Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Quantification of Leaf Components
2.3. Statistical Comparisons
3. Results
3.1. Growth Temperature Effects on Foliar Organic Acids in Ambient CO2 Treatment
Compound | 36 °C | 36 to 28 °C | 28 °C | 28 to 36 °C | p |
---|---|---|---|---|---|
mg g−1 DW | |||||
39 Pa CO2 | |||||
malonate | 4.69 ± 0.57 | 4.54 ± 0.39 | 6.80 ± 0.57 | 6.12 ± 0.51 | * |
glycerate | 1.15 ± 0.12 | 1.25 ± 0.11 | 1.33 ± 0.16 | 1.13 ± 0.15 | ns |
fumarate | 0.26 ± 0.07 | 0.32 ± 0.08 | 0.36 ± 0.06 | 0.29 ± 0.05 | * |
succinate | 0.15 ± 0.03 | 0.16 ± 0.02 | 0.27 ± 0.04 | 0.21 ± 0.03 | * |
malate | 5.30 ± 0.43 | 6.31 ± 0.76 | 10.66 + 0.85 | 9.15 ± 0.75 | * |
citrate | 2.17 ± 0.42 | 4.79 ± 0.53 | 13.02 ± 1.08 | 7.92 ± 0.85 | ** |
70 Pa CO2 | |||||
malonate | 7.12 ± 0.86 | 4.86 ± 0.33 | 6.98 ± 0.66 | 6.91 ± 0.74 | ns |
glycerate | 0.67 ± 0.05 | 0.66 ± 0.06 | 0.76 ±0 .06 | 0.92 ± 0.80 | * |
fumarate | 0.65 ± 0.10 | 0.56 ± 0.10 | 0.66 ± 0.10 | 0.80 ± 0.09 | ns |
succinate | 0.13 ± 0.01 | 0.14 ± 0.01 | 0.21 ± 0.20 | 0.18 ± 0.02 | * |
malate | 7.88 ± 0.72 | 7.33 ± 0.50 | 12.12 ± 1.30 | 10.79 ± 1.10 | ** |
citrate | 4.99 ± 0.88 | 5.12 ± 0.69 | 11.52 ± 1.79 | 7.97 ± 1.23 | ** |
3.2. Growth Temperature Effects on Foliar Organic Acids in the Elevated CO2 Treatment
Temperature | Malonate | Glycerate | Fumarate | Succinate | Malate | Citrate |
---|---|---|---|---|---|---|
p | ||||||
28/20 °C | ns | ** | ** | ns | ** | * |
36/30 °C | ns | ** | ** | ns | ns | ** |
3.3. Species Differences in the Effects of Enhanced Growth Temperatures on Foliar Organic Acid Levels
Compound | Zea Mays | Capsicum Annum | Phaseolus Vulgaris | |||
---|---|---|---|---|---|---|
28/20 °C | 36/28 °C | 28/20 °C | 36/28 °C | 28/20 °C | 36/28 °C | |
μg g−1 DW | ||||||
Maleic | 141 | 179 | 5184 | 3277 | 297 | 89 |
Malic | 9886 | 13612 | 7292 | 11090 | 37570 | 9850 |
Adipic | 179 | 133 | 5040 | 4323 | 205 | 172 |
Quinic | 104 | 217 | 3323 | 3805 | 40 | 19 |
2-Oxoglutaric | ND | ND | ND | ND | 56 | 37 |
Aconitic | 39075 | 36984 | 63 | 63 | 54 | 23 |
Shikimic | 1008 | 827 | 202 | 195 | 86 | 102 |
Citric | 1189 | 904 | 7539 | 12133 | 12043 | 11682 |
Malonic | 55 | 56 | 944 | 583 | 6991 | 329 |
Glyceric | 2898 | 2981 | 2833 | 2211 | 2667 | 1912 |
Fumaric | 32 | 56 | 28 | 33 | 288 | 49 |
Succinic | 83 | 95 | 69 | 100 | 403 | 144 |
4. Discussion
Supplementary Files
Supplementary File 1Acknowledgments
Conflicts of Interest
References
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Mittler, R.; Finka, A.; Goloubinoff, P. How do plants feel the heat? Trends Biochem. Sci. 2011, 37, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Schöffl, F.; Prandl, R.; Reindl, A. Molecular responses to heat stress. In Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants; Shinozaki, K., Yamaguchi-Shinozaki, K., Eds.; R.G. Landes Co.: Austin, TX, USA, 1999; pp. 81–98. [Google Scholar]
- Vierling, E. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 579–620. [Google Scholar] [CrossRef]
- Wang, W.; Vincour, B.; Shoseyov, O.; Altman, A. Role of heat shock proteins and molecular chaperones in abiotic stress response. Trends Plant Sci. 2004, 9, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.E.; Ober, E.S.; Wu, Y. Regulation of root growth at low water potentials. In Interacting Stresses on Plants in a Changing Climate; Jackson, M.B., Black, C.R., Eds.; Springer-Verlag: Berlin, Germany, 2013; pp. 557–572. [Google Scholar]
- Shen, B.; Jensen, R.G.; Bohnert, H.J. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 1997, 113, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.; Kopka, J.; Haskell, D.W.; Zhao, W.; Schiller, K.C.; Gatzke, N.; Sung, D.Y.; Guy, C.L. Exploring the temperature stress metabolome of Arabidopsis. Plant Physiol. 2004, 136, 4159–4168. [Google Scholar] [CrossRef] [PubMed]
- Stitt, M. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ. 1991, 14, 741–762. [Google Scholar] [CrossRef]
- Gibson, L.R.; Mullen, R.E. Influence of day and night temperature on soybean seed yield. Crop Sci. 1996, 36, 98–104. [Google Scholar] [CrossRef]
- Sicher, R.C. Combined effects of CO2 enrichment and elevated growth temperatures on metabolites in soybean leaflets. Planta 2013, 238, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.V.V.; Boote, K.J.; Vu, J.C.V.; Allen, L.H., Jr. The carbohydrate metabolism enzymes sucrose-P synthase and ADG-pyrophosphorylase in phaseolus bean leaves are up-regulated at elevated growth carbon dioxide and temperature. Plant Sci. 2004, 166, 1565–1573. [Google Scholar] [CrossRef]
- Guo, C.; Oosterhuis, D.M. Pinitol occurrence in soybean plants as affected by temperature and plant growth regulators. J. Exp. Bot. 1995, 46, 249–253. [Google Scholar] [CrossRef]
- Yu, J.; Du, H.; Xu, M.; Huang, B. Metabolic responses of heat stress under elevated atmospheric CO2 concentration in a cool-season grass species. J. Am. Soc. Hortic. Sci. 2012, 137, 221–228. [Google Scholar]
- Sicher, R.C. Effects of CO2 enrichment on soluble amino acids and organic acids in barley primary leaves as a function of age, photoperiod and chlorosis. Plant Sci. 2008, 174, 576–582. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A.; Leakey, A.D.B.; Heady, L.E.; Gibon, Y.; Stitt, M.; Schurr, U. Does elevated [CO2] alter diurnal C uptake and the balance of C and N metabolites in growing fully expanded soybean leaves. J. Exp. Bot. 2007, 58, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Roessner, T.U.; Luedemann, A.; Brust, D.; Fiehn, O.; Linke, T.; Willmitzer, L.; Fernie, A.R. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 2001, 13, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Sweetlove, L.J.; Beard, K.F.M.; Nunes-Nesi, A.; Fernie, A.R.; Ratcliffe, R.G. Not just a circle: Flux modes in the plant TCA cycle. Trends Plant Sci. 2010, 15, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Pick, T.R.; Bräutigam, A.; Schulz, M.A.; Obata, T.; Fernie, A.R.; Weber, A.P.M. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc. Natl. Acad. Sci. USA 2013, 110, 3185–3190. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, T.D. Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ. 2005, 28, 269–277. [Google Scholar] [CrossRef]
- Douce, R.; Bourguignon, J.; Neuburger, M.; Rébeillé, F. The glycine decarboxylase system: A fascinating complex. Trends Plant Sci. 2001, 6, 167–176. [Google Scholar] [CrossRef]
- Thelen, J.J.; Miernyk, J.A.; Randall, D.D. Partial purification and characterization of the maize mitochondrial pyruvate dehydrogenase complex. Plant Physiol. 1998, 11, 1443–1450. [Google Scholar] [CrossRef]
- Fernie, A.R.; Carrari, F.; Sweetlove, L.J. Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 2004, 7, 254–261. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sicher, R.C. Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures. Metabolites 2015, 5, 443-454. https://doi.org/10.3390/metabo5030443
Sicher RC. Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures. Metabolites. 2015; 5(3):443-454. https://doi.org/10.3390/metabo5030443
Chicago/Turabian StyleSicher, Richard C. 2015. "Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures" Metabolites 5, no. 3: 443-454. https://doi.org/10.3390/metabo5030443
APA StyleSicher, R. C. (2015). Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures. Metabolites, 5(3), 443-454. https://doi.org/10.3390/metabo5030443