Metabolomics for Biomarker Discovery in Gastroenterological Cancer
Abstract
:1. Introduction to Metabolomics
1.1. Omics
1.2. Characteristics of Metabolomics
2. Metabolism in Cancer
3. Biomarker Discovery in Gastroenterological Cancer Using Metabolomics
3.1. Biomarker Discovery and Gastroenterological Cancer
3.2. Metabolomics-Based Biomarker Discovery
3.3. Biomarker Discovery in Gastroenterological Cancer by Metabolomics
Disease | Specimen | Upregulated Metabolites | Downregulated Metabolites | Analytical Method | Ref. |
---|---|---|---|---|---|
Oral cancer | Saliva | Lactate; n-Eicosanoate | Valine; GABA; Phenylalanine | UPLC-Q-TOF/MS | [20] |
Research aim: To discover salivary metabolite biomarkers and to explore salivary metabolomics as a disease diagnostic tool | |||||
Oral cancer | Saliva | Cadaverine; 2-Aminobutyrate; Alanine; Piperidine; Taurine; Piperideine; Pipecolate; Pyrroline hydroxycarboxylate; Betaine; Leucine + Isoleucine; Phenylalanine; Tyrosine; Histidine; Valine; Tryptophan; β-Alanine; Glutamate; Threonine; Serine; Glutamine; Choline; Carnitine | None | CE-TOF-MS | [21] |
Research aim: To predict oral cancer susceptibility via saliva-based diagnostics based on metabolomics technology | |||||
Oral cancer | Urine | Alanine; Valine; Serine; Tyrosine; Cystine | 6-Hydroxynicotinate; Hippurate | GC-QMS | [22] |
Research aim: To establish a diagnostic tool for early stage oral squamous cell carcinoma and its differentiation from other oral conditions by the urinary metabolite profiling approach | |||||
Oral cancer | Serum | Glycerate; Serine; Laurate; N-Acetyl-l-aspartate; Asparagine; Ornithine; Heptadecanate | None | GC-QMS | [23] |
Research aim: To find metabolite biomarker candidates for detection of early stage oral squamous cell carcinoma | |||||
Esophageal cancer | Mucosal tissue | l-Valine; Naphthalene; 1-Butanamine; Pyrimidine; Aminoquinoline; l-Tyrosine; Isoleucine; Purine; Serine; Phosphate; myo-Inositol; Arabinofuranoside; l-Asparagine; Tetradecanoate; l-Alanine; Hexadecanoate | l-Altrose; d-Galactofuranoside; Arabinose; Bisethane | GC-QMS | [24] |
Research aim: To find tissue metabolomic biomarkers that are identifiable and diagnostically useful for esophageal cancer | |||||
Esophageal cancer | Mucosal tissue | N-acetylaspartate; Glutamate; Valine; Leucine + Isoleucine; Tyrosine; Methionine; Phenylalanine; GABA; Phenylacetylglutamine; Glutamic acid γ-H; Unsaturated lipids; Short-chain fatty acids; Phosphocholine; Glycoproteins; Acetone; Malonate; Acetoacetate; Acetate; Trimethylamine; Formate; Uracil; Adenine in ATP/ADP and NAD/NADH; Acetyl hydrazine; Hippurate | Creatine; Glycine; Glutamine; 4-Hydroxyphenylpyruvate; Creatinine; Taurine; Aspartate; myo-Inositol; Cholesterol; Choline; Glucose; Ethanol; α-Ketoglutarate oxime; AMP; NAD | NMR | [25] |
Research aim: To find the potential tissue metabolite biomarkers for clinical diagnosis for different stages of human esophageal cancer and new insights for the mechanism research | |||||
Esophageal cancer | Tissue | Choline; Alanine; Glutamate | Creatinine; myo-Inositol; Taurine | NMR | [26] |
Research aim: To establish the biochemical profiles of adjacent non-involved tissue and malignant esophageal tumor and to determine the metabolomic changes of tumors with different tumor differentiation for finding metabolomic indicators sensitive to tumor differentiation | |||||
Esophageal cancer | Urine | Urea; Acetate; Pantothenate; 3-Hydroxyisovaleate; Acetone; Formate; 2-Hydroxyisobutyrate; Creatinine; Ethanolamine; 2-Aminobutyrate; Leucine; Succinate; Glutamine; Glucose; Glycine; Tryptophan; Trimethylamine-N-oxide; Valine; Lactate; Tyrosine | Dimethylamine; Alanine; Citrate | NMR | [27] |
Research aim: To find urinary metabolite signatures that can clearly distinguish both Barrett’s esophagus and esophageal cancer from controls | |||||
Esophageal cancer | Serum | Uridine | 1-Methyladenosine; N2,N2-Dimethylguaosine; N2-Methylguanosine; Cytidine | LC-QqQ/MS | [28] |
Research aim: To investigate whether nucleosides can potentially serve as useful biomarkers to identify esophageal adenocarcinoma | |||||
Esophageal cancer | Serum | Lactate; β-Hydroxybutyrate; Lysine; Glutamine; Citrate | Valine; Leucine + Isoleucine; Methionine; Tyrosine; Tryptophan; Myristate; Linoleate | LC-Q-TOF/MS
NMR | [29] |
Research aim: To identify the metabolite based biomarkers associated with the early stages of esophageal adenocarcinoma with the goal of improving prognostication | |||||
Esophageal cancer | Serum | β-Hydroxybutyrate; Acetoacetate; Creatine; Creatinine; Lactate; Glutamate; Glutamine; Histine | LDL/VLDL; Unsaturated lipids; Acetate; α-Glucose; β-Glucose; Tyrosine | NMR | [30] |
Research aim: To characterize the systemic metabolic disturbances underlying esophageal cancer and to identify possible early biomarkers for clinical prognosis | |||||
Esophageal cancer | Serum | Lactate; Glycolate; Malonate; Fumarate; l-Serine; l-Aspartate; l-Glutamine | Pyruvate | GC-QMS | [31] |
Research aim: To investigate the differences in serum metabolite profiles using a metabolomic approach and to search for sensitive and specific metabolomic biomarker candidates | |||||
Esophageal cancer | Plasma | Phosphatidylinositol; Lithocholyltaurine; Phosphatidiate; L-Urobilinogen; 9'-Carboxy-γ-tocotrienol; PC; PE; Sphinganine 1-phosphate; Phosphatidylserine(16:0/14:0); LPC(22:2); Ganglioside GM2(d18:1/24:1(15Z)); Lithocholate 3-O-glucuronide; 12-Oxo-20-dihydroxy-leukotriene B4 | Desmosine; Isodesmosine; 5-β-Cyprinol sulfate | UPLC-TOF/MS | [32] |
Research aim: To search for valuable markers including circulating endogenous metabolites associated with the risk of esophageal cancer | |||||
Gastric cancer | Tissue | 2-Aminobutyrate; 3-Aminoisobutanoate; Valine; 2-Hydroxy-4-methyl-pentanoate; Isoleucine; Proline; Uracil; Threonine; Thymine; Dihydrouracil; Aspartate; Pyroglutamate; GABA; Cysteine; Glutamate; Dodecanoate; Asparagine; Putrescine; Cadaverine; Ascorbate; Gluconate; Xanthine; N-Acetyl glucosamine; Kynurenine; Inosine | Hydroxyacetate; 3,4-Dihydroxy-2(3H)-furanone; Nicotinamide; Glycerol phosphate; Tetradecanoate; Palmitelaidate; Palmitate; Linoleate; Stearate; Arachidonate; l-Palmitoyl-glycerol; Sucrose; Cholesterol | GC-TOF/MS | [33] |
Research aim: To reveal the major metabolic alterations essential for the development of gastric cardia cancer and to discover a biomarker signature of gastric cardia cancer | |||||
Gastric cancer | Urine | Arginine; Leucine; Valine; Isoleucine; Lactate | Methionine; Serine; Aspartate; Histidine; Succinate; Citrate; Malate | CE-MS | [34] |
Research aim: To search for potential tumor markers of gastric cancer in patients’ urine samples | |||||
Gastric cancer | Serum | 3-Hydroxypropionate; 3-Hydroxyisobutyrate | Pyruvate; Octanoate; Phosphate | GC-QMS | [31] |
Research aim: To investigate the differences in serum metabolite profiles using a metabolomic approach and to search for sensitive and specific metabolomic biomarker candidates | |||||
Gastric cancer | Serum | L-Valine; Sarcosine; Hexadecanenitrile | L-Glutamine; Hexanedioate; 9,12-Octadecadienoate; 9-Octadecenoate; trans-13-Octadecenoate; Nonahexacontanoate; Cholesta-3,5-diene; Cholesterol/Pentafluoropropionate; Cholesterol; Cholest-5-en-3-ol; Fumarate; 2-o-Mesyl arabinose; Benzeneacetonitrile; 2-Amino-4-hydroxy-pteridinone; 1,2,4-Benzenetricarboxylate | GC-QMS | [35] |
Research aim: To explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity | |||||
Colorectal cancer | Mucosal tissue | Lactate; Phosphate; l-Glycine; 2-Hydroxy-3-methylvalerate; l-Proline; L-Phenylalanine; Palmitate; Margarate; Oleate; Stearate; Uridine; 11,14-Eicosadienoate; 11-Eicosenoate; 1-o-Heptadecylglycerol; 1-Monooleoylglycerol; Propyl octadecanoate; Cholesterol | Fumarate; Malate; d-Mannose; d-Galactose; d-Glucose; 1-Hexadecanol; Arachidonate | NMR
GC-QMS | [36] |
Research aim: To reveal that global metabolic profiling of colon mucosae can define metabolic signatures for not only discriminating malignant from normal mucosae but also distinguishing the anatomical and clinicopathological characteristics of colorectal cancer | |||||
Colorectal cancer | Tissue | Glycine; l-Proline; l-Phenylalanine; l-Alanine; l-Leucine; l-Valine; l-Serine; l-Threonine; l-Isoleucine; Picolinate; l-Methionine; l-Aspartate; β-Alanine; Aminomalonate; 1-Methylhydantoin; Palmitate; Margarate; Oleate; Stearate; 11-Eicosenoate; Myristate; Pentadecanoate; Linolenate; Lignocerate; Phosphate; l-Arabinose; Lactate; Maleate; Pantothenate; Glycerol; 1-Monooleoylglycerol; Uracil; Uridine; Cholesterol | Arachidonate; d-Mannose; d-Galactose; d-Glucose; Fumarate; Malate; Oxalate; Succinate; Ribitol; Squalene | GC×GC-TOF/MS | [37] |
Research aim: To investigate whether the metabotype associated with colorectal cancer is distinct from that of normal tissue and whether various biochemical processes are altered by pathogenesis of colorectal cancer | |||||
Colorectal cancer | Urine | Lactate; Arginine; Leucine; Isoleucine; Valine | Histidine; Methionine; Aspartate; Serine; Succinate; Citrate; Malate | CE-IT/MS | [18] |
Research aim: To investigate the metabolic profile of urine metabolites and to elucidate their clinical significance in patients with colorectal cancer including possibility as the biomarker candidates for early detection. | |||||
Colorectal cancer | Urine | 5-Hydroxytryptophan; 5-Hydroxyindoleacetate; Tryptophan; Glutamate; Pyroglutamate; N-Acetyl-aspartate; p-Cresol; 2-Hydroxyhippurate; Phenylacetate; Phenylacetylglutamine; p-Hydroxyphenylacetate | Succinate; Isocitrate; Citrate; 3-Methylhistidine; Histidine | GC-QMS | [19] |
Research aim: To demonstrate the potentials of this noninvasive urinary metabolomic strategy as a complementary diagnostic tool for colorectal cancer | |||||
Colorectal cancer | Serum | None | FAs (C28H46O4, C28H48O4, C28H50O4) | FTICR-MS
LC-Q-TOF/MS NMR QqQ-MS | [38] |
Research aim: To discover putative metabolomic markers associated with colorectal cancer | |||||
Colorectal cancer | Serum | Pyruvate; α-Hydroxybutyrate; Phosphate; Isoleucine; β-Alanine; meso-Erythritol; Aspartate; Pyroglutamate; Glutamate; p-Hydroxybenzoate; Arabinose; Asparagine; Xylitol; Ornithine; Citrulline; Glucuronate; Glucosamine; Palmitoleate; Inositol; Kynurenine; Cystamine; Cystine; Lactitol | Nonanoate; Creatinine; Ribulose; o-Phosphoethanolamine | GC-QMS | [39] |
Research aim: To establish new screening methods for early diagnosis of colorectal cancer via metabolomics | |||||
Colorectal cancer | Serum | Lactate; Glycolate; l-Alanine; 3-Hydroxypropionate; l-Proline; L-Methionine; Thioglycolate; l-Glutamate; l-Asparagine; l-Glutamine; Glucuronic lactone | None | GC-QMS | [31] |
Research aim: To investigate the differences in serum metabolite profiles using a metabolomic approach and to search for sensitive and specific metabolomic biomarker candidates | |||||
Colorectal cancer | Serum | LPC(16:0); LPC(18:2); LPC(18:1); LPC(18:0); LPC(20:4); LPC(22:6); PC(34:1); LPA(16:0); LPA(18:0); LPC(16:0) | Palmitic amide; Oleamide; Hexadecanedioate; Octadecanoate; Eicosatrienoate; Myristate | DI-FTICR-MS | [40] |
Research aim: To discriminate colorectal cancer patients from controls by metabolomic biomarkers and to reveal the stage-related biomarkers for colorectal cancer and the changing trends of four lipid species in the colorectal cancer progression | |||||
Hepatic cancer | Tissue | Arachidyl carnitine; Tetradecanal; Oleamide | β-Sitosterol; l-Phenylalanine; LPC(18:2); Glycerophosphocholine; LPE(18:3); Chenodeoxycholate glycine conjugate; LPC(22:6); Quinaldate; LPE(18:0); LPC(18:0); LPC(20:4) | LC-LTQ-Orbitrap-MS | [41] |
Research aim: To select characteristic endogenous metabolites in hepatitis B virus-related hepatocellular carcinoma patients and to identify their molecular mechanism and potential clinical value | |||||
Hepatic cancer | Urine | Octanedioate; Glycine; Tyrosine; Threonine; Butanedioate | Heptanedioate; Ethanedioate; Xylitol; Urea; Phosphate; Propanoate; Pyrimidine; Butanoate; Trihydroxypentanoate; Hypoxanthine; Arabinofuranose; Hydroxyproline dipeptide; Xylonate | GC-QMS | [42] |
Research aim: To investigate the urinary metabolic difference between hepatocellular carcinoma patients and normal subjects and to find biomarkers for hepatocellular carcinoma | |||||
Hepatic cancer | Serum | Cortisol; GCA; GCDCA; C16:1-CN; FAs (C16:1, C16:0, C18:2, C18:1, C18:0, C20:5, C20:4, C20:2, C22:6, C22:5) | Tryptophan; LPC(14:0); LPC(20:3); LPC(20:5); C10-CN; C10:1-CN; C8-CN; C6-CN | LC-Q-TOF/MS | [43] |
Research aim: To study the related metabolic deregulations in hepatocellular carcinoma and chronic liver diseases and to discover the differential metabolites for distinguishing the different liver diseases | |||||
Hepatic cancer | Plasma | LPC(24:0); Glycodeoxycholate; Deoxycholate 3-sulfate | LPC(14:0); LPC(16:0); LPC(18:0); LPC(18:1); LPC(18:2); LPC(18:3); LPC(20:4); FA(24:0); FA(24:1); LPC(20:2); LPC(20:3); LPC(20:5) | UPLC-QqQ/MSGC-QMS | [44] |
Research aim: To evaluate the molecular changes in the plasma of hepatocellular carcinoma patients and to provide new insights into the pathobiology of the diseases | |||||
Hepatic cancer | Feces | LPC(18:0); LPC(16:0) | Chenodeoxycholate dimeride; Urobilin; Urobilinogen; 7-Ketolithocholate | UPLC-Q-TOF/MS | [45] |
Research aim: To find fecal metabolite biomarkers for distinguishing liver cirrhosis and hepatocellular carcinoma patients from healthy controls | |||||
Pancreatic cancer | Saliva | Cadaverine; 2-Aminobutyrate; Alanine; Putrescine; Methylimidazole acetate; Trimethylamine; Piperidine; Leucine + Isoleucine; Phenylalanine; Tyrosine; Histidine; Proline; Lysine; Glycine; Ornithine; Burimamide; Ethanolamine; GABA; Aspartate; Valine; Tryptophan; β-Alanine; Glutamate; Threonine; Serine; Glutamine; Hypoxanthine; Choline; Carnitine | Taurine; Glycerophosphocholine | CE-TOF-MS | [21] |
Research aim: To reveal the comprehensive salivary metabolic profiles of pancreatic cancer patients and healthy controls and to identify cancer-specific biomarkers with high discriminative ability | |||||
Pancreatic cancer | Tissue | Taurine | Succinate; Malate; Uridine; Glutathione; UDP-N-Acetyl-d-glucosamine; NAD; UMP; AMP | UPLC-TOF/MS | [46] |
Research aim: To investigate the differences in the metabolite profiles of normal and pancreas tumor tissue with a goal of developing prognostic biomarkers | |||||
Pancreatic cancer | Serum | Lactate; Thiodiglycolate; 7-Hydroxyoctanoate; Asparagine; Aconitate; Homogentisate; N-Acetyl-tyrosine | Glycine; Urea, Octanoate; Glycerate; Decanoate; Laurate; Myristate; Palmitate; Urate; Margarate; Stearate | GC-QMS | [47] |
Research aim: To evaluate the differences in the metabolomes between pancreatic cancer patients and healthy volunteers and to aid the discovery of novel biomarkers | |||||
Pancreatic cancer | Serum | Arabinose; Ribulose | Valine; 2-Aminoethanol; n-Caprylate; Threonine; Nonanoate; Methionine; Creatinine; Asparagine; Glutamine; o-Phosphoethanolamine; Glycyl-Glycine; 1,5-Anhydro-d-glucitol; Lysine; Histidine; Tyrosine; Urate | GC-QMS | [48] |
Research aim: To construct a diagnostic model for pancreatic cancer using serum metabolomics and to confirm its diagnostic performance | |||||
Pancreatic cancer | Plasma | Arachidonate; Erythritol; Cholesterol; N-Methylalanine; Lysine; Deoxycholylglycine; Cholylglycine; LPC(16:0); Tauroursodeoxycholate; Taurocholate; LPC(18:2); PE(26:0); PC(34:2) | Glutamine; Hydrocinnamate; Phenylalanine; Tryptamine; Inosine | GC-TOF/MS
LC-IT/MS LC-LTQ-Orbitrap-MS | [49] |
Research aim: To seek novel metabolic biomarkers of pancreatic cancer |
3.4. Early Stage Cancer and Metabolomics
3.5. The Relationship between Metabolite Alterations and Cancer
4. Future of Metabolomics-Based Disease Diagnosis
4.1. Procedures for Long-Term and Large-Scale Metabolomics Research
4.2. Sampling for Biomarker Discovery Research by Metabolomics
4.3. Validation for Biomarker Discovery Research by Metabolomics
4.4. Assay Optimization of Mass Spectrometry-Based Metabolomics
4.5. Mass Spectrometry Data Preprocessing, Peak Alignment and Peak Identification
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Spratlin, J.L.; Serkova, N.J.; Eckhardt, S.G. Clinical applications of metabolomics in oncology: A review. Clin. Cancer Res. 2009, 15, 431–440. [Google Scholar] [CrossRef]
- Mashego, M.R.; Rumbold, K.; de Mey, M.; Vandamme, E.; Soetaert, W.; Heijnen, J.J. Microbial metabolomics: Past, present and future methodologies. Biotechnol. Lett. 2007, 29, 1–16. [Google Scholar]
- Wishart, D.S. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol. 2008, 19, 482–493. [Google Scholar]
- Saito, K. Phytochemical genomics—A new trend. Curr. Opin. Plant Biol. 2013, 16, 373–380. [Google Scholar] [CrossRef]
- Nambiar, P.R.; Gupta, R.R.; Misra, V. An “Omics” based survey of human colon cancer. Mutat. Res. 2010, 693, 3–18. [Google Scholar]
- Rochfort, S. Metabolomics reviewed: A new “Omics” platform technology for systems biology and implications for natural products research. J. Nat. Prod. 2005, 68, 1813–1820. [Google Scholar] [CrossRef]
- PubMed. Available online: http://www.ncbi.nlm.nih.gov/pubmed (accessed on 11 June 2014).
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Kinoshita, T.; Saito, N.; Ochiai, A.; Tomita, M.; et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009, 69, 4918–4925. [Google Scholar] [CrossRef]
- Dang, C.V. Glutaminolysis: Supplying carbon or nitrogen or both for cancer cells? Cell Cycle 2010, 9, 3884–3886. [Google Scholar]
- Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009, 457, 910–914. [Google Scholar] [CrossRef]
- Jain, M.; Nilsson, R.; Sharma, S.; Madhusudhan, N.; Kitami, T.; Souza, A.L.; Kafri, R.; Kirschner, M.W.; Clish, C.B.; Mootha, V.K. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012, 336, 1040–1044. [Google Scholar] [CrossRef]
- Yoshida, M.; Hatano, N.; Nishiumi, S.; Irino, Y.; Izumi, Y.; Takenawa, T.; Azuma, T. Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography-mass spectrometry. J. Gastroenterol. 2012, 47, 9–20. [Google Scholar]
- Niwa, T. Metabolic profiling with gas chromatography-mass spectrometry and its application to clinical medicine. J. Chromatogr. 1986, 379, 313–345. [Google Scholar]
- Oldiges, M.; Lütz, S.; Pflug, S.; Schroer, K.; Stein, N.; Wiendahl, C. Metabolomics: Current state and evolving methodologies and tools. Appl. Microbiol. Biotechnol. 2007, 76, 495–511. [Google Scholar] [CrossRef]
- Fiehn, O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics 2001, 2, 155–168. [Google Scholar] [CrossRef]
- Chen, J.L.; Fan, J.; Yan, L.S.; Guo, H.Q.; Xiong, J.J.; Ren, Y.; Hu, J.D. Urine Metabolite Profiling of Human Colorectal Cancer by Capillary Electrophoresis Mass Spectrometry Based on MRB. Gastroenterol. Res. Pract. 2012, 2012, 125890. [Google Scholar]
- Qiu, Y.; Cai, G.; Su, M.; Chen, T.; Liu, Y.; Xu, Y.; Ni, Y.; Zhao, A.; Cai, S.; Xu, L.X.; et al. Urinary metabonomic study on colorectal cancer. J. Proteome Res. 2010, 9, 1627–1634. [Google Scholar] [CrossRef]
- Wei, J.; Xie, G.; Zhou, Z.; Shi, P.; Qiu, Y.; Zheng, X.; Chen, T.; Su, M.; Zhao, A.; Jia, W. Salivary metabolite signatures of oral cancer and leukoplakia. Int. J. Cancer 2011, 129, 2207–2217. [Google Scholar]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef]
- Xie, G.X.; Chen, T.L.; Qiu, Y.P.; Shi, P.; Zheng, X.J.; Su, M.M.; Zhao, A.H.; Zhou, Z.T.; Jia, W. Urine metabolite profiling offers potential early diagnosis of oral cancer. Metabolomics 2012, 8, 220–231. [Google Scholar] [CrossRef]
- Kimoto, A.; Nishiumi, S.; Kobayashi, T.; Terashima, Y.; Suzuki, H.; Takeuchi, J.; Azuma, T.; Komori, T.; Yoshida, M. A novel gas chromatography mass spectrometry-based serum screening method for oral squamous cell carcinoma. Head Neck Oncol. 2013, 5, 40. [Google Scholar]
- Wu, H.; Xue, R.; Lu, C.; Deng, C.; Liu, T.; Zeng, H.; Wang, Q.; Shen, X. Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3111–3117. [Google Scholar]
- Wang, L.; Chen, J.; Chen, L.; Deng, P.; Bu, Q.; Xiang, P.; Li, M.; Lu, W.; Xu, Y.; Lin, H.; et al. 1H-NMR based metabonomic profiling of human esophageal cancer tissue. Mol. Cancer 2013, 12. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Wang, S.; Liang, S.; Chen, A.; Tang, H.; Chen, L.; Deng, F. Study of metabonomic profiles of human esophageal carcinoma by use of high-resolution magic-angle spinning 1H NMR spectroscopy and multivariate data analysis. Anal. Bioanal. Chem. 2013, 405, 3381–3389. [Google Scholar]
- Davis, V.W.; Schiller, D.E.; Eurich, D.; Sawyer, M.B. Urinary metabolomic signature of esophageal cancer and Barrett’s esophagus. World J. Surg. Oncol. 2012, 10. [Google Scholar] [CrossRef]
- Djukovic, D.; Baniasadi, H.R.; Kc, R.; Hammoud, Z.; Raftery, D. Targeted serum metabolite profiling of nucleosides in esophageal adenocarcinoma. Rapid Commun. Mass Spectrom. 2010, 24, 3057–3062. [Google Scholar] [CrossRef]
- Zhang, J.; Bowers, J.; Liu, L.; Wei, S.; Gowda, G.A.; Hammoud, Z.; Raftery, D. Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS One 2012, 7, e30181. [Google Scholar]
- Zhang, X.; Xu, L.; Shen, J.; Cao, B.; Cheng, T.; Zhao, T.; Liu, X.; Zhang, H. Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochim. Biophys. Acta 2013, 1832, 1207–1216. [Google Scholar] [CrossRef]
- Ikeda, A.; Nishiumi, S.; Shinohara, M.; Yoshie, T.; Hatano, N.; Okuno, T.; Bamba, T.; Fukusaki, E.; Takenawa, T.; Azuma, T.; et al. Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed. Chromatogr. 2012, 26, 548–558. [Google Scholar] [CrossRef]
- Liu, R.; Peng, Y.; Li, X.; Wang, Y.; Pan, E.; Guo, W.; Pu, Y.; Yin, L. Identification of Plasma Metabolomic Profiling for Diagnosis of Esophageal Squamous-Cell Carcinoma Using an UPLC/TOF/MS Platform. Int. J. Mol. Sci. 2013, 14, 8899–8911. [Google Scholar] [CrossRef]
- Cai, Z.; Zhao, J.S.; Li, J.J.; Peng, D.N.; Wang, X.Y.; Chen, T.L.; Qiu, Y.P.; Chen, P.P.; Li, W.J.; Xu, L.Y.; et al. A combined proteomics and metabolomics profiling of gastric cardia cancer reveals characteristic dysregulations in glucose metabolism. Mol. Cell. Proteomics 2010, 9, 2617–2628. [Google Scholar]
- Chen, J.L.; Fan, J.; Lu, X. CE-MS based on moving reaction boundary method for urinary metabolomic analysis of gastric cancer patients. Electrophoresis 2014, 35, 1032–1039. [Google Scholar] [CrossRef]
- Song, H.; Peng, J.S.; Dong-Sheng, Y.; Yang, Z.L.; Liu, H.L.; Zeng, Y.K.; Shi, X.P.; Lu, B.Y. Serum metabolic profiling of human gastric cancer based on gas chromatography/mass spectrometry. Braz. J. Med. Biol. Res. 2012, 45, 78–85. [Google Scholar] [CrossRef]
- Chan, E.C.; Koh, P.K.; Mal, M.; Cheah, P.Y.; Eu, K.W.; Backshall, A.; Cavill, R.; Nicholson, J.K.; Keun, H.C. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res. 2009, 8, 352–361. [Google Scholar] [CrossRef]
- Mal, M.; Koh, P.K.; Cheah, P.Y.; Chan, E.C. Metabotyping of human colorectal cancer using two-dimensional gas chromatography mass spectrometry. Anal. Bioanal. Chem. 2012, 403, 483–493. [Google Scholar] [CrossRef]
- Ritchie, S.A.; Ahiahonu, P.W.; Jayasinghe, D.; Heath, D.; Liu, J.; Lu, Y.; Jin, W.; Kavianpour, A.; Yamazaki, Y.; Khan, A.M.; et al. Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: Implications for early screening and detection. BMC Med. 2010, 8. [Google Scholar] [CrossRef]
- Nishiumi, S.; Kobayashi, T.; Ikeda, A.; Yoshie, T.; Kibi, M.; Izumi, Y.; Okuno, T.; Hayashi, N.; Kawano, S.; Takenawa, T.; et al. A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS One 2012, 7, e40459. [Google Scholar] [CrossRef]
- Li, F.; Qin, X.; Chen, H.; Qiu, L.; Guo, Y.; Liu, H.; Chen, G.; Song, G.; Wang, X.; Li, F.; et al. Lipid profiling for early diagnosis and progression of colorectal cancer using direct-infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 24–34. [Google Scholar] [CrossRef]
- Liu, S.Y.; Zhang, R.L.; Kang, H.; Fan, Z.J.; Du, Z. Human liver tissue metabolic profiling research on hepatitis B virus-related hepatocellular carcinoma. World J. Gastroenterol. 2013, 19, 3423–3432. [Google Scholar] [CrossRef]
- Wu, H.; Xue, R.; Dong, L.; Liu, T.; Deng, C.; Zeng, H.; Shen, X. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal. Chim. Acta 2009, 648, 98–104. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Q.; Yin, P.; Xing, W.; Wu, Z.; Chen, S.; Lu, X.; Zhang, Y.; Lin, X.; Xu, G. Serum metabolomics reveals the deregulation of fatty acids metabolism in hepatocellular carcinoma and chronic liver diseases. Anal. Bioanal. Chem. 2012, 403, 203–213. [Google Scholar]
- Patterson, A.D.; Maurhofer, O.; Beyoglu, D.; Lanz, C.; Krausz, K.W.; Pabst, T.; Gonzalez, F.J.; Dufour, J.F.; Idle, J.R. Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res. 2011, 71, 6590–6600. [Google Scholar] [CrossRef]
- Cao, H.; Huang, H.; Xu, W.; Chen, D.; Yu, J.; Li, J.; Li, L. Fecal metabolome profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra performance liquid chromatography-mass spectrometry. Anal. Chim. Acta 2011, 691, 68–75. [Google Scholar] [CrossRef]
- Kaur, P.; Sheikh, K.; Kirilyuk, A.; Kirilyuk, K.; Singh, R.; Ressom, H.W.; Cheema, A.K. Metabolomic profiling for biomarker discovery in pancreatic cancer. Int. J. Mass Spectrom. 2012, 310, 44–51. [Google Scholar]
- Nishiumi, S.; Shinohara, M.; Ikeda, A.; Yoshie, T.; Hatano, N.; Kakuyama, S.; Mizuno, S.; Sanuki, T.; Kutsumi, H.; Fukusaki, E.; et al. Serum metabolomics as a novel diagnostic approach for pancreatic cancer. Metabolomics 2010, 6, 518–528. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nishiumi, S.; Ikeda, A.; Yoshie, T.; Sakai, A.; Matsubara, A.; Izumi, Y.; Tsumura, H.; Tsuda, M.; Nishisaki, H.; et al. A novel serum metabolomics-based diagnostic approach to pancreatic cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 571–579. [Google Scholar] [CrossRef]
- Urayama, S.; Zou, W.; Brooks, K.; Tolstikov, V. Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer. Rapid Commun. Mass Spectrom. 2010, 24, 613–620. [Google Scholar]
- Miyagi, Y.; Higashiyama, M.; Gochi, A.; Akaike, M.; Ishikawa, T.; Miura, T.; Saruki, N.; Bando, E.; Kimura, H.; Imamura, F.; et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One 2011, 6, e24143. [Google Scholar]
- Luo, Y.; Yoneda, J.; Ohmori, H.; Sasaki, T.; Shimbo, K.; Eto, S.; Kato, Y.; Miyano, H.; Kobayashi, T.; Sasahira, T.; et al. Cancer usurps skeletal muscle as an energy repository. Cancer Res. 2014, 74, 330–340. [Google Scholar] [CrossRef]
- Lob, S.; Konigsrainer, A.; Zieker, D.; Brucher, B.L.; Rammensee, H.G.; Opelz, G.; Terness, P. IDO1 and IDO2 are expressed in human tumors: Levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol. Immunother. 2009, 58, 153–157. [Google Scholar]
- Lob, S.; Konigsrainer, A.; Rammensee, H.G.; Opelz, G.; Terness, P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: Can we see the wood for the trees? Nat. Rev. Cancer 2009, 9, 445–452. [Google Scholar] [CrossRef]
- Muller, A.J.; DuHadaway, J.B.; Donover, P.S.; Sutanto-Ward, E.; Prendergast, G.C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. 2005, 11, 312–319. [Google Scholar] [CrossRef]
- Zamanakou, M.; Germenis, A.E.; Karanikas, V. Tumor immune escape mediated by indoleamine 2,3-dioxygenase. Immunol. Lett. 2007, 111, 69–75. [Google Scholar] [CrossRef]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Human serum metabolome (HUSERMET) consortium. procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar]
- Dunn, W.B.; Wilson, I.D.; Nicholls, A.W.; Broadhurst, D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis 2012, 4, 2249–2264. [Google Scholar] [CrossRef]
- Bijlsma, S.; Bobeldijk, I.; Verheij, E.R.; Ramaker, R.; Kochhar, S.; Macdonald, I.A.; van Ommen, B.; Smilde, A.K. Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Anal. Chem. 2006, 78, 567–574. [Google Scholar] [CrossRef]
- Fiehn, O.; Wohlgemuth, G.; Scholz, M.; Kind, T.; Lee, D.Y.; Lu, Y.; Moon, S.; Nikolau, B. Quality control for plant metabolomics: Reporting MSI-compliant studies. Plant J. 2008, 53, 691–704. [Google Scholar]
- Zou, W.; She, J.; Tolstikov, V.V. A comprehensive workflow of mass spectrometry-based untargeted metabolomics in cancer metabolic biomarker discovery using human plasma and urine. Metabolites 2013, 3, 787–819. [Google Scholar]
- Broeckling, C.D.; Heuberger, A.L.; Prenni, J.E. Large scale non-targeted metabolomic profiling of serum by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). J. Vis. Exp. 2013, 73, e50242. [Google Scholar]
- Yu, Z.; Kastenmüller, G.; He, Y.; Belcredi, P.; Möller, G.; Prehn, C.; Mendes, J.; Wahl, S.; Roemisch-Margl, W.; Ceglarek, U.; et al. Differences between human plasma and serum metabolite profiles. PLoS One 2011, 6, e21230. [Google Scholar] [CrossRef]
- Yin, P.; Peter, A.; Franken, H.; Zhao, X.; Neukamm, S.S.; Rosenbaum, L.; Lucio, M.; Zell, A.; Häring, H.U.; Xu, G.; et al. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clin. Chem. 2013, 59, 833–845. [Google Scholar] [CrossRef]
- Iob, V.; Mcmath, M.; Coon, W.W. Intra-individual and inter individual variations in plasma free amino acids in normal adults. J. Surg. Res. 1963, 3, 85–89. [Google Scholar]
- Lavie, L.; Lavie, P. Daily rhythms in plasma levels of homocysteine. J. Circadian Rhythm. 2004, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytical techniques in metabolomics analysis. Analyst 2012, 137, 293–300. [Google Scholar] [CrossRef]
- Wang, X.; Yang, B.; Sun, H.; Zhang, A. Pattern recognition approaches and computational systems tools for ultra performance liquid chromatography-mass spectrometry-based comprehensive metabolomic profiling and pathways analysis of biological data sets. Anal. Chem. 2012, 84, 428–439. [Google Scholar]
- Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Recent and potential developments of biofluid analyses in metabolomics. J. Proteomics 2012, 75, 1079–1088. [Google Scholar]
- Yeh, C.K.; Christodoulides, N.J.; Floriano, P.N.; Miller, C.S.; Ebersole, J.L.; Weigum, S.E.; McDevitt, J.; Redding, S.W. Current development of saliva/oral fluid-based diagnostics. Tex. Dent. J. 2010, 127, 651–661. [Google Scholar]
- Giannobile, W.V.; McDevitt, J.T.; Niedbala, R.S.; Malamud, D. Translational and clinical applications of salivary diagnostics. Adv. Dent. Res. 2011, 23, 375–380. [Google Scholar] [CrossRef]
- Bigler, L.R.; Streckfus, C.F.; Dubinsky, W.P. Salivary biomarkers for the detection of malignant tumors that are remote from the oral cavity. Clin. Lab. Med. 2009, 29, 71–85. [Google Scholar]
- Wong, D.T. Salivary diagnostics for oral cancer. J. Calif. Dent. Assoc. 2006, 34, 303–308. [Google Scholar]
- Samaranayake, L. Saliva as a diagnostic fluid. Int. Dent. J. 2007, 57, 295–299. [Google Scholar] [CrossRef]
- Annesley, T.M. Ion suppression in mass spectrometry. Clin. Chem. 2003, 49, 1041–1044. [Google Scholar]
- Ciccimaro, E.; Blair, I.A. Stable-isotope dilution LC–MS for quantitative biomarker analysis. Bioanalysis 2010, 2, 311–341. [Google Scholar]
- Gerber, S.A.; Rush, J.; Stemman, O.; Kirschner, M.W.; Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 2003, 100, 6940–6945. [Google Scholar] [CrossRef]
- Lin, S.; Shaler, T.A.; Becker, C.H. Quantification of intermediate-abundance proteins in serum by multiple reaction monitoring mass spectrometry in a single-quadrupole ion trap. Anal. Chem. 2006, 78, 5762–5767. [Google Scholar] [CrossRef]
- Barnidge, D.; Goodmanson, M.; Klee, G.; Muddiman, D. Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-MS/MS using protein cleavage and isotope dilution MS. J. Proteome Res. 2004, 3, 644–652. [Google Scholar]
- Tsugawa, H.; Tsujimoto, Y.; Sugitate, K.; Sakui, N.; Nishiumi, S.; Bamba, T.; Fukusaki, E. Highly sensitive and selective analysis of widely targeted metabolomics using gas chromatography/triple-quadrupole mass spectrometry. J. Biosci. Bioeng. 2014, 117, 122–128. [Google Scholar] [CrossRef]
- Breier, M.; Wahl, S.; Prehn, C.; Fugmann, M.; Ferrari, U.; Weise, M.; Banning, F.; Seissler, J.; Grallert, H.; Adamski, J.; et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS One 2014, 9, e89728. [Google Scholar]
- Uchikata, T.; Matsubara, A.; Fukusaki, E.; Bamba, T. High-throughput phospholipid profiling system based on supercritical fluid extraction-supercritical fluid chromatography/mass spectrometry for dried plasma spot analysis. J. Chromatogr. A 2012, 1250, 69–75. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, X.; Li, N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 808, 269–277. [Google Scholar]
- Silva, C.L.; Passos, M.; Câmara, J.S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br. J. Cancer 2011, 105, 1894–1904. [Google Scholar]
- Boots, A.W.; van Berkel, J.J.; Dallinga, J.W.; Smolinska, A.; Wouters, E.F.; van Schooten, F.J. The versatile use of exhaled volatile organic compounds in human health and disease. J. Breath Res. 2012, 6, 027108. [Google Scholar] [CrossRef]
- Kakuta, S.; Bando, Y.; Nishiumi, S.; Yoshida, M.; Fukusaki, E.; Bamba, T. Metabolic profiling of oxidized lipid-derived volatiles in blood by gas chromatography/mass spectrometry with in-tube extraction. Mass Spectrom. 2013, 2, A0018. [Google Scholar]
- Römisch-Margl, W.; Prehn, C.; Bogumil, R.; Röhring, C.; Suhre, K.; Adamski, J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics 2012, 8, 133–142. [Google Scholar]
- Zukunft, S.; Sorgenfrei, M.; Prehn, C.; Ga, M.; Adamski, J. Targeted Metabolomics of Dried Blood Spot Extracts. Chromatographia 2013, 76, 1295–1305. [Google Scholar] [CrossRef]
- Lommen, A. MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 2009, 81, 3079–3086. [Google Scholar]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11. [Google Scholar] [CrossRef]
- Tsugawa, H.; Tsujimoto, Y.; Arita, M.; Bamba, T.; Fukusaki, E. GC/MS based metabolomics: Development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA). BMC Bioinform. 2011, 12. [Google Scholar] [CrossRef]
- Tsugawa, H.; Arita, M.; Kanazawa, M.; Ogiwara, A.; Bamba, T.; Fukusaki, E. MRMPROBS: A data assessment and metabolite identification tool for large-scale multiple reaction monitoring based widely targeted metabolomics. Anal. Chem. 2013, 85, 5191–5199. [Google Scholar] [CrossRef]
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0-The Human Metabolome Database in 2013. Nucl. Acids Res. 2013, 41, D801–D807. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Thiele, I.; Swainston, N.; Fleming, R.M.; Hoppe, A.; Sahoo, S.; Aurich, M.K.; Haraldsdottir, H.; Mo, M.L.; Rolfsson, O.; Stobbe, M.D.; et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 2013, 31, 419–425. [Google Scholar] [CrossRef] [Green Version]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nishiumi, S.; Suzuki, M.; Kobayashi, T.; Matsubara, A.; Azuma, T.; Yoshida, M. Metabolomics for Biomarker Discovery in Gastroenterological Cancer. Metabolites 2014, 4, 547-571. https://doi.org/10.3390/metabo4030547
Nishiumi S, Suzuki M, Kobayashi T, Matsubara A, Azuma T, Yoshida M. Metabolomics for Biomarker Discovery in Gastroenterological Cancer. Metabolites. 2014; 4(3):547-571. https://doi.org/10.3390/metabo4030547
Chicago/Turabian StyleNishiumi, Shin, Makoto Suzuki, Takashi Kobayashi, Atsuki Matsubara, Takeshi Azuma, and Masaru Yoshida. 2014. "Metabolomics for Biomarker Discovery in Gastroenterological Cancer" Metabolites 4, no. 3: 547-571. https://doi.org/10.3390/metabo4030547
APA StyleNishiumi, S., Suzuki, M., Kobayashi, T., Matsubara, A., Azuma, T., & Yoshida, M. (2014). Metabolomics for Biomarker Discovery in Gastroenterological Cancer. Metabolites, 4(3), 547-571. https://doi.org/10.3390/metabo4030547