Comparative Analysis of Biological Sphingolipids with Glycerophospholipids and Diacylglycerol by LC-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction of Sphingolipids, GPLs and DAG
2.2. LC-MS/MS Method for Lipidomics
Analyte | Precursor | Product | Collision (V) | Vaporizer/ion transfer temperature (°C) | MS method file | Prewash of sample injector |
---|---|---|---|---|---|---|
Sph | [M + H]+ | 236.3 (d16:1) | 15 | 200/300 | I | 10 mM phosphoric acid followed by methanol |
238.3 (d16:0) | ||||||
250.3 (d17:1) | ||||||
264.3 (d18:1) | ||||||
266.3 (d18:0) | ||||||
292.3 (d20:1) | ||||||
Cer | [M-H2O + H]+ | 264.3 (d18:1) | 20 | |||
266.3 (d18:0) | ||||||
HexCer | [M-H2O + H]+ | 264.3 (d18:1) | 20 | |||
266.3 (d18:0) | ||||||
SM | [M + H]+ | 184.1 | 20 | |||
PtdCho | [M + H]+ | 184.1 | 20 | |||
PtdEtn | [M + H]+ | [M + H − 141]+ | 20 | |||
DAG | [M + NH4]+ | [M + NH4 − 245.2]+ (14:0FA) | 20 | 200/250 | II | Water followed by methanol |
[M + NH4 − 271.3]+ (16:1FA) | ||||||
[M + NH4 − 273.3]+ (16:0FA) | ||||||
[M + NH4 − 297.3]+ (18:2FA) | ||||||
[M + NH4 − 299.3]+ (18:1FA) | ||||||
[M + NH4 − 301.3]+ (18:0FA) | ||||||
[M + NH4 − 321.3]+ (20:4FA) | ||||||
[M + NH4 − 345.3]+ (22:6FA) | ||||||
S1P | [M + H]+ | 236.3 (d16:1) | 15 | 200/300 | III | 10 mM phosphoric acid followed by methanol |
238.3 (d16:0) | ||||||
250.3 (d17:1) | ||||||
264.3 (d18:1) | ||||||
266.3 (d18:0) | ||||||
292.3 (d20:1) | ||||||
294.3 (d20:0) | ||||||
Cer1P | [M-H2O + H] | 264.3 (d18:1) | 20 | |||
266.3 (d18:0) | ||||||
PtdSer | [M + H]+ | [M+H − 185]+ | 20 | |||
PtdOH | [M + NH4]+ | [M+NH4 − 115]+ | 20 | 100/200 | IV | 10 mM phosphoric acid followed by methanol |
PtdGro | [M + NH4]+ | [M+NH4 − 189]+ | 20 | |||
PtdIns | [M + H]+ | [M+H − 260]+ | 20 | |||
GM3 | [M+H]+ | 264.3 (d18:1) | 50 | |||
266.3 (d18:0) |
2.3. Method Validation
Added lipid | Added amount | Recovery (%) | Extract |
---|---|---|---|
Sph (17:1) | 50 pmol | 114 ± 12 | BEH extract |
Cer (d18:1/12:0) | 50 pmol | 85 ± 5 | |
HexCer (d18:1/12:0) | 50 pmol | 91 ± 5 | |
SM (d18:1/12:0) | 50 pmol | 94 ± 1 | |
PtdCho (28:0) | 500 pmol | 117 ± 3 | |
PtdEtn (28:0) | 500 pmol | 85 ± 5 | |
DAG (14:0/14:0) | 50 pmol | 90 ± 8 | |
S1P (d17:1) | 50 pmol | 73 ± 1 | Acidic fraction |
Cer1P (d18:1/12:0) | 50 pmol | 83 ± 1 | |
PtdSer (28:0) | 50 pmol | 83 ± 2 | |
PtdOH (28:0) | 50 pmol | 105 ± 15 | |
PtdGro (28:0) | 50 pmol | 80 ± 15 | |
PtdIns (32:0) | 50 pmol | 75 ± 4 | |
GM3 (d18:1/12:0) | 50 pmol | 85 ± 17 |
Added lipid | Amount (pmol) | Accuracy (%) | Precision (RSD%) | Detection limit (pmol) | Range (pmol) | Linear regression |
---|---|---|---|---|---|---|
Sph (17:0) | 0.5 | 11.9 | 7.4 | 0.2 | 0.5–500 | Y = 1.11X − 1.38 R2 = 0.999 |
50 | −3.1 | 9.4 | ||||
500 | 5.2 | 8.6 | ||||
Cer (d18:1/12:0) | 0.5 | −19.3 | 10.8 | 0.05 | 0.5–500 | Y = 1.11X − 2.86 R2 = 0.995 |
50 | −8.6 | 1.4 | ||||
500 | 20.9 | 4.9 | ||||
GlcCer (d18:1/12:0) | 1 | 20.5 | 9.7 | 0.2 | 1.0–500 | Y = 0.981X − 1.62 R2 = 0.998 |
50 | 8.5 | 7.5 | ||||
500 | −8.1 | 0.9 | ||||
SM (d18:1/12:0) | 0.5 | −6.9 | 15 | <0.05 | 0.5–500 | Y = 1.05X − 4.24 R2 = 0.999 |
50 | −1.8 | 1.3 | ||||
500 | 8.9 | 4.7 | ||||
PtdCho (28:0) | 5 | 1.6 | 5.8 | <0.5 | 5–5,000 | Y = 1.08X − 5.13 R2 = 0.995 |
500 | 8.2 | 5 | ||||
5,000 | 10.6 | 3.4 | ||||
PtdEtn (28:0) | 0.5 | −23.8 | 22.2 | <0.5 | 0.5–5,000 | Y = 0.933X − 1.561 R2 = 0.998 |
500 | −0.4 | 2.4 | ||||
5,000 | −6.9 | 4.6 | ||||
DAG (28:0) | 0.05 | −0.6 | 5.8 | 0.05 | 0.05–500 | Y = 0.988X − 4.655 R2 = 0.999 |
0.5 | 4.5 | 2.4 | ||||
50 | −2.3 | 5.6 | ||||
500 | 6.3 | 4.8 | ||||
S1P (17:0) | 0.5 | 4.1 | 4.7 | 0.05 | 0.5–500 | Y = 0.995X − 3.817 R2 = 0.999 |
50 | −0.4 | 6.4 | ||||
500 | −4.9 | 1.6 | ||||
Cer1P (d18:1/12:0) | 0.5 | 9.3 | 4.1 | 0.05 | 0.5–500 | Y = 0.996X − 4.018 R2 = 0.997 |
50 | 7.6 | 4.7 | ||||
500 | −15.8 | 3.1 | ||||
PtdSer (28:0) | 0.5 | −4.2 | 5.6 | <0.5 | 0.5–2,500 | Y = 1.024X − 3.126 |
50 | 11.7 | 6.1 | R2 = 0.999 | |||
2,500 | −14.9 | 1.4 | ||||
PtdGro (28:0) | 1 | −0.7 | 17.9 | 0.2 | 1.0–500 | Y = 0.946X − 1.64 R2 = 0.999 |
50 | −1.8 | 14.7 | ||||
500 | 1.3 | 4.4 | ||||
PtdIns (32:0) | 1 | −0.2 | 7.6 | 0.2 | 1.0–500 | Y = 1.13X − 2.46 R2 = 0.999 |
50 | −14.0 | 4.3 | ||||
500 | 10 | 3.3 | ||||
PtdOH (28:0) | 1 | 5 | 5.8 | 0.2 | 1.0–500 | Y = 1.26X − 2.66 R2 = 0.999 |
50 | −12.2 | 7.8 | ||||
500 | 8.2 | 7.6 | ||||
GM3 (d18:1/12:0) | 1 | −8.3 | 8.3 | 0.2 | 1.0–500 | Y = 0.951X − 0.663 R2 = 0.999 |
50 | 18.1 | 6.7 | ||||
500 | −10.4 | 1 |
2.4. Application to Biological Samples
3. Experimental Section
4. Concluding Remarks
Supplementary Materials
Supplementary Files
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Haynes, C.A.; Allegood, J.C.; Park, H.; Sullards, M.C. Sphingolipidomics: Methods for the comprehensive analysis of sphingolipids. J. Chromatogr. B 2009, 877, 2696–2708. [Google Scholar] [CrossRef]
- Alvarez, S.E.; Milstien, S.; Spiegel, S. Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol. Metab. 2007, 18, 300–307. [Google Scholar] [CrossRef]
- Van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef]
- Wymann, M.P.; Schneiter, R. Lipid signaling in desease. Nat. Rev. Mol. Cell Biol. 2008, 9, 162–176. [Google Scholar] [CrossRef]
- Hannun, Y.A.; Obeid, L.M. Principles of bioactive lipid signaling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139–150. [Google Scholar]
- Cowart, L. A bioactive sphingolipids: Players in pathology of metabolic disease. Trends Endocrinol. Metab. 2009, 20, 34–42. [Google Scholar] [CrossRef]
- Ma, D. Lipid mediators in membrane rafts are important determinants of human health and disease. Appl. Physiol. Nutr. Metab. 2007, 32, 341–350. [Google Scholar] [CrossRef]
- Yamashita, T.; Hashiramoto, A.; Haluzik, M.; Mizukami, H.; Beck, S.; Norton, A.; Kono, M.; Tsuji, S.; Daniotti, J.L.; Werth, N.; et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc. Natl. Acad. Sci. USA 2003, 100, 3445–3449. [Google Scholar] [CrossRef]
- Holland, W.L.; Knotts, T.A.; Chavez, J.A.; Wang, L.P.; Hoeln, K.L.; Summers, S.A. Lipid mediators of insulin resistance. Nutr. Rev. 2007, 65, S39–S46. [Google Scholar]
- Karahatay, S.; Thomas, K.; Koybasi, S.; Senkal, C.E.; Elojeimy, S.; Liu, X.; Beilawski, J.; Day, T.A.; Gillespie, M.B.; Sinha, D.; et al. Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): Attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. Cancer Lett. 2007, 256, 101–111. [Google Scholar] [CrossRef]
- Riboni, L.; Campanella, R.; Bassi, R.; Villani, R.; Gaini, S.M.; Martinelli-Boneschi, F.; Viani, P.; Tettamanti, G. Ceramide levels are inversely associated with malignant progression of human glial tumors. Glia 2002, 39, 105–113. [Google Scholar] [CrossRef]
- Schiffmann, S.; Sandner, J.; Birod, K.; Wobst, I.; Angioni, C.; Rchkhaberle, E.; Kaufmann, M.; Ackermann, H.; Lotsch, J.; Schmidt, H.; et al. Ceramide synthase and ceramide levels are increased in breast cancer tissue. Carcinogenesis 2009, 30, 745–752. [Google Scholar] [CrossRef]
- Bismuth, J.; Lin, P.; Yao, Q.; Chen, C. Ceramide: A common pathway for atherosclerosis. Atherosclerosis 2008, 196, 497–504. [Google Scholar] [CrossRef]
- Bui, H.H.; Leohr, J.K.; Kuo, M. Analysis of sphingolipids in extracted human plasma using liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Biochem. 2012, 423, 187–194. [Google Scholar] [CrossRef]
- Masood, M.A.; Rao, R.P.; Achara, J.K.; Blonder, J.; Veenstra, T.D. Quantitation of multiple sphingolipid classes using normal and reversed-phase LC-ESI-MS/MS: Comparative profiling of two cell lines. Lipids 2012, 47, 209–226. [Google Scholar] [CrossRef]
- Scherer, M.; Leuthauser-Jaschinski, K.; Ecker, J.; Schmitz, G.; Liebisch, G. A rapid and quantitative LC-MS/MS method to profile sphingolipids. J. Lipids Res. 2010, 51, 2001–2011. [Google Scholar] [CrossRef]
- Wijesinghe, D.S.; Allegood, J.C.; Gentile, L.B.; Fox, T.E.; Kester, M.; Chalfant, C.E. Use of high performance liquid chromatography-electrospray ionization-tandem mass spectrometry for the analysis of ceramide-1-phosphate levels. J. Lipids Res. 2010, 51, 641–651. [Google Scholar] [CrossRef]
- Shaner, R.L.; Allegood, J.C.; Park, H.; Wang, E.; Kelly, S.; Haynes, C.A.; Sullards, M.C.; Merrill, A.H., Jr. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole linear ion trap mass spectrometers. J. Lipid Res. 2009, 50, 1692–1706. [Google Scholar] [CrossRef]
- Bielawski, J.; Piece, J.S.; Snider, J.; Rembiesa, B.; Szulc, Z.M.; Bielawska, A. Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol. Biol. 2009, 579, 443–467. [Google Scholar]
- Previati, M.; Bertolaso, L.; Tramarin, M.; Bertagnolo, V.; Capitani, S. Low nanogram range quantitation of diglycerides and ceramide by high-performance liquid chromatography. Anal. Biochem. 1996, 233, 108–114. [Google Scholar] [CrossRef]
- Brugger, B.; Erben, G.; Sandhoff, R.; Wieland, F.T.; Lehmann, W.D. Quantitative analysis of biological membrane lipids at the low picomole level by nanoelectrospray ionization tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 1997, 94, 2339–2344. [Google Scholar] [CrossRef]
- Ogiso, H.; Suzuki, T.; Taguchi, R. Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Anal. Biochem. 2008, 375, 124–131. [Google Scholar] [CrossRef]
- Ogiso, H.; Nakamura, K.; Yatomi, Y.; Shimizu, T.; Taguchi, R. Liquid chromatography/mass spectrometry analysis revealing preferential occurrence of non-arachidonatecontaining phosphatidylinositol bisphosphate species in nuclei and changes in their levels during cell cycle. Rapid Commun. Mass Spectrom. 2010, 24, 436–442. [Google Scholar] [CrossRef]
- Shakor, A.B.; Taniguchi, M.; Kitatani, K.; Hashimoto, M.; Asano, S.; Hayashi, A.; Nomura, K.; Bielawski, J.; Bielawska, A.; Watanabe, K.; et al. Sphingomyelin synthase 1-generated sphingomyelin plays an important role in transferrin trafficking and cell proliferation. J. Biol. Chem. 2011, 41, 36053–36062. [Google Scholar]
- Asano, S.; Kitatani, K.; Taniguchi, M.; Hashimoto, M.; Zama, K.; Mitsutake, S.; Igarashi, Y.; Takeya, H.; Kigawa, J.; Hayashi, A.; et al. Regulation of cell migration by sphingomyelin synthases: Sphingomyelin in lipid rafts decreases responsiveness to signaling by the CXCL12/CXCR4 pathway. Mol. Cell. Biol. 2012, 32, 3242–3252. [Google Scholar] [CrossRef]
- Mitsutake, S.; Zama, K.; Yokota, H.; Yoshida, T.; Tanaka, M.; Mitsui, M.; Ikawa, M.; Okabe, M.; Tanaka, T.; Yamashita, T.; et al. Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes. J. Biol. Chem. 2011, 286, 28544–28555. [Google Scholar] [CrossRef]
- Li, Y.; Dong, J.; Ding, T.; Kuo, M.S.; Cao, G.; Jiang, X.C.; Li, Z. Sphingomyelin synthase 2 activity and liver steatosis: An effect of ceramide-mediated peroxisome proliferator-activated receptor γ2 suppression. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1513–1520. [Google Scholar] [CrossRef]
- Abbott, S.K.; Jenner, A.W.; Mitchell, T.W.; Brown, S.H.J.; Halliday, G.M.; Garner, B. An improved high-throughput lipid extraction method for the analysis of human brain lipids. Lipids 2013, 48, 307–318. [Google Scholar] [CrossRef]
- Lofgren, L.; Stahlman, M.; Forsberg, G.; Saarinen, S.; Nilsson, R.; Hansson, G. The BUME method: A novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J. Lipids Res. 2012, 53, 1690–1700. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ogiso, H.; Taniguchi, M.; Araya, S.; Aoki, S.; Wardhani, L.O.; Yamashita, Y.; Ueda, Y.; Okazaki, T. Comparative Analysis of Biological Sphingolipids with Glycerophospholipids and Diacylglycerol by LC-MS/MS. Metabolites 2014, 4, 98-114. https://doi.org/10.3390/metabo4010098
Ogiso H, Taniguchi M, Araya S, Aoki S, Wardhani LO, Yamashita Y, Ueda Y, Okazaki T. Comparative Analysis of Biological Sphingolipids with Glycerophospholipids and Diacylglycerol by LC-MS/MS. Metabolites. 2014; 4(1):98-114. https://doi.org/10.3390/metabo4010098
Chicago/Turabian StyleOgiso, Hideo, Makoto Taniguchi, Shinichi Araya, Shinya Aoki, Lusi Oka Wardhani, Yuka Yamashita, Yoshibumi Ueda, and Toshiro Okazaki. 2014. "Comparative Analysis of Biological Sphingolipids with Glycerophospholipids and Diacylglycerol by LC-MS/MS" Metabolites 4, no. 1: 98-114. https://doi.org/10.3390/metabo4010098
APA StyleOgiso, H., Taniguchi, M., Araya, S., Aoki, S., Wardhani, L. O., Yamashita, Y., Ueda, Y., & Okazaki, T. (2014). Comparative Analysis of Biological Sphingolipids with Glycerophospholipids and Diacylglycerol by LC-MS/MS. Metabolites, 4(1), 98-114. https://doi.org/10.3390/metabo4010098