Using Caprylic Acid for the Prevention and Treatment of Helicobacter pylori Infection and Gastric Cancer: A Review
Abstract
1. Introduction
1.1. Medium Chain Fatty Acids: Caprylic Acid
1.2. Antimicrobial Properties of Caprylic Acid
1.3. H. pylori in Gastric Cancer
2. Methods
Data Sources
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A-431 | human skin squamous cell carcinoma cells |
CA | caprylic acid |
CagA | cytotoxin-associated gene A |
cagPAI | the cag pathogenicity island |
CCD-33Co | normal human colon fibroblast |
CCNA2 | cyclin A2 |
CCND1 | gene encodes the protein cyclinD1 |
CDC 28 | protein kinase regulatory subunit 1B |
CDK | cyclin-dependent kinase |
CDK2 | cyclin-dependent kinase 2 |
CDK4 | cyclin-dependent kinase 4 |
CID | compound ID |
CKSIB | cyclin-dependent kinase regulatory subunit 1B |
CoA | coenzima A |
COX-2 | cyclooxygenase-2 |
DNA | deoxyribonucleic acid |
GC | gastric cancer |
GI | gastrointestinal problems |
G1-S | G1 phase to S phase transition |
HCT-116 | human colorectal carcinoma cells |
IARC | the International Agency for Research on Cancer |
ICAM-1 | Intracellular adhesion molecule-1 |
IKKα/β | IκB kinase α/β |
IL-6 | interleukin-6 |
IL-1 | Interleukin-1 |
IL-8 | Interleukin-8 |
INF-γ | Interferon-γ |
iNOS | Inducible nitric oxide synthase |
IPEC-J2 | porcine jejunum epithelial cells |
MALT-Lymphoma | mucosa-associated lymphoid tissue lymphoma |
MCFA | medium-chain fatty acids |
MDA-MB-231 | human mammary gland adenocarcinoma cells |
MDR | develop multidrug resistance |
MIC | minimum inhibitory concentration |
NF-κB | nuclear factor-kappaB |
NR4A1 | nuclear receptor 4A1 |
P21 | cyclin-dependent kinase inhibitor 1 |
pH | hydrogen potential |
pKa | the negative logarithm of the acid dissociation constant (Ka) of a molecule |
PPI | proton pump inhibitor |
PS | potassium sorbate |
ROS | reactive oxygen species |
SS1 | Sydney Strain 1 |
TNF-α | tumor necrosis factor-alpha |
VacA | vacuolating cytotoxin |
References
- Menon, G.; El-Nakeep, S.; Babiker, H.M. Gastric Cancer. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.A.; Vignat, J.; Laversanne, M.; et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–40: A population-based modelling study. eClinicalMedicine 2022, 47, 101404. [Google Scholar] [CrossRef]
- Thrift, A.P.; Wenker, T.N.; El-Serag, H.B. Global burden of gastric cancer: Epidemiological trends, risk factors, screening and prevention. Nat. Rev. Clin. Oncol. 2023, 20, 338–349. [Google Scholar] [CrossRef]
- Conti, C.B.; Agnesi, S.; Scaravaglio, M.; Masseria, P.; Dinelli, M.E.; Oldani, M.; Uggeri, F. Early Gastric Cancer: Update on Prevention, Diagnosis and Treatment. Int. J. Environ. Res. Public Health 2023, 20, 2149. [Google Scholar] [CrossRef]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef]
- Sotelo, S.; Manterola, C.; Otzen, T.; Morales, E.; Castillo, I. Prevalence of Gastric Preneoplastic Lesions in First-Degree Relatives of Patients with Gastric Cancer: A Cross-Sectional Study. J. Gastrointest. Cancer 2023, 54, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.P. Risk Factors of Gastric Cancer and Lifestyle Modification for Prevention. J. Gastric Cancer 2024, 24, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Reyes, V.E. Helicobacter pylori and Its Role in Gastric Cancer. Microorganisms 2023, 11, 1312. [Google Scholar] [CrossRef] [PubMed]
- Testerman, T.L.; McGee, D.J.; Mobley, H.L.T. Adherence and Colonization. In Helicobacter pylori: Physiology and Genetics; Mobley, H.L.T., Mendz, G.L., Hazell, S.L., Eds.; ASM Press: Almere, The Netherlands, 2001. [Google Scholar]
- Malfertheiner, P.; Camargo, M.C.; El-Omar, E.; Liou, J.M.; Peek, R.; Schulz, C.; Smith, S.I.; Suerbaum, S. Helicobacter pylori infection. Nat. Rev. Dis. Primers 2023, 9, 19. [Google Scholar] [CrossRef]
- Liao, W.; Wang, J.; Li, Y. Natural products based on Correa’s cascade for the treatment of gastric cancer trilogy: Current status and future perspective. J. Pharm. Anal. 2025, 15, 101075. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, Y.; Dou, Y.; Xu, D. Helicobacter pylori and gastric cancer: Mechanisms and new perspectives. J. Hematol. Oncol. 2025, 18, 10. [Google Scholar] [CrossRef]
- Dias-Jácome, E.; Libânio, D.; Borges-Canha, M.; Galaghar, A.; Pimentel-Nunes, P. Gastric microbiota and carcinogenesis: The role of non-Helicobacter pylori bacteria—A systematic review. Rev. Esp. Enfermedades Dig. 2016, 108, 530–540. [Google Scholar] [CrossRef]
- Murata-Kamiya, N.; Hatakeyama, M. Helicobacter pylori-induced DNA double-stranded break in the development of gastric cancer. Cancer Sci. 2022, 113, 1909–1918. [Google Scholar] [CrossRef]
- Lu, B.; Li, M. Helicobacter pylori eradication for preventing gastric cancer. World J. Gastroenterol. 2014, 20, 5660–5665. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.Y. Helicobacter pylori update: Gastric cancer, reliable therapy, and possible benefits. Gastroenterology 2015, 148, 719–731.e3. [Google Scholar] [CrossRef]
- Alfaro, E.; Martínez-Domínguez, S.J.; Laredo, V.; Lanas, Á.; Sostres, C. Evaluation of Different Strategies to Improve the Management of Helicobacter pylori Infection at the Primary Care Level: Training Sessions Increase Prescription Appropriateness of Treatment Regimens. Antibiotics 2022, 11, 1746. [Google Scholar] [CrossRef]
- Wu, J.Y.; Lee, Y.C.; Graham, D.Y. The eradication of Helicobacter pylori to prevent gastric cancer: A critical appraisal. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 17–24. [Google Scholar] [CrossRef]
- Tiwari, A.; Rai, R.; Dahal, P.; Regmi, S. Prevalence of Helicobacter pylori in Endoscopic Gastric Biopsies of Chronic Gastritis Patients at A Tertiary Care Centre. JNMA J. Nepal Med. Assoc. 2020, 58, 564–568. [Google Scholar] [CrossRef]
- Chen, M.J.; Chen, C.C.; Huang, Y.C.; Tseng, C.C.; Hsu, J.T.; Lin, Y.F.; Fang, Y.J.; Wu, M.S.; Liou, J.M.; Taiwan Gastrointestinal Disease, Helicobacter Consortium. The efficacy of Lactobacillus acidophilus and rhamnosus in the reduction of bacterial load of Helicobacter pylori and modification of gut microbiota-a double-blind, placebo-controlled, randomized trial. Helicobacter 2021, 26, e12857. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Liou, J.M.; Lee, Y.C.; Hong, T.C.; El-Omar, E.M.; Wu, M.S. The interplay between Helicobacter pylori and gastrointestinal microbiota. Gut Microbes 2021, 13, 1909459. [Google Scholar] [CrossRef] [PubMed]
- Martin-Nuñez, G.M.; Cornejo-Pareja, I.; Clemente-Postigo, M.; Tinahones, F.J. Gut Microbiota: The Missing Link Between Helicobacter pylori Infection and Metabolic Disorders? Front. Endocrinol. 2021, 12, 639856. [Google Scholar] [CrossRef]
- Biagioni, A.; Skalamera, I.; Peri, S.; Schiavone, N.; Cianchi, F.; Giommoni, E.; Magnelli, L.; Papucci, L. Update on gastric cancer treatments and gene therapies. Cancer Metastasis Rev. 2019, 38, 537–548. [Google Scholar] [CrossRef]
- Viani, G.A.; Arruda, C.V.; Hamamura, A.C.; Faustino, A.C.; Danelichen, A.F.B.; Matsuura, F.K.; Neves, L.V.F. Palliative radiotherapy for gastric cancer: Is there a dose relationship between bleeding response and radiotherapy? Clinics 2020, 75, e1644. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, M.; Qureshi, Z.A.; Khattak, A.L.; Saeed, F.; Asghar, A.; Azam, K.; Khan, M.A. Helicobacter pylori Eradication Therapy: Still a Challenge. Cureus 2021, 13, e14872. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.A.; Huang, H.K.; Chou, A.L.; Lin, H.J.; Feng, C.L.; Kuo, C.J.; Lai, C.H. Helicobacter pylori eradication with high-dose proton pump inhibitor–amoxicillin dual therapy: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2024, 63, 107159. [Google Scholar] [CrossRef]
- von Muhlenbrock, C.; Cordova, A.; Nuñez, P.; Pacheco, N.; Herrera, K.; Quera, R. Eradication rate and adherence with high-dose amoxicillin and proton pump inhibitor as first-line treatment for Helicobacter pylori infection: Experience from University Hospital in Chile. Helicobacter 2024, 29, e13052. [Google Scholar] [CrossRef]
- Stewart, O.A.; Wu, F.; Chen, Y. The role of gastric microbiota in gastric cancer. Gut Microbes 2020, 11, 1220–1230. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Ayala, G.; Escobedo-Hinojosa, W.I.; de la Cruz-Herrera, C.F.; Romero, I. Exploring alternative treatments for Helicobacter pylori infection. World J. Gastroenterol. 2014, 20, 1450–1469. [Google Scholar] [CrossRef]
- Deng, R.; Chen, X.; Zhao, S.; Zhang, Q.; Shi, Y. The effects and mechanisms of natural products on Helicobacter pylori eradication. Front. Cell. Infect. Microbiol. 2024, 14, 1360852. [Google Scholar] [CrossRef] [PubMed]
- Mestre, A.; Sathiya Narayanan, R.; Rivas, D.; John, J.; Abdulqader, M.A.; Khanna, T.; Chakinala, R.C.; Gupta, S. Role of Probiotics in the Management of Helicobacter pylori. Cureus 2022, 14, e26463. [Google Scholar] [CrossRef]
- Huang, A.S.; Wu, J.; Amin, A.; Fu, X.Q.; Yu, Z.L. Traditional Chinese medicine in treating upper digestive tract cancers. Mol. Cancer 2024, 23, 250. [Google Scholar] [CrossRef]
- Zhu, Q.; Shu, L.; Zhou, F.; Chen, L.P.; Feng, Y.L. Adherence to the Mediterranean diet and risk of gastric cancer: A systematic review and dose-response meta-analysis. Front. Nutr. 2023, 10, 1259453. [Google Scholar] [CrossRef]
- Mushtaq, S.; Abbasi, B.H.; Uzair, B.; Abbasi, R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018, 17, 420–451. [Google Scholar] [CrossRef]
- Lu, S.; Yang, Z.; Tang, H.; Sun, X.; Wang, B.; Qu, J.; Wang, Y.; Yang, P.; Rao, B. Associations between omega-3 polyunsaturated fatty acids supplementation and surgical prognosis in patients with gastrointestinal cancer: A systematic review and meta-analysis. Food Chem. Mol. Sci. 2022, 4, 100099. [Google Scholar] [CrossRef]
- Salsinha, A.S.; Machado, M.; Rodríguez, L.M.; Gomes, A.M.; Pintado, M. Bioactive lipids: Chemistry, biochemistry, and biological properties. In Bioactive Lipids; Pintado, M., Machado, M., Gomes, A.M., Salsinha, A.S., Rodríguez-Alcalá, L.M., Eds.; Academic Press: Amsterdam, The Netherlands, 2022; pp. 1–35. [Google Scholar] [CrossRef]
- Hunzicker, G.M. A novel regulatory system in plants involving medium-chain fatty acids. Planta 2009, 231, 143–153. [Google Scholar] [CrossRef]
- Parinandi, N.L.; Berliner, L.J. Chemistry and Biology of Bioactive Lipids-A Tribute to Prof. Viswanathan Natarajan for his 50 Years of Research in Lipid Biochemistry. Cell Biochem. Biophys. 2021, 79, 419–421. [Google Scholar] [CrossRef]
- Roopashree, P.G.; Shetty, S.S.; Kumari, N.S. Effect of medium chain fatty acid in human health and disease. J. Funct. Foods 2021, 87, 104724. [Google Scholar] [CrossRef]
- Lemarié, F.; Beauchamp, E.; Legrand, P.; Rioux, V. Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation. Biochimie 2016, 120, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Lemarié, F.; Beauchamp, E.; Drouin, G.; Legrand, P.; Rioux, V. Dietary caprylic acid and ghrelin O-acyltransferase activity to modulate octanoylated ghrelin functions: What is new in this nutritional field? Prostaglandins Leukot. Essent. Fat. Acids 2018, 135, 121–127. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Octanoic-Acid. (accessed on 11 July 2025).
- Kleiman, R. Chemistry of New Industrial Oilseed Crops. In Advances in New Crops; Janick, J., Ed.; Madison, University of Wisconsin Press: Madison, WI, USA, 1990; pp. 196–203. [Google Scholar]
- Akula, S.; Nagaraja, A.; Ravikanth, M.; Govind Raj Kumar, N.; Kalyan, Y.; Divya, D. Antifungal efficacy of lauric acid and caprylic acid-Derivatives of virgin coconut oil against Candida albicans. Biomed. Biotechnol. Res. J. 2021, 5, 229–234. [Google Scholar] [CrossRef]
- Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res. 2021, 82, 101093. [Google Scholar] [CrossRef]
- Hao, K.; Meng, R.; Bu, X.; Liu, Z.; Yan, H.; Zhang, Y.; Guo, N.A. Antibacterial Effect of Caprylic Acid and Potassium Sorbate in Combination against Listeria monocytogenes ATCC 7644. J. Food Prot. 2020, 83, 920–927. [Google Scholar] [CrossRef]
- Kim, S.A.; Rhee, M.S. Use of caprylic acid to control pathogens (Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium) in apple juice at mild heat temperature. J. Appl. Microbiol. 2015, 119, 1317–1323. [Google Scholar] [CrossRef]
- Gupta, A.; Cheepurupalli, L.; Vigneswaran, S.; Singh Rathore, S.; Suma Mohan, S.; Ramakrishnan, J. In vitro and in silico investigation of caprylic acid effect on multi drug resistant (MDR) Klebsiella pneumoniae biofilm. J. Biomol. Struct. Dyn. 2020, 38, 616–624. [Google Scholar] [CrossRef]
- Petschow, B.W.; Batema, R.P.; Ford, L.L. Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrob. Agents Chemother. 1996, 40, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Q.; O’Connor, C.J.; Roberton, A.M. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol. Med. Microbiol. 2003, 36, 9–17. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, H.K. Antioxidant and Antibacterial Activity of Caprylic Acid Vanillyl Ester Produced by Lipase-Mediated Transesterification. J. Microbiol. Biotechnol. 2021, 31, 317–326. [Google Scholar] [CrossRef]
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.J. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar] [CrossRef] [PubMed]
- Machate, D.J.; Figueiredo, P.S.; Marcelino, G.; Guimarães, R.C.A.; Hiane, P.A.; Bogo, D.; Pinheiro, V.A.Z.; Oliveira, L.C.S.; Pott, A. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int. J. Mol. Sci. 2020, 21, 4093. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wan, J.; Choe, U.; Pham, Q.; Schoene, N.W.; He, Q.; Li, B.; Yu, L.; Wang, T.T.Y. Interactions Between Food and Gut Microbiota: Impact on Human Health. Annu. Rev. Food Sci. Technol. 2019, 10, 389–408. [Google Scholar] [CrossRef]
- Wang, C.; Yao, M.; Zhong, H.; Meena, S.S.; Shu, F.; Nie, S.; Xie, M. Natural foods resources and dietary ingredients for the amelioration of Helicobacter pylori infection. Front. Med. 2023, 10, 1324473. [Google Scholar] [CrossRef]
- Patil, S.; Yu, S.; Jobby, R.; Ravichandran, V.; Sarkar, S. A critical review on In Vivo and Ex Vivo models for the investigation of Helicobacter pylori infection. Front. Cell. Infect. Microbiol. 2025, 15, 1516237. [Google Scholar] [CrossRef] [PubMed]
- Westheim, A.J.F.; Stoffels, L.M.; Dubois, L.J.; van Bergenhenegouwen, J.; van Helvoort, A.; Langen, R.C.J.; Shiri-Sverdlov, R.; Theys, J. The Modulatory Effects of Fatty Acids on Cancer Progression. Biomedicines 2023, 11, 280. [Google Scholar] [CrossRef] [PubMed]
- Thammasut, W.; Intaraphairot, T.; Chantadee, T.; Senarat, S.; Patomchaiviwat, V.; Chuenbarn, T. Antimicrobial and antitumoral activities of saturated fatty acid solutions. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Ahn, H.J.; Lee, D.S. Helicobacter pylori in gastric carcinogenesis. World J. Gastrointest. Oncol. 2015, 7, 455–465. [Google Scholar] [CrossRef]
- Keikha, M.; Sahebkar, A.; Yamaoka, Y.; Karbalaei, M. Helicobacter pylori cagA status and gastric mucosa-associated lymphoid tissue lymphoma: A systematic review and meta-analysis. J. Health Popul. Nutr. 2022, 41, 2. [Google Scholar] [CrossRef]
- Wizenty, J.; Sigal, M. Helicobacter pylori, microbiota and gastric cancer-principles of microorganism-driven carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2025, 22, 296–313. [Google Scholar] [CrossRef]
- Wang, M.; Feng, J.; Zhou, D.; Wang, J. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: A new predictive and therapeutic paradigm for sepsis. Eur. J. Med. Res. 2023, 28, 339. [Google Scholar] [CrossRef]
- Ito, N.; Tsujimoto, H.; Ueno, H.; Xie, Q.; Shinomiya, N. Helicobacter pylori-Mediated Immunity and Signaling Transduction in Gastric Cancer. J. Clin. Med. 2020, 9, 3699. [Google Scholar] [CrossRef]
- Narayanan, A.; Baskaran, S.A.; Amalaradjou, M.A.; Venkitanarayanan, K. Anticarcinogenic properties of medium chain fatty acids on human colorectal, skin and breast cancer cells in vitro. Int. J. Mol. Sci. 2015, 16, 5014–5027. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Y.; Long, Y.; Zheng, H.; Jing, J.; Pan, W. Helicobacter pylori and Gastrointestinal Cancers: Recent Advances and Controversies. Clin. Med. Insights Oncol. 2024, 18. [Google Scholar] [CrossRef]
- Duranova, H.; Kuzelova, L.; Fialkova, V. Coconut-sourced MCT oil: Its potential health benefits beyond traditional coconut oil. Phytochem. Rev. 2025, 24, 659–700. [Google Scholar] [CrossRef]
- Roopashree, P.G.; Shetty, S.S.; Shetty, V.V.; Nalilu, S.K. Medium-Chain Fatty Acids and Breast Cancer Risk by Receptor and Pathological Subtypes. Nutrients 2022, 14, 5351. [Google Scholar] [CrossRef] [PubMed]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 2016, 12, 49–62. [Google Scholar] [CrossRef]
- Li, Y. The application of caprylic acid in downstream processing of monoclonal antibodies. Protein Expr. Purif. 2019, 153, 92–96. [Google Scholar] [CrossRef]
- Jones, S.A.; Jenkins, B.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 2018, 18, 773–789. [Google Scholar] [CrossRef]
- Altinoz, M.A.; Ozpinar, A.; Seyfried, T.N. Caprylic (Octanoic) Acid as a Potential Fatty Acid Chemotherapeutic for Glioblastoma. Prostaglandins Leukot. Essent. Fat. Acids 2020, 159, 102142. [Google Scholar] [CrossRef]
- George, B.P.; Chandran, R.; Abrahamse, H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants 2021, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, G.E.; Md Akim, A.; Sung, Y.Y.; Sifzizul, T.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharmacol. 2022, 13, 842376. [Google Scholar] [CrossRef]
- Han, K.; Li, J.; Yin, S.; Hu, H.; Zhao, C. Medium-Chain Fatty Acids Selectively Sensitize Cancer Cells to Ferroptosis by Inducing CD36 and ACSL4. Nutrients 2025, 17, 794. [Google Scholar] [CrossRef] [PubMed]
- Gantner, V.; Ivetić, A.; Gantner, R.; Steiner, Z.; Gregić, M.; Kuterovac, K.; Potočnik, K. The evaluation of medium-chain and long-chain saturated fatty acid levels in the milk of various species and their potential in cancer prevention. Mljekarstvo 2024, 74, 251–262. [Google Scholar] [CrossRef]
- Rajabi, S.; Maresca, M.; Yumashev, A.V.; Choopani, R.; Hajimehdipoor, H. The Most Competent Plant-Derived Natural Products for Targeting Apoptosis in Cancer Therapy. Biomolecules 2021, 11, 534. [Google Scholar] [CrossRef]
- Kasprzak, A. The Role of Tumor Microenvironment Cells in Colorectal Cancer (CRC) Cachexia. Int. J. Mol. Sci. 2021, 22, 1565. [Google Scholar] [CrossRef] [PubMed]
- Nukaga, S.; Fujiwara-Tani, R.; Nishida, R.; Miyagawa, Y.; Goto, K.; Kawahara, I.; Nakashima, C.; Fujii, K.; Ogata, R.; Ohmori, H.; et al. Caprylic Acid Inhibits High Mobility Group Box-1-Induced Mitochondrial Damage in Myocardial Tubes. Int. J. Mol. Sci. 2024, 25, 8081. [Google Scholar] [CrossRef] [PubMed]
- Thapa, B.; Mahendraker, N.; Ramphul, K. Paraneoplastic Syndromes. In StatPearls [Internet]; Updated 31 March 2023; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507890/ (accessed on 16 August 2025).
- Brasil-Costa, I.; Souza, C.O.; Monteiro, L.C.R.; Santos, M.E.S.; Oliveira, E.H.C.; Burbano, R.M.R. H. pylori Infection and Virulence Factors cagA and vacA (s and m Regions) in Gastric Adenocarcinoma from Pará State, Brazil. Pathogens 2022, 11, 414. [Google Scholar] [CrossRef]
- Viegas, C.A.; Sá-Correia, I. Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J. Gen. Microbiol. 1991, 137, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Solís de los Santos, F.; Hume, M.; Venkitanarayanan, K.; Donoghue, A.M.; Hanning, I.; Slavik, M.F.; Aguiar, V.F.; Metcalf, J.H.; Reyes-Herrera, I.; Blore, P.J.; et al. Caprylic Acid reduces enteric campylobacter colonization in market-aged broiler chickens but does not appear to alter cecal microbial populations. J. Food Prot. 2010, 73, 251–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balderrama-Gómez, A.; Muñoz-Pérez, V.M.; Ortiz, M.I.; Cariño-Cortés, R.; Castro-Rosas, J.; Betanzos, A.; Fernández-Martínez, E.; Castillo-Juárez, I. Using Caprylic Acid for the Prevention and Treatment of Helicobacter pylori Infection and Gastric Cancer: A Review. Metabolites 2025, 15, 629. https://doi.org/10.3390/metabo15090629
Balderrama-Gómez A, Muñoz-Pérez VM, Ortiz MI, Cariño-Cortés R, Castro-Rosas J, Betanzos A, Fernández-Martínez E, Castillo-Juárez I. Using Caprylic Acid for the Prevention and Treatment of Helicobacter pylori Infection and Gastric Cancer: A Review. Metabolites. 2025; 15(9):629. https://doi.org/10.3390/metabo15090629
Chicago/Turabian StyleBalderrama-Gómez, Alexandra, Victor Manuel Muñoz-Pérez, Mario I. Ortiz, Raquel Cariño-Cortés, Javier Castro-Rosas, Abigail Betanzos, Eduardo Fernández-Martínez, and Israel Castillo-Juárez. 2025. "Using Caprylic Acid for the Prevention and Treatment of Helicobacter pylori Infection and Gastric Cancer: A Review" Metabolites 15, no. 9: 629. https://doi.org/10.3390/metabo15090629
APA StyleBalderrama-Gómez, A., Muñoz-Pérez, V. M., Ortiz, M. I., Cariño-Cortés, R., Castro-Rosas, J., Betanzos, A., Fernández-Martínez, E., & Castillo-Juárez, I. (2025). Using Caprylic Acid for the Prevention and Treatment of Helicobacter pylori Infection and Gastric Cancer: A Review. Metabolites, 15(9), 629. https://doi.org/10.3390/metabo15090629