Metabolic Profiling of Human Peripheral Blood Mononuclear Cells: Influence of Vitamin D Status and Gender
Abstract
:1. Introduction
2. Results and Discussion
2.1. Study 1: Effect of Supplementation with Vitamin D on PBMC Fatty Acid Levels
Placebo, N = 4 | Vitamin D, N = 4 | p | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
53.8 | 7.3 | 52.5 | 7.5 | 0.802 | |
Height (m) | 1.77 | 0.11 | 1.69 | 0.11 | 0.344 |
Weight (kg) | 84.8 | 13.6 | 70.5 | 16.3 | 0.211 |
BMI (kg/m2) | 27.0 | 3.2 | 24.3 | 2.8 | 0.215 |
Female, N = 10 | Male, N = 10 | p | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
27.2 | 4.5 | 30.6 | 5.0 | 0.126 | |
Height (m) | 1.68 | 0.05 | 1.81 | 0.07 | 0.002 |
Weight (kg) | 55.2 | 5.24 | 79.9 | 11.3 | 3 × 10-5 |
BMI (kg/m2) | 19.5 | 1.5 | 24.3 | 3.1 | 0.001 |
Placebo | Vitamin D | p * | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
30.4 | 8.6 | 56.2 | 18.9 | 0.029 | |
hsCRP (mg/L) | 2.8 | 3.6 | 1.0 | 0.4 | 0.368 |
IL-6 (pg/mL) | 2.2 | 3.3 | 0.6 | 0.1 | 0.362 |
TNFalpha (pg/mL) | 4.0 | 1.0 | 3.6 | 1.1 | 0.541 |
Glucose (mmol/L) | 5.7 | 0.4 | 5.6 | 0.1 | 0.555 |
Insulin (µU/mL) | 3.2 | 1.8 | 3.5 | 2.8 | 0.837 |
TG(mmol/L) | 1.0 | 0.2 | 1.4 | 0.5 | 0.164 |
NEFA (mmol/L) | 0.4 | 0.2 | 0.6 | 0.2 | 0.247 |
Total cholesterol (mmol/L) | 6.4 | 0.7 | 5.7 | 0.5 | 0.105 |
HDL (mmol/L) | 1.3 | 0.4 | 1.4 | 0.4 | 0.749 |
LDL (mmol/L) | 4.5 | 0.3 | 3.9 | 0.3 | 0.030 |
Adiponectin (µg/mL) | 6.0 | 4.1 | 5.7 | 2.2 | 0.896 |
Leptin (ng/mL) | 0.9 | 0.5 | 0.7 | 0.5 | 0.617 |
Resistin (ng/mL) | 3.9 | 0.6 | 3.0 | 1.1 | 0.178 |
Ferritin (ng/mL) | 65.6 | 39.1 | 72.0 | 27.0 | 0.791 |
Fatty Acid (%) | Placebo | Vitamin D | p * | q | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
18.3 | 2.2 | 19.5 | 1.0 | 0.373 | 0.667 | |
C18:0 (stearic acid) | 23.6 | 2.2 | 22.1 | 0.5 | 0.258 | 0.667 |
C18:1n9c (oleic acid-cis) | 13.1 | 1.3 | 13.2 | 1.2 | 0.880 | 0.667 |
C18:1n9t (elaidic acid) | 1.6 | 0.3 | 1.5 | 0.2 | 0.918 | 0.693 |
C18:2n6 (linoleic acid) | 7.7 | 1.5 | 7.3 | 0.8 | 0.604 | 0.693 |
C20:4n6 (arachidonic acid) | 30.6 | 3.0 | 30.7 | 2.4 | 0.949 | 0.693 |
C20:3n6 (osatrienoic acid) | 1.7 | 0.1 | 2.0 | 0.3 | 0.149 | 0.667 |
C20:0 (arachidic acid) | 1.1 | 0.1 | 1.0 | 0.1 | 0.254 | 0.684 |
C22:0 (behenic acid) | 1.0 | 0.3 | 1.1 | 0.1 | 0.313 | 0.684 |
C24:1 (nervonic acid) | 0.9 | 0.1 | 1.0 | 0.3 | 0.220 | 0.667 |
C24:0 (lignoceric acid) | 0.5 | 0.0 | 0.5 | 0.1 | 0.740 | 0.725 |
SFA | 44.5 | 3.9 | 44.3 | 1.3 | 0.933 | 0.745 |
MUFA | 15.5 | 1.2 | 15.7 | 1.6 | 0.773 | 0.667 |
PUFA | 40.0 | 3.9 | 39.9 | 2.0 | 0.963 | 0.693 |
2.2. Correlations between Fatty Acids and Metabolic Markers (Study 1)
2.3. Examination of Fatty Acids and Amino Acids Levels in PBMCs (Study 2)
w/w (%) | Female | Male | p * | p ** | q | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
23.9 | 2.4 | 19.6 | 4.0 | 0.008 | 0.039 | 0.096 | |
C18:0 (stearic acid) | 26.9 | 4.5 | 23.3 | 7.0 | 0.189 | 0.373 | 0.268 |
C18:1n9c (oleic acid-cis) | 12.7 | 1.0 | 12.7 | 2.0 | 0.998 | 0.020 | 0.849 |
C18:1n9t (elaidic acid) | 2.7 | 1.2 | 2.0 | 1.6 | 0.314 | 0.351 | 0.363 |
C18:2n6 (linoleic acid) | 3.6 | 1.2 | 4.2 | 1.0 | 0.291 | 0.358 | 0.363 |
C20:4n6 (arachidonic acid) | 25.5 | 6.3 | 33.0 | 10.7 | 0.072 | 0.090 | 0.191 |
C20:3n6 (osatrienoic acid) | 1.6 | 0.8 | 1.3 | 0.4 | 0.379 | 0.721 | 0.399 |
C20:0 (arachidic acid) | 0.5 | 0.1 | 0.6 | 0.1 | 0.061 | 0.172 | 0.191 |
C22:0 (behenic acid) | 1.2 | 0.2 | 1.7 | 0.6 | 0.015 | 0.274 | 0.096 |
C24:1 (nervonic acid) | 0.7 | 0.2 | 0.7 | 0.2 | 0.932 | 0.669 | 0.849 |
C24:0 (lignoceric acid) | 0.7 | 0.3 | 0.8 | 0.3 | 0.161 | 0.771 | 0.268 |
SFA | 53.2 | 6.3 | 46.1 | 10.1 | 0.075 | 0.172 | 0.191 |
MUFA | 16.1 | 1.7 | 15.4 | 2.3 | 0.486 | 0.020 | 0.477 |
PUFA | 30.7 | 7.8 | 38.5 | 11.3 | 0.090 | 0.106 | 0.191 |
w/w (%) | Female | Male | p * | p ** | q | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
8.8 | 1.4 | 9.4 | 1.7 | 0.366 | 0.449 | 0.732 | |
Valine | 2.3 | 0.5 | 2.9 | 0.8 | 0.034 | 0.694 | 0.117 |
Leucine | 1.6 | 0.6 | 1.9 | 0.6 | 0.247 | 0.596 | 0.62 |
Isoleucine | 2.1 | 0.4 | 2.7 | 0.4 | 0.004 | 0.175 | 0.04 |
Glycine | 6.1 | 1.9 | 6.6 | 1.2 | 0.477 | 0.634 | 0.792 |
Serine | 3.5 | 0.5 | 3.5 | 0.8 | 0.995 | 0.929 | 0.994 |
Threonine | 1.2 | 0.3 | 1.2 | 0.3 | 0.939 | 0.678 | 0.994 |
Proline | 50.2 | 4.0 | 49.9 | 4.3 | 0.872 | 0.866 | 0.994 |
Aspartic acid | 11.0 | 2.6 | 8.2 | 2.1 | 0.017 | 0.578 | 0.085 |
Glutamine | 13.3 | 2.5 | 13.6 | 1.4 | 0.723 | 0.621 | 0.994 |
2.4. Discussion
3. Experimental section
3.1. Study Design and Blood Collection
3.2. Cell Preparation and Extraction of Metabolites
3.3. Metabolite Analysis
3.4. Statistical Analysis
4. Conclusions
Supplementary Files
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Weckwerth, W. Metabolomics in systems biology. Annu. Rev. Plant. Biol. 2003, 54, 669–689. [Google Scholar] [CrossRef]
- Astarita G, L.J. An emerging role for metabolomics in nutrition science. J. Nutrigenet. Nutrigenomics 2013, 6, 179–198. [Google Scholar] [CrossRef]
- Gibney, M.J.; Walsh, M.; Brennan, L.; Roche, H.M.; German, B.; van Ommen, B. Metabolomics in human nutrition: Opportunities and challenges. Am. J. Clin. Nutr. 2005, 82, 497–503. [Google Scholar]
- Achiron, A.; Gurevich, M. Peripheral blood gene expression signature mirrors central nervous system disease: The model of multiple sclerosis. Autoimmun. Rev. 2006, 5, 517–522. [Google Scholar] [CrossRef]
- Maas, K.; Chan, S.; Parker, J.; Slater, A.; Moore, J.; Olsen, N.; Aune, T.M. Cutting edge: Molecular portrait of human autoimmune disease. J. Immunol. 2002, 169, 5–9. [Google Scholar] [CrossRef]
- Bouwens, M.; Afman, L.A.; Muller, M. Activation of peroxisome proliferator-activated receptor alpha in human peripheral blood mononuclear cells reveals an individual gene expression profile response. BMC Genomics 2008, 9, 262. [Google Scholar] [CrossRef]
- Bouwens, M.; Grootte Bromhaar, M.; Jansen, J.; Muller, M.; Afman, L.A. Postprandial dietary lipid-specific effects on human peripheral blood mononuclear cell gene expression profiles. Am. J. Clin. Nutr. 2010, 91, 208–217. [Google Scholar] [CrossRef]
- Van Dijk, S.J.; Feskens, E.J.; Bos, M.B.; de Groot, L.C.; de Vries, J.H.; Muller, M.; Afman, L.A. Consumption of a high monounsaturated fat diet reduces oxidative phosphorylation gene expression in peripheral blood mononuclear cells of abdominally overweight men and women. J. Nutr. 2012, 142, 1219–1225. [Google Scholar] [CrossRef]
- Damsgaard, C.T.; Frokiaer, H.; Andersen, A.D.; Lauritzen, L. Fish oil in combination with high or low intakes of linoleic acid lowers plasma triacylglycerols but does not affect other cardiovascular risk markers in healthy men. J. Nutr. 2008, 138, 1061–1066. [Google Scholar]
- Kew, S.; Banerjee, T.; Minihane, A.M.; Finnegan, Y.E.; Williams, C.M.; Calder, P.C. Relation between the fatty acid composition of peripheral blood mononuclear cells and measures of immune cell function in healthy, free-living subjects aged 25–72 y. Am. J. Clin. Nutr. 2003, 77, 1278–1286. [Google Scholar]
- Yaqoob, P.; Pala, H.S.; Cortina-Borja, M.; Newsholme, E.A.; Calder, P.C. Encapsulated fish oil enriched in alpha-tocopherol alters plasma phospholipid and mononuclear cell fatty acid compositions but not mononuclear cell functions. Eur. J. Clin. Invest. 2000, 30, 260–274. [Google Scholar] [CrossRef]
- Bouwens, M.; van de Rest, O.; Dellschaft, N.; Bromhaar, M.G.; de Groot, L.C.; Geleijnse, J.M.; Muller, M.; Afman, L.A. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am. J. Clin. Nutr. 2009, 90, 415–424. [Google Scholar] [CrossRef]
- Gibney, M.J.; Hunter, B. The effects of short- and long-term supplementation with fish oil on the incorporation of n-3 polyunsaturated fatty acids into cells of the immune system in healthy volunteers. Eur. J. Clin. Nutr. 1993, 47, 255–259. [Google Scholar]
- Bischoff-Ferrari, H. Health effects of vitamin D. Dermatol. Ther. 2010, 23, 23–30. [Google Scholar] [CrossRef]
- Cantorna, M.T. Why do t cells express the vitamin d receptor? Ann. NY Acad. Sci. 2011, 1217, 77–82. [Google Scholar]
- Muldowney, S.; Lucey, A.J.; Paschos, G.; Martinez, J.A.; Bandarra, N.; Thorsdottir, I.; Cashman, K.D.; Kiely, M. Relationships between vitamin D status and cardio-metabolic risk factors in young european adults. Ann. Nutr. Metab. 2011, 58, 85–93. [Google Scholar] [CrossRef]
- de Mello, V.D.; Kolehmanien, M.; Schwab, U.; Pulkkinen, L.; Uusitupa, M. Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: What do we know so far? Mol. Nutr. Food Res. 2012, 56, 1160–1172. [Google Scholar] [CrossRef]
- Eleftheriadis, T.; Pissas, G.; Yiannaki, E.; Markala, D.; Arampatzis, S.; Antoniadi, G.; Liakopoulos, V.; Stefanidis, I. Inhibition of indoleamine 2,3-dioxygenase in mixed lymphocyte reaction affects glucose influx and enzymes involved in aerobic glycolysis and glutaminolysis in alloreactive t-cells. Human Immunol. 2013, 74, 1501–1509. [Google Scholar] [CrossRef]
- Damsgaard, C.T.; Frokiaer, H.; Lauritzen, L. The effects of fish oil and high or low linoleic acid intake on fatty acid composition of human peripheral blood mononuclear cells. Br. J. Nutr. 2008, 99, 147–154. [Google Scholar]
- Kotronen, A.; Seppanen-Laakso, T.; Westerbacka, J.; Kiviluoto, T.; Arola, J.; Ruskeepaa, A.L.; Yki-Jarvinen, H.; Oresic, M. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum. Obesity (Silver Spring) 2010, 18, 937–944. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef]
- Parker, C.W.; Jakschik, B.A.; Huber, M.G.; Falkenhein, S.F. Characterization of slow reacting substance as a family of thiolipids derived from arachidonic acid. Biochem. Biophys. Res. Commun. 1979, 89, 1186–1192. [Google Scholar] [CrossRef]
- Laine, P.S.; Schwartz, E.A.; Wang, Y.; Zhang, W.Y.; Karnik, S.K.; Musi, N.; Reaven, P.D. Palmitic acid induces ip-10 expression in human macrophages via nf-kappab activation. Biochem. Biophys. Res. Commun. 2007, 358, 150–155. [Google Scholar] [CrossRef]
- Staiger, H.; Staiger, K.; Stefan, N.; Wahl, H.G.; Machicao, F.; Kellerer, M.; Haring, H.U. Palmitate-induced interleukin-6 expression in human coronary artery endothelial cells. Diabetes 2004, 53, 3209–3216. [Google Scholar] [CrossRef]
- Bokarewa, M.; Nagaev, I.; Dahlberg, L.; Smith, U.; Tarkowski, A. Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 2005, 174, 5789–5795. [Google Scholar]
- Fantuzzi, G.; Faggioni, R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J. Leukoc Biol 2000, 68, 437–446. [Google Scholar]
- Kennedy, A.; Martinez, K.; Chuang, C.C.; LaPoint, K.; McIntosh, M. Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: Mechanisms of action and implications. J. Nutr. 2009, 139, 1–4. [Google Scholar]
- Robinson, K.; Prins, J.; Venkatesh, B. Clinical review: Adiponectin biology and its role in inflammation and critical illness. Crit. Care 2011, 15, 221. [Google Scholar] [CrossRef]
- Cheng, X.; Folco, E.J.; Shimizu, K.; Libby, P. Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ t cells. J. Biol. Chem. 2012, 287, 36896–36904. [Google Scholar] [CrossRef]
- Dennis, R.J.; Maldonado, D.; Rojas, M.X.; Aschner, P.; Rondon, M.; Charry, L.; Casas, A. Inadequate glucose control in type 2 diabetes is associated with impaired lung function and systemic inflammation: A cross-sectional study. BMC Pulm. Med. 2010, 10, 38. [Google Scholar] [CrossRef]
- Wells, J.C. Sexual dimorphism of body composition. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 415–430. [Google Scholar] [CrossRef]
- Newsholme, P.; Lima, M.M.; Procopio, J.; Pithon-Curi, T.C.; Doi, S.Q.; Bazotte, R.B.; Curi, R. Glutamine and glutamate as vital metabolites. Br. J. Med. Biol. Res. 2003, 36, 153–163. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell. Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef]
- Stepien, M.; O’Mahony, L.; O’Sullivan, A.; Collier, J.; Fraser, W.D.; Gibney, M.J.; Nugent, A.P.; Brennan, L. Effect of supplementation with vitamin D2-enhanced mushrooms on vitamin D status in healthy adults. J. Nutr. Sci. 2013, 2, e29. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Stepien, M.; Nugent, A.P.; Brennan, L. Metabolic Profiling of Human Peripheral Blood Mononuclear Cells: Influence of Vitamin D Status and Gender. Metabolites 2014, 4, 248-259. https://doi.org/10.3390/metabo4020248
Stepien M, Nugent AP, Brennan L. Metabolic Profiling of Human Peripheral Blood Mononuclear Cells: Influence of Vitamin D Status and Gender. Metabolites. 2014; 4(2):248-259. https://doi.org/10.3390/metabo4020248
Chicago/Turabian StyleStepien, Magdalena, Anne P. Nugent, and Lorraine Brennan. 2014. "Metabolic Profiling of Human Peripheral Blood Mononuclear Cells: Influence of Vitamin D Status and Gender" Metabolites 4, no. 2: 248-259. https://doi.org/10.3390/metabo4020248
APA StyleStepien, M., Nugent, A. P., & Brennan, L. (2014). Metabolic Profiling of Human Peripheral Blood Mononuclear Cells: Influence of Vitamin D Status and Gender. Metabolites, 4(2), 248-259. https://doi.org/10.3390/metabo4020248