; Nordling, J. The Pometum Apple Key. Available online: https://www.nordgen.org/nak/?chglang=ENG (accessed on 10 July 2019).
- Larsen, B.; Toldam-Andersen, T.B.; Pedersen, C.; Ørgaard, M. Unravelling genetic diversity and cultivar parentage in the Danish apple gene bank collection. Tree Genet. Genomes 2017, 13, 13. [Google Scholar] [CrossRef]
- Inderbitzin, J. The World’s First Flavour Wheel for Apples. 2016. Available online: https://www.agroscope.admin.ch/agroscope/en/home/topics/food/sensory-analysis/sensory-analysis-of-plant-products/aromarad-aepfel.html (accessed on 10 July 2019).
- Spraul, M.; Schütz, B.; Rinke, P.; Koswig, S.; Humpfer, E.; Schäfer, H.; Mörtter, M.; Fang, F.; Marx, U.C.; Minoja, A. NMR-based multi parametric quality control of fruit juices: SGF profiling. Nutrients 2009, 1, 148–155. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Schütz, B.; Schäfer, H.; Spraul, M.; Kuballa, T.; Hahn, H.; Lachenmeier, D.W. Validation studies for multicomponent quantitative NMR analysis: The example of apple fruit juice. Accredit. Qual. Assur. 2014, 19, 17–29. [Google Scholar] [CrossRef]
- Braun, S.; Kalinowski, H.-O.; Berger, S. 150 and More Basic NMR Experiments; Wiley-VCH: Berlin, Germany, 1998. [Google Scholar]
- Jovanov, M.J. Determination of 5-hydroxymethylfurfural in apple juice. Food Process. Qual. Saf. 2003, 2, 35–39. [Google Scholar]
- Mardi, K.; Kent, J.; Bibby, J. Multivariate Analysis, 1st ed.; Academic Press: Cambridge, MA, USA, 1979; ISBN 9780124712522. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Van Den Berg, R.A.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Smilde, A.K.; Van Der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef]
- Savorani, F.; Tomasi, G.; Engelsen, S.B. Icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J. Magn. Reson. 2010, 202, 190–202. [Google Scholar] [CrossRef]
- Farrant, R.D.; Hollerton, J.C.; Lynn, S.M.; Provera, S.; Sidebottom, P.J.; Upton, R.J. NMR quantification using an artificial signal. Magn. Reson. Chem. 2010, 48, 753–762. [Google Scholar] [CrossRef]
- Belton, P.S.; Delgadillo, I.; Gil, A.M.; Roma, P.; Casuscelli, F.; Colquhoun, I.J.; Dennis, M.J.; Spraul, M. High-field proton NMR studies of apple juices. Magn. Reson. Chem. 1997, 35, S52–S60. [Google Scholar] [CrossRef]
- Vermathen, M. Investigation of Different Apple Cultivars by High Resolution Magic Angle Spinning NMR. A Feasibility Study. J. Agric. Food Chem. 2011, 59, 12784–12793. [Google Scholar] [CrossRef]
- Berregi, I.; Del Campo, G.; Caracena, R.; Miranda, J.I. Quantitative determination of formic acid in apple juices by 1H NMR spectrometry. Talanta 2007, 72, 1049–1053. [Google Scholar] [CrossRef]
- Del Campo, G.; Santos, J.I.; Iturriza, N.; Berregi, I.; Munduate, A. Use of the 1H nuclear magnetic resonance spectra signals from polyphenols and acids for chemometric characterization of cider apple juices. J. Agric. Food Chem. 2006, 54, 3095–3100. [Google Scholar] [CrossRef]
- Jaros, D.; Thamke, I.; Raddatz, H.; Rohm, H. Single-cultivar cloudy juice made from table apples: An attempt to identify the driving force for sensory preference. Eur. Food Res. Technol. 2009, 229, 51–61. [Google Scholar] [CrossRef]
- Thielen, C.; Ludwig, M.; Patz, C.D.; Will, F.; Dietrich, H.; Netzel, G.; Netzel, M.; Bitsch, R.; Bitsch, I. Characterization of juices of different apple cultivars. Dtsch. Leb. 2006, 102, 426–435. [Google Scholar]
- Eisele, T.A.; Drake, S.R. The partial compositional characteristics of apple juice from 175 apple varieties. J. Food Compos. Anal. 2005, 18, 213–221. [Google Scholar] [CrossRef]
- Markowski, J.; Baron, A.; Mieszczakowska, M.; Płocharski, W. Chemical composition of French and Polish cloudy apple juices. J. Hortic. Sci. Biotechnol. 2009, 84, 68–74. [Google Scholar] [CrossRef]
- Lee, H.S.; Wrolstad, R.E. Apple Juice Composition: Sugar, Nonvolatile Acid, and Phenolic Profiles. J. Assoc. Off. Anal. Chem. 1988, 71, 789–794. [Google Scholar]
- Fuleki, T.; Pelayo, E.; Palabay, R.B. Carboxylic Acid Composition of Varietal Juices Produced from Fresh and Stored Apples. J. Agric. Food Chem. 1995, 43, 598–607. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical compositional characterization of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Poll, L. Evaluation of 18 apple varieties for their suitability for juice production. J. Sci. Food Agric. 1981, 32, 1081–1090. [Google Scholar] [CrossRef]
- Blanco, D.; Morán, M.J.; Gutiérrez, M.D.; Moreno, J.; Dapena, E.; Mangas, J. Biochemical study of the ripening of cider apple varieties. Eur. Food Res. Technol. 1992, 194, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.X.; Li, M.; Zhai, H.; You, C.X.; Hao, Y.J. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. J. Plant Physiol. 2011, 168, 474–480. [Google Scholar] [CrossRef]
- Berüter, J. Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. J. Plant Physiol. 2004, 161, 1011–1029. [Google Scholar] [CrossRef]
- Espino-Díaz, M.; Sepúlveda, D.R.; González-Aguilar, G.; Olivas, G.I. Biochemistry of apple aroma: A review. Food Technol. Biotechnol. 2016, 54, 375–394. [Google Scholar] [CrossRef]
- Karlsen, A.M.; Aaby, K.; Sivertsen, H.; Baardseth, P.; Ellekjær, M.R. Instrumental and sensory analysis of fresh Norwegian and imported apples. Food Qual. Prefer. 1999, 10, 305–314. [Google Scholar] [CrossRef]
- Thybo, A.K.; Sørensen, L.; Christensen, L.P.; Kühn, B.F. Quality of apples grown in a Scandinavian high-density orchard and chemical composition in relation to sensory quality. J. Hortic. Sci. Biotechnol. 2005, 80, 727–735. [Google Scholar] [CrossRef]
- A.I.J.N. European Fruit Juice Association. Available online: https://aijn.eu/en (accessed on 10 July 2019).
- Johnston, J.W.; Hewett, E.W.; Hertog, M.L.A.T.M. Postharvest softening of apple ( Malus domestica ) fruit: A review. N. Z. J. Crop Hortic. Sci. 2002, 30, 145–160. [Google Scholar] [CrossRef]
- Micheli, F. Pectin methylesterases: Cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 2001, 6, 414–419. [Google Scholar] [CrossRef]
- Treutter, D. Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul. 2001, 34, 71–89. [Google Scholar] [CrossRef]
- Iaccarino, N.; Varming, C.; Petersen, M.A.; Savorani, F.; Randazzo, A.; Schütz, B.; Toldam-Andersen, T.B.; Engelsen, S.B. Application of Recursive Partial Least Square Regression for Prediction of Apple Juice Sensory Attributes from NMR Spectra. In Proceedings of the The XIII International Conference on the Applications of Magnetic Resonance in Food Science, Karlsruhe, Germany, 7–10 June 2016; Volume 7, pp. 7–12. [Google Scholar]
- Harker, F.R.; Marsh, K.B.; Young, H.; Murray, S.H.; Gunson, F.A.; Walker, S.B. Sensory interpretation of instrumental measurements 2: Sweet and acid taste of apple fruit. Postharvest Biol. Technol. 2002, 24, 241–250. [Google Scholar] [CrossRef]
- Komthong, P.; Katoh, T.; Igura, N.; Shimoda, M. Changes in the odours of apple juice during enzymatic browning. Food Qual. Prefer. 2006, 17, 497–504. [Google Scholar] [CrossRef]
- Dever, M.C.; Cliff, M.; Lau, O.L. Maturity and ripening effects on chemical and sensory properties of apple juice. J. Sci. Food Agric. 1992, 60, 355–360. [Google Scholar] [CrossRef]
- Toldam-Andersen, T.B.; Hansen, P. Priority of fruit quality parameters based on differences in growing conditions. Acta Hortic. 1998, 466, 71–76. [Google Scholar] [CrossRef]
- Cliff, M.; Dever, M.C.; Gayton, R. Juice Extraction Process and Apple Cultivar Influences on Juice Properties. J. Food Sci. 1991, 56, 1614–1617. [Google Scholar] [CrossRef]
- Poll, L.; Rindom, A.; Toldam-Andersen, T.B.; Hansen, P. Availability of assimilates and formation of aroma compounds in apples as affected by the fruit/leaf ratio. Physiol. Plant. 1996, 97, 223–227. [Google Scholar] [CrossRef]
- Poll, L. The influence of apple ripeness and juice storage temperature on the sensory evaluation and composition (volatile and non-volatile components) of apple juice. LWT Food Sci. Technol. 1985, 18, 205–211. [Google Scholar]
Sample | Apple Variety | Country of Origin | Usage | Introduction Date | Harvest Season b | Picking Day c |
---|---|---|---|---|---|---|
1 | Louisendal | Unknown | unknown | Unknown | E | 1 |
2 | Skovfoged | Denmark | Dessert | 1830 | E | 2 |
3 | Ferskenrødt sommeræble | France | Dessert | before 1839 | E | 2 |
4 | Ejby æble | Denmark | Dessert | 1840 | E | 5 |
5 | Augustæble | Netherlands | dessert, culinary | before 1795 | E | 5 |
6 | Uggerløse æble | Unknown | unknown | Unknown | E | 9 |
7 | Herschendsgave | Denmark | Dessert | 1850 | E | 16 |
8 | Gadeskovæble | Denmark | Dessert | 1924 | E | 19 |
9 | Auroravej | Unknown | unknown | Unknown | E | 19 |
10 | Ondrup sommeræble | Denmark | Dessert | 1900 | E | 16 |
11 | Fåborgæble | Denmark | Culinary | Unknown | E | 29 |
12 | Kundbyæble | Denmark | Dessert | 1995 | E | 29 |
13 | Ingers æble | Denmark | Dessert | 1870 | E | 29 |
14 | Ørdings æble | Denmark | culinary | Unknown | E | 30 |
15 | Ulderup æble | Denmark | Dessert | 1890 | E | 29 |
16 | Thyregod kalvil | Denmark | Dessert | 1800 | E | 29 |
17 | Fuhræble | Norway | unknown | 1660 | E | 29 |
18 | Guldspir | Denmark | culinary | 1937 | E | 29 |
19 | Gravenfin | Denmark | Dessert | 1932 | E | 29 |
20 | Sofie æble | Denmark | Dessert | 1896 | E | 29 |
21 | Nina’s æble | Denmark | Dessert | 1835 | E | 29 |
22 | Søde æbler fra Alsrode | Denmark | Dessert | Unknown | E | 29 |
23 | Vallekilde Sommeræble | Denmark | Dessert | 1913 | E | 29 |
24 | Rosenholm | Denmark | culinary | 1870 | E | 19 |
25 | Dynnegårdsæble | Denmark | dessert, culinary | before 1924 | E | 29 |
26 | Nonnetit Bastard | Denmark | dessert, culinary | 1800 | E | 29 |
27 | Miang æble | Denmark | Dessert | before 1913 | L | 51 |
28 | Gråsten gul | Denmark | dessert, cider, culinary | 1750 | L | 39 |
29 | Pigeon Stribet | Denmark | Dessert | about 1860 | L | 52 |
30 | Butteræble | Unknown | unknown | Unknown | E | 29 |
31 | Vejløæble | Denmark | unknown | Unknown | E | 29 |
32 | Nybøllegård | Denmark | unknown | Unknown | E | 29 |
33 | Fejø æble | Denmark | Dessert | 1913 | E | 29 |
34 | Hindbæræble | Denmark | culinary | 1876 | E | 29 |
35 | Pilehavesæble | Denmark | culinary | 1800 | L | 39 |
36 | Langt rødt Hinbæræble | Germany | dessert, culinary | before 1802 | E | 29 |
37 | Mosede æble | Unknown | unknown | Unknown | E | 29 |
38 | Ingrid Marie | Denmark | dessert, culinary, cider | 1910 | L | 50 |
39 | Maglemer rød | Denmark | Dessert | Unknown | E | 29 |
40 | Fynsk udvalg V | Denmark | Dessert | 1960’ies | E | 29 |
41 | Lundbytorp æble | Denmark | dessert, culinary | 1913 | L | 50 |
42 | Bodil Neergård | Denmark | dessert, culinary | 1850 | L | 50 |
43 | Filippa Harritslev | Denmark | dessert | Unknown | L | 50 |
44 | Tønnes | Denmark | dessert, cider, culinary | 1820 | L | 50 |
45 | Flaskehalser | Denmark | dessert, culinary | before 1913 | L | 50 |
46 | Flintinge | Denmark | cullinary | before 1889 | L | 50 |
47 | Jakober | Denmark | culinary | before 1850 | L | 39 |
48 | Æbeltoftæble | Denmark | culinary | Unknown | L | 43 |
49 | Skenkelsø æble | Denmark | culinary | 1792 | L | 50 |
50 | Broholm Rosenæble | Denmark | dessert | 1866 | L | 50 |
51 | Ondrup moseæble | Denmark | dessert, culinary | 1850 | E | 29 |
52 | Høje Taastrup æble | Denmark | dessert | Unknown | E | 17 |
53 | Knud Lunn | Denmark | culinary | 1865 | L | 50 |
54 | Niels Juul | Denmark | dessert, culinary | 1875 | L | 50 |
55 | Thyrislund | Denmark | dessert | Unknown | L | 50 |
56 | Broholm | Denmark | dessert | 1866 | L | 50 |
57 | Skensved æble | Denmark | dessert | 1800 | E | 8 |
58 | Pigeon spejlsby | Denmark | dessert | 1850 | L | 52 |
59 | Borgherre | Netherlands | culinary | before 1788 | L | 50 |
60 | Mathilde æble | Denmark | dessert | 1913 | L | 52 |
61 | Jølbyæble | Denmark | culinary | 1938 | L | 40 |
62 | Gråsten rød | Germany | dessert, cider, culinary | before 1875 | L | 45 |
63 | Holstenhus | Denmark | dessert, culinary | 1875 | L | 40 |
64 | Nonnetit fra Als | Denmark | dessert | Unknown | L | 39 |
65 | Pigeon Rød Vinter | Denmark | culinary | Unknown | L | 39 |
66 | Pigeon fra Maribo | Denmark | dessert | 1930 | L | 39 |
67 | Alsisk Citronæble | Denmark | culinary | before 1911 | L | 37 |
68 | Antonius | Denmark | dessert, culinary | 1932 | L | 37 |
69 | Fynsk udvalg II | Denmark | dessert, culinary | 1960’ies | L | 38 |
70 | Annas æble | Denmark | dessert | 1900 | L | 37 |
71 | Bedstefars æble | Denmark | dessert | Unknown | L | 37 |
72 | Elstar | Netherlands | dessert | 1955 | L | 37 |
73 | Arreskov | Denmark | dessert | 1850 | L | 38 |
74 | Gråsten Høvdinggård | Denmark | dessert, culinary | 1927 | L | 38 |
75 | Barritskov madæble | Denmark | dessert, culinary | 1890 | L | 44 |
76 | Gråmølles æble | England | culinary | 1740 | L | 44 |
77 | Farum æble | Denmark | culinary | 1900 | L | 44 |
78 | Ildrød Pigeon | Denmark | dessert | 1800 | L | 44 |
79 | Dronning Louise | Denmark | dessert | 1892 | L | 45 |
80 | Risskov Rambour | Denmark | culinary | 1870 | L | 50 |
81 | Tagesminde æble | Denmark | culinary | Unknown | L | 45 |
82 | Apple 207 Knuthenborg | Denmark | culinary | Unknown | L | 46 |
83 | Mormors æble | Denmark | dessert | Unknown | L | 45 |
84 | Mølleskov | Denmark | dessert, culinary | 1840 | L | 37 |
85 | Herfølge voksæble | Denmark | dessert, culinary | 1825 | L | 45 |
86 | Lise Legind | Denmark | dessert | 1880 | L | 45 |
Units | Mean | SD a | % CV b | Min | Max | Range | |
---|---|---|---|---|---|---|---|
°Brix | % | 11.4 | 1.2 | 10.5 | 8.1 | 14.2 | 6.1 |
Sucrose | g L−1 | 33.5 | 11.6 | 34.7 | 8.5 | 63.2 | 54.8 |
Glucose | g L−1 | 12.0 | 3.9 | 32.7 | 5.4 | 20.7 | 15.3 |
Fructose | g L−1 | 54.4 | 9.3 | 17.1 | 30.1 | 78.3 | 48.3 |
Total sugar | g L−1 | 100.0 | 13.5 | 13.5 | 63.2 | 134.4 | 71.2 |
Malic | g L−1 | 8.80 | 2.46 | 28.0 | 2.2 | 18.9 | 16.7 |
Citric | g L−1 | 0.104 | 0.060 | 57.8 | 0.000 | 0.308 | 0.308 |
Succinic | g L−1 | 0.006 | 0.006 | 100.8 | 0.000 | 0.033 | 0.033 |
Sugar/acid ratio | 12.0 | 3.5 | 29.1 | 5.8 | 33.1 | 27.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iaccarino, N.; Varming, C.; Agerlin Petersen, M.; Viereck, N.; Schütz, B.; Toldam-Andersen, T.B.; Randazzo, A.; Balling Engelsen, S. Ancient Danish Apple Cultivars—A Comprehensive Metabolite and Sensory Profiling of Apple Juices. Metabolites 2019, 9, 139. https://doi.org/10.3390/metabo9070139
Iaccarino N, Varming C, Agerlin Petersen M, Viereck N, Schütz B, Toldam-Andersen TB, Randazzo A, Balling Engelsen S. Ancient Danish Apple Cultivars—A Comprehensive Metabolite and Sensory Profiling of Apple Juices. Metabolites. 2019; 9(7):139. https://doi.org/10.3390/metabo9070139
Chicago/Turabian StyleIaccarino, Nunzia, Camilla Varming, Mikael Agerlin Petersen, Nanna Viereck, Birk Schütz, Torben Bo Toldam-Andersen, Antonio Randazzo, and Søren Balling Engelsen. 2019. "Ancient Danish Apple Cultivars—A Comprehensive Metabolite and Sensory Profiling of Apple Juices" Metabolites 9, no. 7: 139. https://doi.org/10.3390/metabo9070139
APA StyleIaccarino, N., Varming, C., Agerlin Petersen, M., Viereck, N., Schütz, B., Toldam-Andersen, T. B., Randazzo, A., & Balling Engelsen, S. (2019). Ancient Danish Apple Cultivars—A Comprehensive Metabolite and Sensory Profiling of Apple Juices. Metabolites, 9(7), 139. https://doi.org/10.3390/metabo9070139