Fatty Acid Profile and Desaturase Activity in Obesity: Roles, Mechanisms, and Clinical Relevance
Abstract
1. Introduction
2. Materials and Methods
3. Fatty Acid Profile and Desaturase Activity in Obesity
4. Molecular Mechanisms and Genetic Variability in Lipid Metabolism
5. Fatty Acid and Desaturase Activity Profile in Obesity-Associated Disorders and Diseases
Marker/Fatty Acids | Type 2 Diabetes | Metabolic Syndrome | Dyslipidemia | Cardiovascular Disease | NAFLD/NASH | Cancer/Inflammatory Diseases |
---|---|---|---|---|---|---|
SCD1 | ↑ [74] | ↑ [67] | ↑ (assoc. with BMI, lipids) [42] | ↑ [42,76] | ↑ [78] | ↑ (CRC, breast cancer) [84,85] |
D5D | ↓ [72,73] | ↓ [67] | ↓ [75] | ↓ [42] | ↓ [78] | — |
D6D | ↑ [72,73] | ↑ [67] | ↑ [75] | ↑ [42] | ↑ [78] | — |
ELOVL6 | ↑ [74] | — | — | — | — | — |
FADS1/FADS2 | — | — | — | Gene polymorphisms → impaired PUFA synthesis [6] | ↑ (hepatic FADS1/2 mRNA) [78] | ↑ FADS2 (adrenal cortex) [77] |
SFA | ↑ [72] | ↑ palmitic acid [67] | ↑ [75] | ↑ [42] | ↑ [79,80,81] | — |
MUFA | ↑ palmitoleic acid, oleic acid [67] | ↑ [67] | ↑ [75] | ↑ palmitoleic acid [42] | ↑ [79,80,81] | — |
PUFA | ↑ DGLA [72] | ↑ GLA, ↓ LA [67] | ↑ DGLA, ↓ LA [75] | ↓ EPA, ↓ DHA [6] | ↓ n-3 PUFA [79,80,81] | n-6→n-3 protective via FAT-1 [82,83] |
Additional information | ApoB mediates D5D benefits [73] | Promotes insulin resistance [67] | Worsened by Zn deficiency [75] | EPA independent of adiposity, linked to ALT [42] | Fat accumulation, oxidative stress [79,80,81] | SCD1 inhibition ↓ breast density (Lovaza) [84] |
6. Effect of Dietary Interventions on Fatty Acid Profile and Desaturase Activity
7. Effect of Bariatric Surgery on Fatty Acid Profile and Desaturase Activity
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | arachidonic acid. |
ACOX1 | acyl-CoA oxidase 1. |
ALA | alpha-linolenic acid. |
ALT | alanine aminotransferase. |
AMPK | AMP-activated protein kinase. |
apoB | apolipoprotein B. |
ASBT | apical sodium-dependent bile acid transporter. |
AST | aspartate aminotransferase. |
BCFAs | branched-chain fatty acids. |
BMI | body mass index. |
COX | cyclooxygenase. |
CRC | colorectal cancer. |
CPT1 | carnitine palmitoyltransferase 1. |
CXCL1/KC | chemokine CXCL1/KC. |
D5D | delta-5 desaturase. |
D6D | delta-6 desaturase. |
DHA | docosahexaenoic acid. |
DGAT | diacylglycerol acyltransferase. |
DGLA | dihomo-gamma-linolenic acid. |
DIO2 | iodothyronine deiodinase type 2. |
DPA | docosapentaenoic acid. |
EET | epoxyeicosatrienoic acid. |
EFA | essential fatty acid. |
ELOVL | elongase of very long-chain fatty acids. |
EPA | eicosapentaenoic acid. |
FA | fatty acid. |
FADS1 | fatty acid desaturase 1. |
FADS2 | fatty acid desaturase 2. |
FAS | fatty acid synthase. |
GLA | gamma-linolenic acid. |
GLP-1 | glucagon-like peptide-1. |
HFD | high-fat diet. |
HOMA-IR | homeostatic model assessment of insulin resistance. |
IL-4, -6, -17, -33 | interleukins. |
iKO | intestinal knockout. |
iso-BCFAs | iso-branched-chain fatty acids. |
LA | linoleic acid. |
LDL-C | low-density lipoprotein cholesterol. |
LCHF | low-carbohydrate high-fat diet. |
LOX | lipoxygenase. |
LT | leukotriene. |
MUFAs | monounsaturated fatty acids. |
mTOR | mammalian target of rapamycin. |
NAFLD | nonalcoholic fatty liver disease. |
NASH | nonalcoholic steatohepatitis. |
OA | osteoarthritis. |
PGC-1α | peroxisome proliferator-activated receptor gamma coactivator 1-alpha. |
PG | prostaglandin. |
PPARα, γ | peroxisome proliferator-activated receptor alpha, gamma. |
PUFAs | polyunsaturated fatty acids. |
PVAT | perivascular adipose tissue. |
SCD1 | stearoyl-CoA desaturase 1. |
SCFAs | short-chain fatty acids. |
SDA | stearidonic acid. |
SFAs | saturated fatty acids. |
SI | insulin sensitivity. |
SNP | single nucleotide polymorphism. |
SREBP1c | sterol regulatory element-binding protein 1c. |
THC | tetrahydrocurcumin. |
TNFα | tumour necrosis factor alpha. |
TXA | thromboxane. |
UCP1 | uncoupling protein 1. |
VAT/SAT | visceral to subcutaneous adipose tissue ratio. |
VLCFAs | very long-chain fatty acids. |
References
- World Health Organization. Obesity and Overweight 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 25 July 2025).
- MedSci, K.K.F.; Schnecke, V.; Haase, C.L.; Harder-Lauridsen, N.M.; Rathor, N.; Sommer, K.; Morgen, C.S. Weight Change and Risk of Obesity-Related Complications: A Retrospective Population-Based Cohort Study of a UK Primary Care Database. Diabetes Obes. Metab. 2023, 25, 2669–2679. [Google Scholar] [CrossRef]
- Schetz, M.; De Jong, A.; Deane, A.M.; Druml, W.; Hemelaar, P.; Pelosi, P.; Pickkers, P.; Reintam-Blaser, A.; Roberts, J.; Sakr, Y.; et al. Obesity in the Critically Ill: A Narrative Review. Intensive Care Med. 2019, 45, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Wrzosek, M.; Zawadzka, Z.; Sawicka, A.; Bobrowska-Korczak, B.; Białek, A. Impact of Fatty Acids on Obesity-Associated Diseases and Radical Weight Reduction. Obes. Surg. 2021, 32, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Silva Figueiredo, P.; Carla Inada, A.; Marcelino, G.; Maiara Lopes Cardozo, C.; de Cássia Freitas, K.; de Cássia Avellaneda Guimarães, R.; Pereira de Castro, A.; Aragão do Nascimento, V.; Aiko Hiane, P. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders. Nutrients 2017, 9, 1158. [Google Scholar] [CrossRef]
- Chaaba, R.; Bouaziz, A.; Ben Amor, A.; Mnif, W.; Hammami, M.; Mehri, S. Fatty Acid Profile and Genetic Variants of Proteins Involved in Fatty Acid Metabolism Could Be Considered as Disease Predictor. Diagnostics 2023, 13, 979. [Google Scholar] [CrossRef] [PubMed]
- Cerone, M.; Smith, T.K. Desaturases: Structural and Mechanistic Insights into the Biosynthesis of Unsaturated Fatty Acids. Iubmb Life 2022, 74, 1036–1051. [Google Scholar] [CrossRef]
- Dyall, S.C.; Balas, L.; Bazan, N.G.; Brenna, J.T.; Chiang, N.; da Costa Souza, F.; Dalli, J.; Durand, T.; Galano, J.-M.; Lein, P.J.; et al. Polyunsaturated Fatty Acids and Fatty Acid-Derived Lipid Mediators: Recent Advances in the Understanding of Their Biosynthesis, Structures, and Functions. Prog. Lipid Res. 2022, 86, 101165. [Google Scholar] [CrossRef]
- Hayashi, S.; Satoh, Y.; Ogasawara, Y.; Dairi, T. Recent Advances in Functional Analysis of Polyunsaturated Fatty Acid Synthases. Curr. Opin. Chem. Biol. 2020, 59, 30–36. [Google Scholar] [CrossRef]
- Banaszak, M.; Dobrzyńska, M.; Kawka, A.; Górna, I.; Woźniak, D.; Przysławski, J.; Drzymała-Czyż, S. Role of Omega-3 Fatty Acids Eicosapentaenoic (EPA) and Docosahexaenoic (DHA) as Modulatory and Anti-Inflammatory Agents in Noncommunicable Diet-Related Diseases—Reports from the Last 10 Years. Clin. Nutr. ESPEN 2024, 63, 240–258. [Google Scholar] [CrossRef]
- Sun, Q.; Xing, X.; Wang, H.; Wan, K.; Fan, R.; Liu, C.; Wang, Y.; Wu, W.; Wang, Y.; Wang, R. SCD1 Is the Critical Signaling Hub to Mediate Metabolic Diseases: Mechanism and the Development of Its Inhibitors. Biomed. Pharmacother. 2023, 170, 115586. [Google Scholar] [CrossRef]
- ALJohani, A.M.; Syed, D.N.; Ntambi, J.M. Insights into Stearoyl-CoA Desaturase-1 Regulation of Systemic Metabolism. Trends Endocrinol. Metab. TEM 2017, 28, 831–842. [Google Scholar] [CrossRef]
- Sowka, A.; Balatskyi, V.V.; Navrulin, V.O.; Ntambi, J.M.; Dobrzyn, P. Stearoyl-CoA Desaturase 1 Regulates Metabolism and Inflammation in Mouse Perivascular Adipose Tissue in Response to a High-Fat Diet. J. Cell. Physiol. 2025, 240, e31510. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.T.; Nara, T.Y. Structure, Function, and Dietary Regulation of Delta6, Delta5, and Delta9 Desaturases. Annu. Rev. Nutr. 2004, 24, 345–376. [Google Scholar] [CrossRef] [PubMed]
- Guillou, H.; Zadravec, D.; Martin, P.G.P.; Jacobsson, A. The Key Roles of Elongases and Desaturases in Mammalian Fatty Acid Metabolism: Insights from Transgenic Mice. Prog. Lipid Res. 2010, 49, 186–199. [Google Scholar] [CrossRef]
- Olga, L.; van Diepen, J.A.; Bobeldijk-Pastorova, I.; Gross, G.; Prentice, P.M.; Snowden, S.G.; Furse, S.; Kooistra, T.; Hughes, I.A.; Schoemaker, M.H.; et al. Lipid Ratios Representing SCD1, FADS1, and FADS2 Activities as Candidate Biomarkers of Early Growth and Adiposity. EBioMedicine 2021, 63, 103198. [Google Scholar] [CrossRef]
- Gromovsky, A.D.; Schugar, R.C.; Brown, A.L.; Helsley, R.N.; Burrows, A.C.; Ferguson, D.; Zhang, R.; Sansbury, B.E.; Lee, R.G.; Morton, R.E.; et al. The Δ-5 Fatty Acid Desaturase FADS1 Impacts Metabolic Disease by Balancing Pro-Inflammatory and Pro-Resolving Lipid Mediators. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 218–231. [Google Scholar] [CrossRef]
- Merino, D.M.; Johnston, H.; Clarke, S.; Roke, K.; Nielsen, D.; Badawi, A.; El-Sohemy, A.; Ma, D.W.L.; Mutch, D.M. Polymorphisms in FADS1 and FADS2 Alter Desaturase Activity in Young Caucasian and Asian Adults. Mol. Genet. Metab. 2011, 103, 171–178. [Google Scholar] [CrossRef]
- Sergeant, S.; Hugenschmidt, C.E.; Rudock, M.E.; Ziegler, J.T.; Ivester, P.; Ainsworth, H.C.; Vaidya, D.; Case, L.D.; Langefeld, C.D.; Freedman, B.I.; et al. Differences in Arachidonic Acid Levels and Fatty Acid Desaturase (FADS) Gene Variants in African Americans and European Americans with Diabetes or the Metabolic Syndrome. Br. J. Nutr. 2012, 107, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Rifkin, S.B.; Shrubsole, M.J.; Cai, Q.; Smalley, W.E.; Ness, R.M.; Swift, L.L.; Milne, G.; Zheng, W.; Murff, H.J. Differences in Erythrocyte Phospholipid Membrane Long-Chain Polyunsaturated Fatty Acids and the Prevalence of Fatty Acid Desaturase Genotype among African Americans and European Americans. Prostaglandins Leukot. Essent. Fatty Acids 2021, 164, 102216. [Google Scholar] [CrossRef]
- Mathias, R.A.; Pani, V.; Chilton, F.H. Genetic Variants in the FADS Gene: Implications for Dietary Recommendations for Fatty Acid Intake. Curr. Nutr. Rep. 2014, 3, 139–148. [Google Scholar] [CrossRef]
- Abdelmagid, S.A.; Clarke, S.E.; Roke, K.; Nielsen, D.E.; Badawi, A.; El-Sohemy, A.; Mutch, D.M.; Ma, D.W. Ethnicity, Sex, FADS Genetic Variation, and Hormonal Contraceptive Use Influence Delta-5- and Delta-6-Desaturase Indices and Plasma Docosahexaenoic Acid Concentration in Young Canadian Adults: A Cross-Sectional Study. Nutr. Metab. 2015, 12, 14. [Google Scholar] [CrossRef]
- Blomquist, S.; Coletta, D.; Mandarino, L.J.; Hallmark, B.; Yang, C.; Rich, S.; Manichaikul, A.W.; Chilton, F. Fatty Acid Desaturase Gene-Induced Omega-3 Deficiency in Amerindian-Ancestry Hispanic Populations. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Vessby, B.; Gustafsson, I.-B.; Tengblad, S.; Berglund, L. Indices of Fatty Acid Desaturase Activity in Healthy Human Subjects: Effects of Different Types of Dietary Fat. Br. J. Nutr. 2013, 110, 871–879. [Google Scholar] [CrossRef]
- Warensjö, E.; Ohrvall, M.; Vessby, B. Fatty Acid Composition and Estimated Desaturase Activities Are Associated with Obesity and Lifestyle Variables in Men and Women. Nutr. Metab. Cardiovasc. Dis. NMCD 2006, 16, 128–136. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, Y.-Y.; Zhang, T.; Yang, Y.; Cannon, R.D.; Mansell, T.; Novakovic, B.; Saffery, R.; Han, T.-L.; Zhang, H.; et al. Complex Interactions Between Circulating Fatty Acid Levels, Desaturase Activities, and the Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study. Front. Nutr. 2022, 9, 919357. [Google Scholar] [CrossRef] [PubMed]
- Diffenderfer, M.R.; Rajapakse, N.; Pham, E.; He, L.; Dansinger, M.L.; Nelson, J.R.; Schaefer, E.J. Plasma Fatty Acid Profiles: Relationships with Sex, Age, and State-Reported Heart Disease Mortality Rates in the United States. J. Clin. Lipidol. 2022, 16, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Pararasa, C.; Ikwuobe, J.; Shigdar, S.; Boukouvalas, A.; Nabney, I.T.; Brown, J.E.; Devitt, A.; Bailey, C.J.; Bennett, S.J.; Griffiths, H.R. Age-Associated Changes in Long-Chain Fatty Acid Profile during Healthy Aging Promote pro-Inflammatory Monocyte Polarization via PPARγ. Aging Cell 2016, 15, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Fekete, K.; Györei, E.; Lohner, S.; Verduci, E.; Agostoni, C.; Decsi, T. Long-Chain Polyunsaturated Fatty Acid Status in Obesity: A Systematic Review and Meta-Analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2015, 16, 488–497. [Google Scholar] [CrossRef]
- Warensjö, E.; Risérus, U.; Gustafsson, I.-B.; Mohsen, R.; Cederholm, T.; Vessby, B. Effects of Saturated and Unsaturated Fatty Acids on Estimated Desaturase Activities during a Controlled Dietary Intervention. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 683–690. [Google Scholar] [CrossRef]
- Liew, C.F.; Groves, C.J.; Wiltshire, S.; Zeggini, E.; Frayling, T.M.; Owen, K.R.; Walker, M.; Hitman, G.A.; Levy, J.C.; O’rahilly, S.; et al. Analysis of the Contribution to Type 2 Diabetes Susceptibility of Sequence Variation in the Gene Encoding Stearoyl-CoA Desaturase, a Key Regulator of Lipid and Carbohydrate Metabolism. Diabetologia 2004, 47, 2168–2175. [Google Scholar] [CrossRef]
- Mayneris-Perxachs, J.; Guerendiain, M.; Castellote, A.I.; Estruch, R.; Covas, M.I.; Fitó, M.; Salas-Salvadó, J.; Martínez-González, M.A.; Aros, F.; Lamuela-Raventós, R.M.; et al. Plasma Fatty Acid Composition, Estimated Desaturase Activities, and Their Relation with the Metabolic Syndrome in a Population at High Risk of Cardiovascular Disease. Clin. Nutr. 2014, 33, 90–97. [Google Scholar] [CrossRef]
- Nowak, J.K.; Walkowiak, J. Study Designs in Medical Research and Their Key Characteristics. J. Med. Sci. 2023, 92, e928. [Google Scholar] [CrossRef]
- Oleynik, O.A.; Samoilova, I.; Matveeva, M.V.; Podchinenova, D.A.; Shuliko, L. Features of Fatty Acid Indices in the Assessment of Metabolic Disorders in Obese Adolescents. Meditsinskiy Sov. Med. Counc. 2024, 19, 236–244. [Google Scholar] [CrossRef]
- Bonafini, S.; Giontella, A.; Tagetti, A.; Bresadola, I.; Gaudino, R.; Cavarzere, P.; Ramaroli, D.A.; Branz, L.; Marcon, D.; Pietrobelli, A.; et al. Fatty Acid Profile and Desaturase Activities in 7-10-Year-Old Children Attending Primary School in Verona South District: Association between Palmitoleic Acid, SCD-16, Indices of Adiposity, and Blood Pressure. Int. J. Mol. Sci. 2020, 21, 3899. [Google Scholar] [CrossRef]
- Saito, E.; Okada, T.; Abe, Y.; Kuromori, Y.; Miyashita, M.; Iwata, F.; Hara, M.; Ayusawa, M.; Mugishima, H.; Kitamura, Y. Docosahexaenoic Acid Content in Plasma Phospholipids and Desaturase Indices in Obese Children. J. Atheroscler. Thromb. 2011, 18, 345–350. [Google Scholar] [CrossRef]
- Jauregibeitia, I.; Portune, K.J.; Rica, I.; Tueros, I.; Velasco, O.; Grau, G.; Trebolazabala, N.; Castaño, L.; Larocca, A.V.; Ferreri, C.; et al. Fatty Acid Profile of Mature Red Blood Cell Membranes and Dietary Intake as a New Approach to Characterize Children with Overweight and Obesity. Nutrients 2020, 12, 3446. [Google Scholar] [CrossRef]
- Aristizabal, J.C.; González-Zapata, L.I.; Estrada-Restrepo, A.; Monsalve-Alvarez, J.; Restrepo-Mesa, S.L.; Gaitán, D. Concentrations of Plasma Free Palmitoleic and Dihomo-Gamma Linoleic Fatty Acids Are Higher in Children with Abdominal Obesity. Nutrients 2018, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.-C.; Su, H.-M.; Lai, M.-W.; Yao, T.-C.; Tsai, M.-H.; Liao, S.-L.; Lai, S.-H.; Huang, J.-L. Palmitoleic and Dihomo-γ-Linolenic Acids Are Positively Associated With Abdominal Obesity and Increased Metabolic Risk in Children. Front. Pediatr. 2021, 9, 628496. [Google Scholar] [CrossRef]
- Wolters, M.; Schlenz, H.; Börnhorst, C.; Risé, P.; Galli, C.; Moreno, L.A.; Pala, V.; Siani, A.; Veidebaum, T.; Tornaritis, M.; et al. Desaturase Activity Is Associated With Weight Status and Metabolic Risk Markers in Young Children. J. Clin. Endocrinol. Metab. 2015, 100, 3760–3769. [Google Scholar] [CrossRef]
- Flannagan, K.; Gahagan, S.; Das, A.; Burrows, R.; Lozoff, B.; Villamor, E. Serum Polyunsaturated Fatty Acids in Infancy Are Associated with Body Composition in Adolescence. Pediatr. Obes. 2020, 15, e12656. [Google Scholar] [CrossRef] [PubMed]
- Šarac, I.; Debeljak-Martačić, J.; Takić, M.; Stevanović, V.; Milešević, J.; Zeković, M.; Popović, T.; Jovanović, J.; Vidović, N.K. Associations of Fatty Acids Composition and Estimated Desaturase Activities in Erythrocyte Phospholipids with Biochemical and Clinical Indicators of Cardiometabolic Risk in Non-Diabetic Serbian Women: The Role of Level of Adiposity. Front. Nutr. 2023, 10, 1065578. [Google Scholar] [CrossRef]
- Alsharari, Z.D.; Risérus, U.; Leander, K.; Sjögren, P.; Carlsson, A.C.; Vikström, M.; Laguzzi, F.; Gigante, B.; Cederholm, T.; De Faire, U.; et al. Serum Fatty Acids, Desaturase Activities and Abdominal Obesity—A Population-Based Study of 60-Year Old Men and Women. PLoS ONE 2017, 12, e0170684. [Google Scholar] [CrossRef]
- Sansone, A.; Tolika, E.; Louka, M.; Sunda, V.; Deplano, S.; Melchiorre, M.; Anagnostopoulos, D.; Chatgilialoglu, C.; Formisano, C.; Di Micco, R.; et al. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles. PLoS ONE 2016, 11, e0152378. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Lee, A.; Yoo, H.J.; Kim, M.; Kim, M.; Shin, D.Y.; Lee, J.H. Association between Increased Visceral Fat Area and Alterations in Plasma Fatty Acid Profile in Overweight Subjects: A Cross-Sectional Study. Lipids Health Dis. 2017, 16, 248. [Google Scholar] [CrossRef] [PubMed]
- Nankam, P.A.N.; van Jaarsveld, P.J.; Chorell, E.; Smidt, M.C.F.; Adams, K.; Blüher, M.; Olsson, T.; Mendham, A.E.; Goedecke, J.H. Circulating and Adipose Tissue Fatty Acid Composition in Black South African Women with Obesity: A Cross-Sectional Study. Nutrients 2020, 12, 1619. [Google Scholar] [CrossRef]
- Garaulet, M.; Pérez-Llamas, F.; Pérez-Ayala, M.; Martínez, P.; de Medina, F.S.; Tebar, F.J.; Zamora, S. Site-Specific Differences in the Fatty Acid Composition of Abdominal Adipose Tissue in an Obese Population from a Mediterranean Area: Relation with Dietary Fatty Acids, Plasma Lipid Profile, Serum Insulin, and Central Obesity. Am. J. Clin. Nutr. 2001, 74, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Garaulet, M.; Hernández-Morante, J.J.; Luján, J.; Tebar, F.J.; Zamora, S. Relationship between Fat Cell Size and Number and Fatty Acid Composition in Adipose Tissue from Different Fat Depots in Overweight/Obese Humans. Int. J. Obes. 2006, 30, 899–905. [Google Scholar] [CrossRef]
- Garaulet, M.; Hernandez-Morante, J.J.; Tebar, F.J.; Zamora, S. Relation between Degree of Obesity and Site-Specific Adipose Tissue Fatty Acid Composition in a Mediterranean Population. Nutr. Burbank Los Angel. Cty. Calif 2011, 27, 170–176. [Google Scholar] [CrossRef]
- Czumaj, A.; Śledziński, T.; Mika, A. Branched-Chain Fatty Acids Alter the Expression of Genes Responsible for Lipid Synthesis and Inflammation in Human Adipose Cells. Nutrients 2022, 14, 2310. [Google Scholar] [CrossRef]
- Mika, A.; Stepnowski, P.; Kaska, L.; Proczko, M.; Wisniewski, P.; Sledzinski, M.; Sledzinski, T. A Comprehensive Study of Serum Odd- and Branched-Chain Fatty Acids in Patients with Excess Weight. Obes. Silver Spring Md. 2016, 24, 1669–1676. [Google Scholar] [CrossRef]
- Gozdzik, P.; Czumaj, A.; Śledziński, T.; Mika, A. Branched-Chain Fatty Acids Affect the Expression of Fatty Acid Synthase and C-Reactive Protein Genes in the Hepatocyte Cell Line. Biosci. Rep. 2023, 43, BSR20230114. [Google Scholar] [CrossRef]
- Khamlaoui, W.; Mehri, S.; Hammami, S.; Hammouda, S.; Chraeif, I.; Elosua, R.; Hammami, M. Association Between Genetic Variants in FADS1-FADS2 and ELOVL2 and Obesity, Lipid Traits, and Fatty Acids in Tunisian Population. Clin. Appl. Thromb. Off. J. Int. Acad. Clin. Appl. Thromb. 2020, 26, 1076029620915286. [Google Scholar] [CrossRef]
- Muzsik, A.; Bajerska, J.; Jeleń, H.H.; Gaca, A.; Chmurzynska, A. Associations between Fatty Acid Intake and Status, Desaturase Activities, and FADS Gene Polymorphism in Centrally Obese Postmenopausal Polish Women. Nutrients 2018, 10, 1068. [Google Scholar] [CrossRef]
- Reyes-Pérez, S.D.; González-Becerra, K.; Barrón-Cabrera, E.; Muñoz-Valle, J.F.; Armendáriz-Borunda, J.; Martínez-López, E. FADS1 Genetic Variant and Omega-3 Supplementation Are Associated with Changes in Fatty Acid Composition in Red Blood Cells of Subjects with Obesity. Nutrients 2024, 16, 3522. [Google Scholar] [CrossRef]
- Metelcová, T.; Vaňková, M.; Zamrazilová, H.; Hovhannisyan, M.; Staňková, B.; Tvrzická, E.; Hill, M.; Hainer, V.; Včelák, J.; Kunešová, M. FADS1 Gene Polymorphism(s) and Fatty Acid Composition of Serum Lipids in Adolescents. Lipids 2021, 56, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Marklund, M.; Morris, A.P.; Mahajan, A.; Ingelsson, E.; Lindgren, C.M.; Lind, L.; Risérus, U. Genome-Wide Association Studies of Estimated Fatty Acid Desaturase Activity in Serum and Adipose Tissue in Elderly Individuals: Associations with Insulin Sensitivity. Nutrients 2018, 10, 1791. [Google Scholar] [CrossRef] [PubMed]
- Jarullah, H.H.; Saleh, E.S. Influence of Fatty Acid Desaturase Enzyme-1 Gene (FADS-1) Polymorphism on Serum Polyunsaturated Fatty Acids Levels, Desaturase Enzymes, Lipid Profile, and Glycemic Control Parameters in Newly Diagnosed Diabetic Mellitus Patients. Int. J. Mol. Sci. 2025, 26, 4015. [Google Scholar] [CrossRef]
- Khodarahmi, M.; Javidzade, P.; Farhangi, M.A.; Hashemzehi, A.; Kahroba, H. Interplay between Fatty Acid Desaturase2 (FADS2) Rs174583 Genetic Variant and Dietary Antioxidant Capacity: Cardio-Metabolic Risk Factors in Obese Individuals. BMC Endocr. Disord. 2022, 22, 167. [Google Scholar] [CrossRef]
- Khodarahmi, M.; Nikniaz, L.; Abbasalizad Farhangi, M. The Interaction Between Fatty Acid Desaturase-2 (FADS2) Rs174583 Genetic Variant and Dietary Quality Indices (DASH and MDS) Constructs Different Metabolic Phenotypes Among Obese Individuals. Front. Nutr. 2021, 8, 669207. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41, bnaa004. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Stefan, N. Metabolically Healthy Obesity: From Epidemiology and Mechanisms to Clinical Implications. Nat. Rev. Endocrinol. 2024, 20, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Mongraw-Chaffin, M.; Foster, M.C.; Anderson, C.A.M.; Burke, G.L.; Haq, N.; Kalyani, R.R.; Ouyang, P.; Sibley, C.T.; Tracy, R.; Woodward, M.; et al. Metabolically Healthy Obesity, Transition to Metabolic Syndrome, and Cardiovascular Risk. J. Am. Coll. Cardiol. 2018, 71, 1857–1865. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F. Metabolically healthy obesity: What’s in a name? Am. J. Clin. Nutr. 2019, 110, 533–539. [Google Scholar] [CrossRef]
- Arsic, A.; Takic, M.; Kojadinovic, M.; Petrovic, S.; Paunovic, M.; Vucic, V.; Ristic Medic, D. Metabolically Healthy Obesity: Is There a Link with Polyunsaturated Fatty Acid Intake and Status? Can. J. Physiol. Pharmacol. 2021, 99, 64–71. [Google Scholar] [CrossRef]
- Svendsen, K.; Olsen, T.; Nordstrand Rusvik, T.C.; Ulven, S.M.; Holven, K.B.; Retterstøl, K.; Telle-Hansen, V.H. Fatty Acid Profile and Estimated Desaturase Activities in Whole Blood Are Associated with Metabolic Health. Lipids Health Dis. 2020, 19, 102. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Vogelpohl, F.A.; Heiner-Fokkema, M.R.; Pranger, I.G.; Minović, I.; Navis, G.J.; Bakker, S.J.L.; Riphagen, I.J. Plasma Phospholipid Fatty Acid Profile, Estimated Desaturase Activities and Prevalence of the Metabolic Syndrome in a General Population Cohort: A Cross-Sectional Study. Nutr. Healthy Aging 2022, 7, 135–146. [Google Scholar] [CrossRef]
- Burchat, N.; Vidola, J.; Pfreundschuh, S.; Sharma, P.; Rizzolo, D.; Guo, G.L.; Sampath, H. Intestinal Stearoyl-CoA Desaturase-1 Regulates Energy Balance via Alterations in Bile Acid Homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2024, 18, 101403. [Google Scholar] [CrossRef]
- O’Neill, L.M.; Phang, Y.X.; Matango, M.; Shamsuzzaman, S.; Guo, C.-A.; Nelson, D.W.; Yen, C.-L.E.; Ntambi, J.M. Global Deficiency of Stearoyl-CoA Desaturase-2 Protects against Diet-Induced Adiposity. Biochem. Biophys. Res. Commun. 2020, 527, 589–595. [Google Scholar] [CrossRef]
- Flowers, M.T.; Ade, L.; Strable, M.S.; Ntambi, J.M. Combined Deletion of SCD1 from Adipose Tissue and Liver Does Not Protect Mice from Obesity. J. Lipid Res. 2012, 53, 1646–1653. [Google Scholar] [CrossRef]
- Ntambi, J.-N.; Kalyesubula, M.; Cootway, D.; Lewis, S.A.; Phang, Y.X.; Liu, Z.; O’Neill, L.M.; Lefers, L.; Huff, H.; Miller, J.R.; et al. Hepatic Stearoyl-CoA Desaturase-1 Deficiency Induces Fibrosis and Hepatocellular Carcinoma-Related Gene Activation under a High Carbohydrate Low Fat Diet. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2024, 1869, 159538. [Google Scholar] [CrossRef]
- Saito, M.; Higa, M.; Suzuki, T.; Michishita, M.; Hijikata, M.; Yamashita, K.; Ikehara, K.; Ichijo, T. 1983-P: Dihomo-Gamma-Linolenic Acid and Estimated Delta-5-Desaturase Activity Are Associated with Obesity and Metabolic Components in Type 2 Diabetic Patients. Diabetes 2020, 69, 1983-P. [Google Scholar] [CrossRef]
- Lamantia, V.; Bissonnette, S.; Provost, V.; Devaux, M.; Cyr, Y.; Daneault, C.; Rosiers, C.D.; Faraj, M. The Association of Polyunsaturated Fatty Acid δ-5-Desaturase Activity with Risk Factors for Type 2 Diabetes Is Dependent on Plasma ApoB-Lipoproteins in Overweight and Obese Adults. J. Nutr. 2019, 149, 57–67. [Google Scholar] [CrossRef]
- Yew Tan, C.; Virtue, S.; Murfitt, S.; Roberts, L.D.; Phua, Y.H.; Dale, M.; Griffin, J.L.; Tinahones, F.; Scherer, P.E.; Vidal-Puig, A. Adipose Tissue Fatty Acid Chain Length and Mono-Unsaturation Increases with Obesity and Insulin Resistance. Sci. Rep. 2015, 5, 18366. [Google Scholar] [CrossRef] [PubMed]
- Knez, M.; Pantovic, A.; Zekovic, M.; Pavlovic, Z.; Glibetic, M.; Zec, M. Is There a Link between Zinc Intake and Status with Plasma Fatty Acid Profile and Desaturase Activities in Dyslipidemic Subjects? Nutrients 2019, 12, 93. [Google Scholar] [CrossRef]
- Infante, M.; Armani, A.; Mammi, C.; Fabbri, A.; Caprio, M. Impact of Adrenal Steroids on Regulation of Adipose Tissue. Compr. Physiol. 2017, 7, 1425–1447. [Google Scholar] [CrossRef]
- Witt, A.; Mateska, I.; Palladini, A.; Sinha, A.; Wölk, M.; Harauma, A.; Bechmann, N.; Pamporaki, C.; Dahl, A.; Rothe, M.; et al. Fatty Acid Desaturase 2 Determines the Lipidomic Landscape and Steroidogenic Function of the Adrenal Gland. Sci. Adv. 2023, 9, eadf6710. [Google Scholar] [CrossRef]
- Walle, P.; Takkunen, M.; Männistö, V.; Vaittinen, M.; Lankinen, M.; Kärjä, V.; Käkelä, P.; Ågren, J.; Tiainen, M.; Schwab, U.; et al. Fatty Acid Metabolism Is Altered in Non-Alcoholic Steatohepatitis Independent of Obesity. Metabolism. 2016, 65, 655–666. [Google Scholar] [CrossRef]
- Araya, J.; Rodrigo, R.; Pettinelli, P.; Araya, A.V.; Poniachik, J.; Videla, L.A. Decreased Liver Fatty Acid Delta-6 and Delta-5 Desaturase Activity in Obese Patients. Obes. Silver Spring Md. 2010, 18, 1460–1463. [Google Scholar] [CrossRef]
- López-Vicario, C.; González-Périz, A.; Rius, B.; Morán-Salvador, E.; García-Alonso, V.; Lozano, J.J.; Bataller, R.; Cofán, M.; Kang, J.X.; Arroyo, V.; et al. Molecular Interplay between Δ5/Δ6 Desaturases and Long-Chain Fatty Acids in the Pathogenesis of Non-Alcoholic Steatohepatitis. Gut 2014, 63, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lu, R.S.; Diaz-Canestro, C.; Song, E.; Jia, X.; Liu, Y.; Wang, C.; Cheung, C.K.Y.; Panagiotou, G.; Xu, A. Distinct Changes in Serum Metabolites and Lipid Species in the Onset and Progression of NAFLD in Obese Chinese. Comput. Struct. Biotechnol. J. 2024, 23, 791–800. [Google Scholar] [CrossRef]
- Tang, R.; Harasymowicz, N.S.; Wu, C.-L.; Choi, Y.-R.; Lenz, K.; Oswald, S.J.; Guilak, F. Gene Therapy for Fat-1 Prevents Obesity-Induced Metabolic Dysfunction, Cellular Senescence, and Osteoarthritis. Proc. Natl. Acad. Sci. USA 2024, 121, e2402954121. [Google Scholar] [CrossRef]
- Lu, Y.; Nie, D.; Witt, W.T.; Chen, Q.; Shen, M.; Xie, H.; Lai, L.; Dai, Y.; Zhang, J. Expression of the Fat-1 Gene Diminishes Prostate Cancer Growth in Vivo through Enhancing Apoptosis and Inhibiting GSK-3 Beta Phosphorylation. Mol. Cancer Ther. 2008, 7, 3203–3211. [Google Scholar] [CrossRef] [PubMed]
- Manni, A.; Richie, J.P.; Schetter, S.E.; Calcagnotto, A.; Trushin, N.; Aliaga, C.; El-Bayoumy, K. Stearoyl-CoA Desaturase-1, a Novel Target of Omega-3 Fatty Acids for Reducing Breast Cancer Risk in Obese Postmenopausal Women. Eur. J. Clin. Nutr. 2017, 71, 762–765. [Google Scholar] [CrossRef] [PubMed]
- Scazzocchio, B.; Varì, R.; Silenzi, A.; Giammarioli, S.; Masotti, A.; Baldassarre, A.; Santangelo, C.; D’Archivio, M.; Giovannini, C.; Del Cornò, M.; et al. Dietary Habits Affect Fatty Acid Composition of Visceral Adipose Tissue in Subjects with Colorectal Cancer or Obesity. Eur. J. Nutr. 2020, 59, 1463–1472. [Google Scholar] [CrossRef]
- Zúñiga-Hernández, J.; Farias, C.; Espinosa, A.; Mercado, L.; Dagnino-Subiabre, A.; Campo, A.D.; Illesca, P.; Videla, L.A.; Valenzuela, R. Modulation of Δ5- and Δ6-Desaturases in the Brain-Liver Axis. Nutrition 2025, 131, 112629. [Google Scholar] [CrossRef]
- Liu, T.-W.; Heden, T.D.; Matthew Morris, E.; Fritsche, K.L.; Vieira-Potter, V.J.; Thyfault, J.P. High-Fat Diet Alters Serum Fatty Acid Profiles in Obesity Prone Rats: Implications for In Vitro Studies. Lipids 2015, 50, 997–1008. [Google Scholar] [CrossRef]
- Shen, T.; Oh, Y.; Jeong, S.; Cho, S.; Fiehn, O.; Youn, J.H. High-Fat Feeding Alters Circulating Triglyceride Composition: Roles of FFA Desaturation and ω-3 Fatty Acid Availability. Int. J. Mol. Sci. 2024, 25, 8810. [Google Scholar] [CrossRef] [PubMed]
- Mercado-López, L.; Muñoz, Y.; Farias, C.; Beyer, M.P.; Carrasco-Gutiérrez, R.; Caicedo-Paz, A.V.; Dagnino-Subiabre, A.; Espinosa, A.; Valenzuela, R. High-Fat Diet in Perinatal Period Promotes Liver Steatosis and Low Desaturation Capacity of Polyunsaturated Fatty Acids in Dams: A Link with Anxiety-Like Behavior in Rats. Nutrients 2025, 17, 1180. [Google Scholar] [CrossRef]
- Rocha-Rodrigues, S.; Rodríguez, A.; Gonçalves, I.O.; Moreira, A.; Maciel, E.; Santos, S.; Domingues, M.R.; Frühbeck, G.; Ascensão, A.; Magalhães, J. Impact of Physical Exercise on Visceral Adipose Tissue Fatty Acid Profile and Inflammation in Response to a High-Fat Diet Regimen. Int. J. Biochem. Cell Biol. 2017, 87, 114–124. [Google Scholar] [CrossRef]
- Valenzuela, R.; Echeverria, F.; Ortiz, M.; Rincón-Cervera, M.Á.; Espinosa, A.; Hernandez-Rodas, M.C.; Illesca, P.; Valenzuela, A.; Videla, L.A. Hydroxytyrosol Prevents Reduction in Liver Activity of Δ-5 and Δ-6 Desaturases, Oxidative Stress, and Depletion in Long Chain Polyunsaturated Fatty Acid Content in Different Tissues of High-Fat Diet Fed Mice. Lipids Health Dis. 2017, 16, 64. [Google Scholar] [CrossRef]
- Oh, Y.; Shen, T.; Jeong, S.; Cho, S.; Fiehn, O.; Youn, J. 516-P: High-Fat Feeding Alters Circulating Triglyceride Profile by Decreasing SCD Activity and Depleting n-3 Fatty Acids. Diabetes 2024, 73, 516-P. [Google Scholar] [CrossRef]
- Vitale, M.; Masulli, M.; Rivellese, A.A.; Bonora, E.; Cappellini, F.; Nicolucci, A.; Squatrito, S.; Antenucci, D.; Barrea, A.; Bianchi, C.; et al. Dietary Intake and Major Food Sources of Polyphenols in People with Type 2 Diabetes: The TOSCA.IT Study. Eur. J. Nutr. 2018, 57, 679–688. [Google Scholar] [CrossRef]
- Drąg, J.; Goździalska, A.; Knapik-Czajka, M.; Gawędzka, A.; Gawlik, K.; Jaśkiewicz, J. Effect of High Carbohydrate Diet on Elongase and Desaturase Activity and Accompanying Gene Expression in Rat’s Liver. Genes Nutr. 2017, 12, 2. [Google Scholar] [CrossRef]
- da Silva-Santi, L.G.; Antunes, M.M.; Caparroz-Assef, S.M.; Carbonera, F.; Masi, L.N.; Curi, R.; Visentainer, J.V.; Bazotte, R.B. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet. Nutrients 2016, 8, 682. [Google Scholar] [CrossRef] [PubMed]
- Tuthill Ii, B.F.; Quaglia, C.J.; O’Hara, E.; Musselman, L.P. Loss of Stearoyl-CoA Desaturase 1 Leads to Cardiac Dysfunction and Lipotoxicity. J. Exp. Biol. 2021, 224, jeb240432. [Google Scholar] [CrossRef] [PubMed]
- Bajahzer, M.F.; Bruun, J.M.; Rosqvist, F.; Marklund, M.; Richelsen, B.; Risérus, U. Effects of Sugar-Sweetened Soda on Plasma Saturated and Monounsaturated Fatty Acids in Individuals with Obesity: A Randomized Study. Front. Nutr. 2022, 9, 936828. [Google Scholar] [CrossRef]
- Antunes, M.M.; Godoy, G.; de Almeida-Souza, C.B.; da Rocha, B.A.; da Silva-Santi, L.G.; Masi, L.N.; Carbonera, F.; Visentainer, J.V.; Curi, R.; Bazotte, R.B. A High-Carbohydrate Diet Induces Greater Inflammation than a High-Fat Diet in Mouse Skeletal Muscle. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas E Biol. 2020, 53, e9039. [Google Scholar] [CrossRef]
- Chawla, S.; Tessarolo Silva, F.; Amaral Medeiros, S.; Mekary, R.A.; Radenkovic, D. The Effect of Low-Fat and Low-Carbohydrate Diets on Weight Loss and Lipid Levels: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3774. [Google Scholar] [CrossRef]
- Kim, B.-Y. Effects of Low-Carbohydrate, High-Fat Diets on Weight Loss, Cardiovascular Health and Mortality. Cardiovasc. Prev. Pharmacother. 2020, 2, 43–49. [Google Scholar] [CrossRef]
- Santamarina, A.B.; Moreira, R.G.; Mennitti, L.V.; Martins Ferreira, Y.A.; Jucá, A.; Prado, C.M.; Pisani, L.P. Low-Carbohydrate Diet Enriched with Omega-3 and Omega-9 Fatty Acids Modulates Inflammation and Lipid Metabolism in the Liver and White Adipose Tissue of a Mouse Model of Obesity. Nutr. Metab. Cardiovasc. Dis. NMCD 2025, 35, 103932. [Google Scholar] [CrossRef]
- Panchal, S.K.; Poudyal, H.; Ward, L.C.; Waanders, J.; Brown, L. Modulation of Tissue Fatty Acids by L-Carnitine Attenuates Metabolic Syndrome in Diet-Induced Obese Rats. Food Funct. 2015, 6, 2496–2506. [Google Scholar] [CrossRef]
- Hamedi-Kalajahi, F.; Zarezadeh, M.; Malekahmadi, M.; Jamilian, P.; Jamilian, P.; Molani-Gol, R.; Ostadrahimi, A. The Effect of the L-Carnitine Supplementation on Obesity Indices: An Umbrella Meta-Analysis. Int. J. Vitam. Nutr. Res. 2025, 95, 40033. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Fang, K.; Dan, X.; Gu, M. Crocin Ameliorates Hepatic Steatosis through Activation of AMPK Signaling in Db/Db Mice. Lipids Health Dis. 2019, 18, 11. [Google Scholar] [CrossRef]
- Zhu, X.; Bian, H.; Wang, L.; Sun, X.; Xu, X.; Yan, H.; Xia, M.; Chang, X.; Lu, Y.; Li, Y.; et al. Berberine Attenuates Nonalcoholic Hepatic Steatosis through the AMPK-SREBP-1c-SCD1 Pathway. Free Radic. Biol. Med. 2019, 141, 192–204. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, L.; Wang, Y. Tetrahydrocurcumin Ameliorates Metabolic Disorders Associated with Obesity by Regulating Gut Microbiota Homeostasis. J. Nutr. Biochem. 2025, 146, 110034. [Google Scholar] [CrossRef] [PubMed]
- Nono Nankam, P.A.; Mendham, A.E.; van Jaarsveld, P.J.; Adams, K.; Fortuin-de Smidt, M.C.; Clamp, L.; Blüher, M.; Goedecke, J.H. Exercise Training Alters Red Blood Cell Fatty Acid Desaturase Indices and Adipose Tissue Fatty Acid Profile in African Women with Obesity. Obes. Silver Spring Md. 2020, 28, 1456–1466. [Google Scholar] [CrossRef]
- de Melo, D.G.; Anaruma, C.P.; da Cruz Rodrigues, K.C.; Pereira, R.M.; de Campos, T.D.P.; Canciglieri, R.S.; Ramos, C.O.; Cintra, D.E.; Ropelle, E.R.; da Silva, A.S.R.; et al. Strength Training Alters the Tissue Fatty Acids Profile and Slightly Improves the Thermogenic Pathway in the Adipose Tissue of Obese Mice. Sci. Rep. 2022, 12, 6913. [Google Scholar] [CrossRef]
- Corpeleijn, E.; Feskens, E.J.M.; Jansen, E.H.J.M.; Mensink, M.; Saris, W.H.M.; de Bruin, T.W.A.; Blaak, E.E. Improvements in Glucose Tolerance and Insulin Sensitivity after Lifestyle Intervention Are Related to Changes in Serum Fatty Acid Profile and Desaturase Activities: The SLIM Study. Diabetologia 2006, 49, 2392–2401. [Google Scholar] [CrossRef]
- Vaittinen, M.; Walle, P.; Kuosmanen, E.; Männistö, V.; Käkelä, P.; Ågren, J.; Schwab, U.; Pihlajamäki, J. FADS2 Genotype Regulates Delta-6 Desaturase Activity and Inflammation in Human Adipose Tissue. J. Lipid Res. 2016, 57, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Walle, P.; Takkunen, M.; Männistö, V.; Vaittinen, M.; Käkelä, P.; Ågren, J.; Schwab, U.; Lindström, J.; Tuomilehto, J.; Uusitupa, M.; et al. Alterations in Fatty Acid Metabolism in Response to Obesity Surgery Combined with Dietary Counseling. Nutr. Diabetes 2017, 7, e285. [Google Scholar] [CrossRef]
- Middleton, A.-L.O.; Byrne, J.P.; Calder, P.C. The Influence of Bariatric (Metabolic) Surgery on Blood Polyunsaturated Fatty Acids: A Systematic Review. Clin. Nutr. ESPEN 2022, 48, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Manca, C.; Pintus, S.; Murru, E.; Fantola, G.; Vincis, M.; Batetta, B.; Moroni, E.; Carta, G.; Banni, S. Fatty Acid Metabolism and Derived-Mediators Distinctive of PPAR-α Activation in Obese Subjects Post Bariatric Surgery. Nutrients 2021, 13, 4340. [Google Scholar] [CrossRef]
- Hierons, S.J.; Abbas, K.; Sobczak, A.I.S.; Cerone, M.; Smith, T.K.; Ajjan, R.A.; Stewart, A.J. Changes in Plasma Free Fatty Acids in Obese Patients before and after Bariatric Surgery Highlight Alterations in Lipid Metabolism. Sci. Rep. 2022, 12, 15337. [Google Scholar] [CrossRef]
- Berk, K.A.; Borgeraas, H.; Narverud, I.; Mulder, M.T.; Øyri, L.K.L.; Verhoeven, A.J.M.; Småstuen, M.C.; Bogsrud, M.P.; Omland, T.; Hertel, J.K.; et al. Differential Effects of Bariatric Surgery and Lifestyle Interventions on Plasma Levels of Lp(a) and Fatty Acids. Lipids Health Dis. 2022, 21, 145. [Google Scholar] [CrossRef]
- Kunešová, M.; Sedláčková, B.; Bradnová, O.; Tvrzická, E.; Staňková, B.; Šrámková, P.; DoleŽalová, K.; Kalousková, P.; Hlavatý, P.; Hill, M.; et al. Fatty Acid Composition of Adipose Tissue Triglycerides in Obese Diabetic Women after Bariatric Surgery: A 2-Year Follow Up. Physiol. Res. 2015, 64, S155–S166. [Google Scholar] [CrossRef] [PubMed]
- Garla, P.; Sala, P.; Torrinhas, R.S.M.; Machado, N.M.; Fonseca, D.C.; da Silva, M.M.; Ravacci, G.R.; Belarmino, G.; Ishida, R.K.; Guarda, I.F.M.S.; et al. Reduced Intestinal FADS1 Gene Expression and Plasma Omega-3 Fatty Acids Following Roux-En-Y Gastric Bypass. Clin. Nutr. Edinb. Scotl. 2019, 38, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
Classification | Fatty Acid Type | Characteristics/Examples |
---|---|---|
Number of Double Bonds | Saturated (SFA) | No double bonds. Examples: palmitic acid (C16:0), stearic acid (C18:0). |
Monounsaturated (MUFA) | One double bond. Example: oleic acid (C18:1, n-9). | |
Polyunsaturated (PUFA) | Two or more double bonds. Examples: linoleic acid (C18:2, n-6), alpha-linolenic acid (C18:3, n-3), arachidonic acid (C20:4, n-6), DHA, EPA (n-3). | |
Carbon Chain Length | Short (SCFA) | ≤6 carbon atoms. Examples: butyric acid (C4:0), acetic acid (C2:0). |
Medium (MCFA) | 6–12 carbon atoms. Examples: capric acid (C10:0), lauric acid (C12:0). | |
Long (LCFA) | 13–21 carbon atoms. Examples: palmitic acid (C16:0), oleic acid (C18:1), linoleic acid (C18:2). | |
Very long (VLCFA) | ≥22 carbon atoms. Example: lignoceric acid (C24:0). | |
Double Bond Configuration | Cis | The natural configuration of most unsaturated fatty acids. Causes a bend in the chain. Example: oleic acid (cis-C18:1). |
Trans | Rare in nature (formed, among other things, during the hydrogenation of fats). Straight chain, as in SFA. Example: elaidic acid (trans-C18:1). |
Level | Marker/Gene/Enzyme | Polymorphism or Change | Observed Effect on Lipid Metabolism | Potential Consequences |
---|---|---|---|---|
Genomic | FADS1 | rs174546, rs174537, rs174547 | ↓ D5D activity; ↓ EPA, DHA, AA | ↑ risk of insulin resistance, T2D, dyslipidemia |
FADS2 | rs174583 | ↓ EPA, stearic acid; altered elongase activity | Interaction with diet modifies cardiometabolic risk | |
ELOVL2 | Variants not specified | Altered elongation of PUFA | Changes in n-3 and n-6 PUFA composition | |
Transcriptomic | SCD1 | Overexpression in obesity | ↑ MUFA synthesis (palmitoleic acid) | Lipogenesis, insulin resistance, obesity |
SCD1 (knockout, iKO) | Gene deletion in mice | ↑ bile acids, ↑ TGR5 pathway activity | ↑ energy expenditure, ↓ weight gain | |
SCD2 | Gene deletion in mice | ↑ thermogenesis (↑ UCP1, ↑ PGC-1α) | Protection against diet-induced obesity | |
Proteomic | Δ6-desaturase (D6D) | Activity increased in obesity | ↑ GLA, DGLA | Inflammation, higher cardiometabolic risk |
Δ5-desaturase (D5D) | Activity decreased in obesity | ↓ AA, ↓ DHA | Dyslipidemia, impaired insulin sensitivity | |
Elongase | Activity increased in obesity | ↑ long-chain PUFA synthesis | Altered FA profile linked to BMI and IR | |
Clinical outcome | FA profile (erythrocytes, plasma) | ↑ n-6:n-3 ratio, ↓ EPA:DHA | Biomarker of metabolic health status | Predicts MUHO vs. MHO phenotype |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banaszak, M.; Górna, I.; Drzymała-Czyż, S. Fatty Acid Profile and Desaturase Activity in Obesity: Roles, Mechanisms, and Clinical Relevance. Metabolites 2025, 15, 595. https://doi.org/10.3390/metabo15090595
Banaszak M, Górna I, Drzymała-Czyż S. Fatty Acid Profile and Desaturase Activity in Obesity: Roles, Mechanisms, and Clinical Relevance. Metabolites. 2025; 15(9):595. https://doi.org/10.3390/metabo15090595
Chicago/Turabian StyleBanaszak, Michalina, Ilona Górna, and Sławomira Drzymała-Czyż. 2025. "Fatty Acid Profile and Desaturase Activity in Obesity: Roles, Mechanisms, and Clinical Relevance" Metabolites 15, no. 9: 595. https://doi.org/10.3390/metabo15090595
APA StyleBanaszak, M., Górna, I., & Drzymała-Czyż, S. (2025). Fatty Acid Profile and Desaturase Activity in Obesity: Roles, Mechanisms, and Clinical Relevance. Metabolites, 15(9), 595. https://doi.org/10.3390/metabo15090595