Intrauterine Growth Restriction: New Insight from the Metabolomic Approach
Abstract
:1. Introduction
1.1. IUGR: Definition and Obstetric Diagnosis
1.2. Short- and Long-Term Outcomes for IUGR Neonates
1.3. Pre- and Postnatal Biomarkers of Intrauterine Growth Restriction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cusick, S.E.; Georgieff, M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. J. Pediatr. 2016, 175, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Nardozza, L.M.; Caetano, A.C.; Zamarian, A.C.; Mazzola, J.B.; Silva, C.P.; Marçal, V.M.; Lobo, T.F.; Peixoto, A.B.; Araujo Júnior, E. Fetal growth restriction: Current knowledge. Arch. Gynecol. Obstet. 2017, 295, 1061–1077. [Google Scholar] [CrossRef] [PubMed]
- Buck Louis, G.M.; Smarr, M.M.; Patel, C.J. The Exposome Research Paradigm: An Opportunity to Understand the Environmental Basis for Human Health and Disease. Curr. Environ. Health Rep. 2017, 4, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Carraro, S.; Giordano, G.; Reniero, F.; Perilongo, G.; Baraldi, E. Metabolomics: A new frontier for research in pediatrics. J. Pediatr. 2009, 154, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Carducci, B.; Bhutta, Z.A. Care of the growth-restricted newborn. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 49, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Gordijn, S.J.; Beune, I.M.; Ganzevoort, W. Building consensus and standards in fetal growth restriction studies. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 49, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Giabicani, E.; Pham, A.; Brioude, F.; Mitanchez, D.; Netchine, I. Diagnosis and management of postnatal fetal growth restriction. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Deter, R.L.; Lee, W.; Yeo, L.; Erez, O.; Ramamurthy, U.; Naik, M.; Romero, R. Individualized growth assessment: Conceptual framework and practical implementation for the evaluation of fetal growth and neonatal growth outcome. Am. J. Obstet. Gynecol. 2018, 218, S656–S678. [Google Scholar] [CrossRef]
- Deter, R.L.; Lee, W.; Kingdom, J.C.P.; Romero, R. Fetal growth pathology score: A novel ultrasound parameter for individualized assessment of third trimester growth abnormalities. J. Matern. Fetal Neonatal Med. 2018, 31, 866–876. [Google Scholar] [CrossRef]
- Vayssiere, C.; Sentilhes, L.; Ego, A.; Bernard, C.; Cambourieu, D.; Flamant, C.; Gascoin, G.; Gaudineau, A.; Grangé, G.; Houfflin-Debarge, V.; et al. Fetal growth restriction and intra-uterine growth restriction: Guidelines for clinical practice from the French College of Gynaecologists and Obstetricians. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 193, 10–18. [Google Scholar] [CrossRef]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine growth restriction: Antenatal and postnatal aspects. Clin. Med. Insights Pediatr. 2016, 10, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Winter, P.D.; Osmond, C.; Margetts, B.; Simmonds, S.J. Weight in infancy and death from ischaemic heart disease. Lancet 1989, 2, 577–580. [Google Scholar] [CrossRef]
- Hales, C.N.; Barker, D.J.; Clark, P.M.; Cox, L.J.; Fall, C.; Osmond, C.; Winter, P.D. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991, 303, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Law, C.M.; Shiell, A.W. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J. Hypertens. 1996, 14, 935–941. [Google Scholar] [CrossRef]
- Longo, S.; Bollani, L.; Decembrino, L.; Di Comite, A.; Angelini, M.; Stronati, M. Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J. Matern. Fetal. Neonatal Med. 2013, 26, 222–225. [Google Scholar] [CrossRef]
- Maršál, K. Physiological adaptation of the growth-restricted Fetus. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 49, 37–52. [Google Scholar] [CrossRef]
- Hales, C.N.; Barker, D.J. Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia 1992, 35, 595–601. [Google Scholar] [CrossRef]
- Barker, D.J. Early growth and cardiovascular disease. Arch. Dis. Child. 1999, 80, 305–307. [Google Scholar] [CrossRef] [Green Version]
- Padoan, A.; Rigano, S.; Ferrazzi, E.; Beaty, B.L.; Battaglia, F.C.; Galan, H.L. Differences in fat and lean mass proportions in normal and growth-restricted fetuses. Am. J. Obstet. Gynecol. 2004, 191, 1459–1464. [Google Scholar] [CrossRef]
- Yates, D.T.; Macko, A.R.; Nearing, M.; Chen, X.; Rhoads, R.P.; Limesand, S.W. Developmental programming in response to intrauterine growth restriction impairs myoblast function and skeletal muscle metabolism. J. Pregnancy 2012, 2012, 631038. [Google Scholar] [CrossRef]
- Barker, D.J.; Martyn, C.N.; Osmond, C.; Hales, C.N.; Fall, C.H. Growth in utero and serum cholesterol concentrations in adult life. BMJ 1993, 307, 1524–1527. [Google Scholar] [CrossRef] [PubMed]
- Economides, D.L.; Nicolaides, K.H.; Linton, E.A.; Perry, L.A.; Chard, T. Plasma cortisol and adrenocorticotropin in appropriate and small for gestational age fetuses. Fetal Ther. 1988, 3, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Norman, M. Low birth weight and the developing vascular tree: A systematic review. Acta Paediatr. 2008, 97, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Cosmi, E.; Visentin, S.; Fanelli, T.; Mautone, A.J.; Zanardo, V. Aortic intima media thickness in fetuses and children with intrauterine growth restriction. Obstet. Gynecol. 2009, 114, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Muhlhausler, B.S.; Duffield, J.A.; Ozanne, S.E.; Pilgrim, C.; Turner, N.; Morrison, J.L.; McMillen, I.C. The transition from fetal growth restriction to accelerated postnatal growth: A potential role for insulin signalling in skeletal muscle. J. Physiol. 2009, 587, 4199–4211. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Jeon, Y.J.; Lee, S.M.; Park, M.H.; Jung, S.C.; Kim, Y.J. Placental gene expression is related to glucose metabolism and fetal cord blood levels of insulin and insulin-like growth factors in intrauterine growth restriction. Early Hum. Dev. 2010, 86, 45–50. [Google Scholar] [CrossRef]
- Ornoy, A. Prenatal origin of obesity and their complications: Gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod. Toxicol. 2011, 32, 205–212. [Google Scholar] [CrossRef]
- Musa, M.G.; Kagura, J.; Pisa, P.T.; Norris, S.A. Relationship between early growth and CVD risk factors in adolescents. J. Dev. Orig. Health Dis. 2016, 7, 132–143. [Google Scholar] [CrossRef]
- Mortaz, M.; Fewtrell, M.S.; Cole, T.J.; Lucas, A. Birth weight, subsequent growth, and cholesterol metabolism in children 8–12 years old born preterm. Arch. Dis. Child. 2001, 84, 212–217. [Google Scholar] [CrossRef]
- Singhal, A.; Cole, T.J.; Fewtrell, M.; Kennedy, K.; Stephenson, T.; Elias-Jones, A.; Lucas, A. Promotion of faster weight gain in children born small for gestational age. Is there an adverse effect on later blood pressure? Circulation 2007, 115, 213–220. [Google Scholar] [CrossRef]
- Aggett, P.J.; Agostoni, C.; Axelsson, I.; De Curtis, M.; Goulet, O.; Hernell, O.; Koletzko, B.; Lafeber, H.N.; Michaelsen, K.F.; Puntis, J.W.; et al. ESPGHAN Committee on Nutrition. Feeding preterm infants after hospital discharge: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2006, 42, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Gaio, P.; Verlato, G.; Daverio, M.; Cavicchiolo, M.E.; Nardo, D.; Pasinato, A.; de Terlizzi, F.; Baraldi, E. Incidence of metabolic bone disease in preterm infants of birth weight <1250 g and in those suffering from bronchopulmonary dysplasia. Clin. Nutr. ESPEN 2018, 23, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Raiten, D.J.; Steiber, A.L.; Carlson, S.E.; Griffin, I.; Anderson, D.; Hay, W.W., Jr.; Robins, S.; Neu, J.; Georgieff, M.K.; Groh-Wargo, S.; et al. Working group reports: Evaluation of the evidence to support practice guidelines for nutritional care of preterm infants-the Pre-B Project. Am. J. Clin. Nutr. 2016, 103, 648S–678S. [Google Scholar] [CrossRef] [PubMed]
- Corvaglia, L.I. Nutritional Requirements of Extremely-Low-Birth-Weight Preterm Infants. J. Pediatr. Gastroenterol. Nutr. 2015, 61 (Suppl. 1), S1–S25. [Google Scholar] [CrossRef] [PubMed]
- Franz, A.R.; Pohlandt, F.; Bode, H.; Mihatsch, W.A.; Sander, S.; Kron, M.; Steinmacher, J. Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics 2009, 123, e101–e109. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef]
- Levitsky, D.A.; Strupp, B.J. Malnutrition and the brain: Changing concepts, changing concerns. J. Nutr. 1995, 125 (Suppl. 8), 2212S–2220S. [Google Scholar] [CrossRef]
- Grantham-McGregor, S. A review of studies of the effect of severe malnutrition on mental development. J. Nutr. 1995, 125 (Suppl. 8), 2233S–2238S. [Google Scholar] [CrossRef]
- Chan, S.H.; Johnson, M.J.; Leaf, A.A.; Vollmer, B. Nutrition and neurodevelopmental outcomes in preterm infants: A systematic review. Acta Paediatr. 2016, 105, 587–599. [Google Scholar] [CrossRef]
- Blitz, M.J.; Rochelson, B.; Vohra, N. Maternal Serum Analytes as Predictors of Fetal Growth Restriction with Different Degrees of Placental Vascular Dysfunction. Clin. Lab. Med. 2016, 36, 353–367. [Google Scholar] [CrossRef]
- Crovetto, F.; Triunfo, S.; Crispi, F.; Rodriguez-Sureda, V.; Roma, E.; Dominguez, C.; Gratacos, E.; Figueras, F. First-trimester screening with specific algorithms for early- and late-onset fetal growth restriction. Ultrasound Obstet. Gynecol. 2016, 48, 340–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dessì, A.; Pravettoni, C.; Cesare Marincola, F.; Schirru, A.; Fanos, V. The biomarkers of fetal growth in intrauterine growth retardation and large for gestational age cases: From adipocytokines to a metabolomic all-in-one tool. Expert Rev. Proteomics 2015, 12, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.J.; Yu, C.H.; Hsu, S.P.; Lee, Y.H.; Chiou, C.H.; Hsu, Y.W.; Ho, S.C.; Chu, C.H. Cord plasma concentrations of adiponectin and leptin in healthy term neonates: Positive correlation with birth weight and neonatal adiposity. Clin. Endocrinol. 2004, 61, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Palcevska-Kocevska, S.; Aluloska, N.; Krstevska, M.; Shukarova-Angelovska, E.; Kojik, L.; Zisovska, E.; Kocevski, D.; Kocova, M. Correlation of serum adiponectin and leptin concentrations with anthropometric parameters in newborns. Srp. Arh. Celok. Lek. 2012, 140, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Milenković, S.J.; Mirković, L.B.; Jovandarić, M.Z.; Milenković, D.M.; Banković, V.V.; Janković, B.Z. Leptin and adiponectin levels in discordant dichorionic twins at 72 hours of age-associations with anthropometric parameters and insulin resistance. J. Pediatr. Endocrinol. Metab. 2017, 30, 417–426. [Google Scholar] [CrossRef]
- Malamitsi-Puchner, A.; Briana, D.D.; Boutsikou, M.; Kouskouni, E.; Hassiakos, D.; Gourgiotis, D. Perinatal circulating visfatin levels in intrauterine growth restriction. Pediatrics 2007, 119, e1314–e1318. [Google Scholar] [CrossRef]
- El Shemi, M.S.; Mohamed, M.H.; AbdelRahman, A.O.; Abdel Al, H.; Ramadan, N.M. Effect of intrauterine growth pattern on serum visfatin concentrations in full-term infants at birth and at 6 months of life. J. Neonatal Perinat. Med. 2016, 9, 73–82. [Google Scholar] [CrossRef]
- Florio, P.; Marinoni, E.; Di Iorio, R.; Bashir, M.; Ciotti, S.; Sacchi, R.; Bruschettini, M.; Lituania, M.; Serra, G.; Michetti, F.; et al. Urinary S100B protein concentrations are increased in intrauterine growth-retarded newborns. Pediatrics 2006, 118, e747–e754. [Google Scholar] [CrossRef]
- Mazarico, E.; Llurba, E.; Cabero, L.; Sánchez, O.; Valls, A.; Martín-Ancel, A.; Cardenas, D.; Gómez Roig, M.D. Associations between neural injury markers of intrauterine growth-restricted infants and neurodevelopment at 2 years of age. J. Matern. Fetal Neonatal Med. 2019, 32, 3197–3203. [Google Scholar] [CrossRef]
- Farquhar, J.; Heiman, M.; Wong, A.C.; Wach, R.; Chessex, P.; Chanoine, J.P. Elevated umbilical cord ghrelin concentrations in small for gestational age neonates. J. Clin. Endocrinol. Metab. 2003, 88, 4324–4327. [Google Scholar] [CrossRef]
- Gurugubelli Krishna, R.; Bhat, B.V.; Bobby, Z.; Papa, D.; Badhe, B.; Chinnakali, P. Are Global DNA methylation and telomere length useful biomarkers for identifying intrauterine growth restricted neonates? J. Matern. Fetal Neonatal Med. 2019, 15, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Mayneris-Perxachs, J.; Swann, J.R. Metabolic phenotyping of malnutrition during the first 1000 days of life. Eur. J. Nutr. 2019, 58, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Dessì, A.; Atzori, L.; Noto, A.; Visser, G.H.; Gazzolo, D.; Zanardo, V.; Barberini, L.; Puddu, M.; Ottonello, G.; Atzei, A.; et al. Metabolomics in newborns with intrauterine growth retardation (IUGR): Urine reveals markers of metabolic syndrome. J. Matern. Fetal Neonatal Med. 2011, 24 (Suppl. 2), 35–39. [Google Scholar] [CrossRef] [PubMed]
- Barberini, L.; Noto, A.; Fattuoni, C.; Grapov, D.; Casanova, A.; Fenu, G.; Gaviano, M.; Carboni, R.; Ottonello, G.; Crisafulli, M.; et al. Urinary metabolomics (GC-MS) reveals that low and high birth weight infants share elevated inositol concentrations at birth. J. Matern. Fetal Neonatal Med. 2014, 27 (Suppl. 2), 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dessì, A.; Marincola, F.C.; Pattumelli, M.G.; Ciccarelli, S.; Corbu, S.; Ossicini, C.; Fanos, V.; Agostino, R. Investigation of the 1H-NMR based urine metabolomic profiles of IUGR, LGA and AGA newborns on the first day of life. J. Matern. Fetal Neonatal Med. 2014, 27 (Suppl. 2), 13–19. [Google Scholar] [CrossRef]
- Marincola, F.C.; Dessi, A.; Pattumelli, M.G.; Corbu, S.; Ossicini, C.; Ciccarelli, S.; Agostino, R.; Mussap, M.; Fanos, V. (1)H NMR-based urine metabolic profile of IUGR, LGA, and AGA newborns in the first week of life. Clin. Chim. Acta 2015, 451 Pt A, 28–34. [Google Scholar] [CrossRef]
- Favretto, D.; Cosmi, E.; Ragazzi, E.; Visentin, S.; Tucci, M.; Fais, P.; Cecchetto, G.; Zanardo, V.; Viel, G.; Ferrara, S.D. Cord blood metabolomic profiling in intrauterine growth restriction. Anal. Bioanal. Chem. 2012, 402, 1109–1121. [Google Scholar] [CrossRef]
- Cosmi, E.; Visentin, S.; Favretto, D.; Tucci, M.; Ragazzi, E.; Viel, G.; Ferrara, S.D. Selective intrauterine growth restriction in monochorionic twin pregnancies: Markers of endothelial damage and metabolomic profile. Twin Res. Hum. Genet. 2013, 16, 816–826. [Google Scholar] [CrossRef]
- Horgan, R.P.; Broadhurst, D.I.; Dunn, W.B.; Brown, M.; Heazell, A.E.; Kell, D.B.; Baker, P.N.; Kenny, L.C. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies. Placenta 2010, 31, 893–901. [Google Scholar] [CrossRef]
- Sanz-Cortés, M.; Carbajo, R.J.; Crispi, F.; Figueras, F.; Pineda-Lucena, A.; Gratacόs, E. Metabolomic profile of umbilical cord blood plasma from early and late intrauterine growth restricted (IUGR) neonates with and without signs of brain vasodilation. PLoS ONE 2013, 8, e80121. [Google Scholar] [CrossRef]
- Moltu, S.J.; Sachse, D.; Blakstad, E.W.; Strømmen, K.; Nakstad, B.; Almaas, A.N.; Westerberg, A.C.; Rønnestad, A.; Brække, K.; Veierød, M.B.; et al. Urinary metabolite profiles in premature infants show early postnatal metabolic adaptation and maturation. Nutrients 2014, 6, 1913–1930. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, X.X.; Li, X.W.; Fu, W.; Zhang, W.Q. Metabolomic Research on Newborn Infants with Intrauterine Growth Restriction. Medicine 2016, 95, e3564. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Wahed, M.A.; El-Farghali, O.G.; ElAbd, H.S.A.; El-Desouky, E.D.; Hassan, S.M. Metabolic derangements in IUGR neonates detected at birth using UPLC-MS. Egypt. J. Med. Hum. Genet. 2017, 18, 281–287. [Google Scholar] [CrossRef]
- Wang, L.; Han, T.L.; Luo, X.; Li, S.; Young, T.; Chen, C.; Wen, L.; Xu, P.; Zheng, Y.; Saffery, R.; et al. Metabolic Biomarkers of Monochorionic Twins Complicated with Selective Intrauterine Growth Restriction in Cord Plasma and Placental Tissue. Sci. Rep. 2018, 8, 15914. [Google Scholar] [CrossRef]
- Bahado-Singh, R.O.; Yilmaz, A.; Bisgin, H.; Turkoglu, O.; Kumar, P.; Sherman, E.; Mrazik, A.; Odibo, A.; Graham, S.F. Artificial intelligence and the analysis of multi-platform metabolomics data for the detection of intrauterine growth restriction. PLoS ONE 2019, 14, e0214121. [Google Scholar] [CrossRef]
- Gaufin, T.; Tobin, N.H.; Aldrovandi, G.M. The importance of the microbiome in pediatrics and pediatric infectious diseases. Curr. Opin. Pediatr. 2018, 30, 117–124. [Google Scholar] [CrossRef]
- Stefanaki, C.; Peppa, M.; Mastorakos, G.; Chrousos, G.P. Examining the gut bacteriome, virome, and mycobiome in glucose metabolism disorders: Are we on the right track? Metabolism 2017, 73, 52–66. [Google Scholar] [CrossRef]
- Althouse, M.H.; Stewart, C.; Jiang, W.; Moorthy, B.; Lingappan, K. Impact of Early Life Antibiotic Exposure and Neonatal Hyperoxia on the Murine Microbiome and Lung Injury. Sci. Rep. 2019, 9, 14992. [Google Scholar] [CrossRef]
- Huang, S.; Li, N.; Liu, C.; Li, T.; Wang, W.; Jiang, L.; Li, Z.; Han, D.; Tao, S.; Wang, J. Characteristics of the gut microbiota colonization, inflammatory profile, and plasma metabolome in intrauterine growth restricted piglets during the first 12 hours after birth. J. Microbiol. 2019, 57, 748–758. [Google Scholar] [CrossRef]
Study | Subjects | Sample | Method | Results |
---|---|---|---|---|
Dessì (2011) [53] | 26 IUGR vs. 30 AGA (preterm) | Urine
| 1H-NMR | ⇑ myoinositol, sarcosine, creatine, creatinine |
Horgan (2010) [59] | 9 SGA (BW < 5th %ile) vs. 8 AGA (term) | Placental villous explants | LC–MS | Difference in metabolite levels between the two groups, depending on O2 tension exposure |
Favretto (2012) [57] | 22 IUGR vs. 22 AGA (GA: 32–41 weeks) | Cord vein blood | LC-MS | ⇑ phenylalanine, tryptophan and glutamate, methionine, proline, valine, isoleucine, dopamine, histidine, uric acid, caffeine, 5-methyl-2-undecenoic acid, oleic acid, 1-hydroxyvitamin D3 3-D- glucopyranoside, L-thyronine, hexadecanedioic acid |
Cosmi (2013) [58] | 4 selective IUGR MCDA twins vs. 4 AGA MCDA twins (GA: 28–36 weeks) | Cord vein blood | LC-MS | ⇑ phenylalanine, sphingosine, glycerophosphocholine |
⇓ valine, tryptophan, isoleucine, proline, choline (not statistically significant) | ||||
Sanz-Cortés (2013) [60] | 20 early IUGR (GA: 31.7 ± 2.2 weeks) vs. 23 matched AGA | Umbilical vein blood | 1H-NMR | ⇑ VLDL, unsaturated lipids, acetone, glutamine, creatine |
⇓ glucose, phenylalanine, tyrosine, choline | ||||
56 late IUGR (mean GA: 38.3 ± 1.9 weeks) vs. 55 matched AGA | Umbilical vein blood | 1H-NMR | ⇑ VLDL, unsaturated lipids | |
⇓ phenylalanine, glutamine tyrosine, choline, valine, leucine | ||||
Barberini (2014) [54] | 11 IUGR (+ 12 LGA) vs. 10 AGA (mean GA: 37 weeks) | Urine ● within 12 h | GC-MS | ⇑ inositol |
≠ urea, glycerol, glucose, citric acid, uric acid | ||||
Dessì (2014) [55] | 12 IUGR +12 LGA vs 17 AGA (GA: 34–41 weeks) | Urine ● within 8 h | 1H-NMR | ⇑ myoinositol, creatinine, creatine, citrate, betaine, glycine |
⇓ urea, aromatic compounds and branched chain amino acids | ||||
Marincola (2015) [56] | 8 IUGR vs. 8 AGA (mean GA: 36.9 vs. 37.5 weeks) | Urine
| 1H-NMR | ⇑ myoinositol, citrate, glycine, |
⇓ succinate, betaine, creatinine | ||||
Moltu (2014) [61] | 16 SGA vs. 32 AGA (mean GA: 29.9 vs. 27.5 weeks) | Urine ● within 1 week | 1H-NMR | ⇑ glycine, threonine (not significant when adjusted for gestational age at birth) |
Liu (2016) [62] | 25 SGA (BW < 3rd %ile) vs. 60 controls (mean GA: 36.8 vs. 35.9 weeks) | Blood spot ● between 3 and 7 days | Targeted LC-MS | ⇑ homocysteine |
⇓ alanine, methionine, ornithine, serine, tyrosine | ||||
Abd El-Wahed (2017) [63] | 40 SGA vs. 20 AGA (mean GA: 34 ± 2.4 vs 35 ± 1.4 weeks) | Umbilical cord blood spot | Targeted LC-MS | ⇑ several acylcarnitines including C18-OH, C16-OH, alanine, arginine, aspartate, citrulline, glutamine, isoleucine, leucine, ornithine, phenylalanine, tyrosine, valine |
⇓ histidine, methionine | ||||
Wang (2018) [64] | 15 pairs of selective IUGR MCDA twins vs. 24 pairs of uncomplicated MCDA twins (mean GA: 35 vs. 36.5 weeks) | Umbilical cord blood | GC-MS | ⇑ methionine, phenylalanine, 4-hydroxyphenylacetic acid, 2-aminobutyric acid, decamethylcyclopentasiloxane, tyrosine, isoleucine, eicosapentaenoic acid |
⇓ adrenic acid | ||||
Bahado-Singh (2019) [65] | 40 IUGR vs. 40 controls (mean GA not known) | Umbilical cord blood serum | LC-MS + 1H-NMR | ≠ creatinine, acetyl carnitine, butyryl carnitine, lysophosphatidylcholines (C16.1, C20.3, and C28.1) and phosphatidylcholine C24:0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priante, E.; Verlato, G.; Giordano, G.; Stocchero, M.; Visentin, S.; Mardegan, V.; Baraldi, E. Intrauterine Growth Restriction: New Insight from the Metabolomic Approach. Metabolites 2019, 9, 267. https://doi.org/10.3390/metabo9110267
Priante E, Verlato G, Giordano G, Stocchero M, Visentin S, Mardegan V, Baraldi E. Intrauterine Growth Restriction: New Insight from the Metabolomic Approach. Metabolites. 2019; 9(11):267. https://doi.org/10.3390/metabo9110267
Chicago/Turabian StylePriante, Elena, Giovanna Verlato, Giuseppe Giordano, Matteo Stocchero, Silvia Visentin, Veronica Mardegan, and Eugenio Baraldi. 2019. "Intrauterine Growth Restriction: New Insight from the Metabolomic Approach" Metabolites 9, no. 11: 267. https://doi.org/10.3390/metabo9110267
APA StylePriante, E., Verlato, G., Giordano, G., Stocchero, M., Visentin, S., Mardegan, V., & Baraldi, E. (2019). Intrauterine Growth Restriction: New Insight from the Metabolomic Approach. Metabolites, 9(11), 267. https://doi.org/10.3390/metabo9110267