Plasma Lipidomic Alterations in Fontan Circulation Reflect Cardiovascular Functional Reserve
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Lipid Analysis
2.3. Statistical Analysis
3. Results
3.1. Clinical, Functional, and Hemodynamic Characteristics of Fontan Patients
3.2. Altered Plasma Lipid Signatures Associated with Fontan Physiology
3.3. Lipid Correlation Network Reveals Class-Specific Clustering
3.4. Relationship Between Exercise Capacity and Hemodynamic Performance
3.5. Lipid Species Associated with Exercise Capacity in Fontan Patients
3.6. Lipid Profiles Reflect Hemodynamic Function and Adaptability
3.7. Discriminatory Performance of Clinical and Lipidomic Variables
4. Discussion
5. Conclusions and Perspectives
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Surendran, A.; Zhang, H.; Stamenkovic, A.; Ravandi, A. Lipidomics and cardiovascular disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2025, 1871, 167806. [Google Scholar] [CrossRef] [PubMed]
- Stegemann, C.; Pechlaner, R.; Willeit, P.; Langley, S.R.; Mangino, M.; Mayr, U.; Menni, C.; Moayyeri, A.; Santer, P.; Rungger, G.; et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation 2014, 129, 1821–1831. [Google Scholar] [CrossRef]
- Gewillig, M. The Fontan circulation. Heart 2005, 91, 839–846. [Google Scholar] [CrossRef]
- Rychik, J.; Goldberg, D.J. Late Consequences of the Fontan Operation. Circulation 2014, 130, 1525–1528. [Google Scholar] [CrossRef] [PubMed]
- Fontan, F.; Baudet, E. Surgical repair of tricuspid atresia. Thorax 1971, 26, 240–248. [Google Scholar] [CrossRef]
- Rychik, J. Forty years of the Fontan operation: A failed strategy. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2010, 13, 96–100. [Google Scholar] [CrossRef]
- Gewillig, M.; Brown, S.C. The Fontan circulation after 45 years: Update in physiology. Heart 2016, 102, 1081–1086. [Google Scholar] [CrossRef]
- Ohuchi, H. Where Is the “Optimal” Fontan Hemodynamics? Korean Circ. J. 2017, 47, 842–857. [Google Scholar] [CrossRef] [PubMed]
- Khairy, P.; Poirier, N.; Mercier, L.-A. Univentricular Heart. Circulation 2007, 115, 800–812. [Google Scholar] [CrossRef]
- Rychik, J.; Goldberg, D.; Rand, E.; Semeao, E.; Russo, P.; Dori, Y.; Dodds, K. End-organ consequences of the Fontan operation: Liver fibrosis, protein-losing enteropathy and plastic bronchitis. Cardiol. Young 2013, 23, 831–840. [Google Scholar] [CrossRef]
- Wu, F.M.; Ukomadu, C.; Odze, R.D.; Valente, A.M.; Mayer, J.E., Jr.; Earing, M.G. Liver disease in the patient with Fontan circulation. Congenit. Heart Dis. 2011, 6, 190–201. [Google Scholar] [CrossRef]
- Plappert, L.; Edwards, S.; Senatore, A.; De Martini, A. The Epidemiology of Persons Living with Fontan in 2020 and Projections for 2030: Development of an Epidemiology Model Providing Multinational Estimates. Adv. Ther. 2022, 39, 1004–1015. [Google Scholar] [CrossRef]
- Rychik, J.; Atz, A.M.; Celermajer, D.S.; Deal, B.J.; Gatzoulis, M.A.; Gewillig, M.H.; Hsia, T.Y.; Hsu, D.T.; Kovacs, A.H.; McCrindle, B.W.; et al. Evaluation and Management of the Child and Adult With Fontan Circulation: A Scientific Statement From the American Heart Association. Circulation 2019, 140, e234–e284. [Google Scholar] [CrossRef]
- Sethasathien, S.; Leemasawat, K.; Silvilairat, S.; Sittiwangkul, R.; Makonkawkeyoon, K.; Leerapun, A.; Kongkarnka, S.; Inmutto, N.; Suksai, S.; Apaijai, N.; et al. Mitochondrial dysfunction is associated with the severity of liver fibrosis in patients after the Fontan operation. J. Cell Mol. Med. 2024, 28, e18035. [Google Scholar] [CrossRef]
- Shah, A.H.; Surendran, A.; Hassan-Tash, P.; Turnbull, C.N.; Johnston, N.; Goodlett, D.; Han, J.; Ducas, R.A.; Tam, J.W.; Renner, E.; et al. Association of Fontan Pathophysiology With Plasma Bile Acids. JACC Adv. 2025, 4, 101563. [Google Scholar] [CrossRef]
- Grinberg, T.; Aviv, Y.; Vaturi, M.; Perl, L.; Wiessman, M.; Vaknin-Assa, H.; Codner, P.; Shapira, Y.; Kornowski, R.; Orvin, K. Noninvasive Hemodynamic Evaluation Following TAVI for Severe Aortic Stenosis. J. Am. Heart Assoc. 2023, 12, e028479. [Google Scholar] [CrossRef]
- Meikle, P.J.; Wong, G.; Tsorotes, D.; Barlow, C.K.; Weir, J.M.; Christopher, M.J.; MacIntosh, G.L.; Goudey, B.; Stern, L.; Kowalczyk, A.; et al. Plasma lipidomic analysis of stable and unstable coronary artery disease. Arter. Thromb. Vasc. Biol. 2011, 31, 2723–2732. [Google Scholar] [CrossRef] [PubMed]
- Surendran, A.; Atefi, N.; Ismail, U.; Shah, A.; Ravandi, A. Impact of myocardial reperfusion on human plasma lipidome. iScience 2022, 25, 103828. [Google Scholar] [CrossRef] [PubMed]
- Surendran, A.; Ismail, U.; Atefi, N.; Bagchi, A.K.; Singal, P.K.; Shah, A.; Aliani, M.; Ravandi, A. Lipidomic Predictors of Coronary No-Reflow. Metabolites 2023, 13, 79. [Google Scholar] [CrossRef]
- Weir, J.M.; Wong, G.; Barlow, C.K.; Greeve, M.A.; Kowalczyk, A.; Almasy, L.; Comuzzie, A.G.; Mahaney, M.C.; Jowett, J.B.; Shaw, J.; et al. Plasma lipid profiling in a large population-based cohort. J. Lipid Res. 2013, 54, 2898–2908. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.M.; Ceraolo, C.; Mercatelli, D. The R Language: An Engine for Bioinformatics and Data Science. Life 2022, 12, 648. [Google Scholar] [CrossRef]
- Csárdi, G.; Nepusz, T.; Traag, V.; Horvát, S.Z.; Zanini, F.; Noom, D.; Müller, K.; Schoch, D.; Salmon, M. igraph: Network Analysis and Visualization in R. 2025. Available online: https://CRAN.R-project.org/package=igraph (accessed on 1 August 2025).
- Acevedo, A.; Duran, C.; Ciucci, S.; Gerl, M.; Cannistraci, C.V. LIPEA: Lipid Pathway Enrichment Analysis. bioRxiv 2018. [Google Scholar] [CrossRef]
- Harrell, F., Jr. Hmisc: Harrell Miscellaneous. R Package Version 5.2-4. 2025. Available online: https://github.com/harrelfe/hmisc (accessed on 1 August 2025).
- Wei, T.; Simko, V. Corrplot: Visualization of a Correlation Matrix, R Package Version 0.95. 2024. Available online: https://github.com/taiyun/corrplot (accessed on 1 August 2025).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, R.; Zhang, T.; Liu, F.; Zhang, W.; Wang, G.; Gu, G.; Han, Q.; Xu, D.; Yao, C.; et al. Identification of Lysophosphatidylcholines and Sphingolipids as Potential Biomarkers for Acute Aortic Dissection via Serum Metabolomics. Eur. J. Vasc. Endovasc. Surg. 2019, 57, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.; Sandin, M.; Sampaio, J.L.; Almgren, P.; Narkiewicz, K.; Hoffmann, M.; Hedner, T.; Wahlstrand, B.; Simons, K.; Shevchenko, A.; et al. Plasma lipid composition and risk of developing cardiovascular disease. PLoS ONE 2013, 8, e71846. [Google Scholar] [CrossRef]
- Ganna, A.; Salihovic, S.; Sundström, J.; Broeckling, C.D.; Hedman, A.K.; Magnusson, P.K.; Pedersen, N.L.; Larsson, A.; Siegbahn, A.; Zilmer, M.; et al. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet. 2014, 10, e1004801. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, B.; Schiller, J.; Wagner, U.; Häntzschel, H.; Arnold, K. The phosphatidylcholine/lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: Investigations by 31P NMR and MALDI-TOF MS. Clin. Biochem. 2005, 38, 925–933. [Google Scholar] [CrossRef]
- Chen, C.; Luo, F.; Wu, P.; Huang, Y.; Das, A.; Chen, S.; Chen, J.; Hu, X.; Li, F.; Fang, Z.; et al. Metabolomics reveals metabolite changes of patients with pulmonary arterial hypertension in China. J. Cell Mol. Med. 2020, 24, 2484–2496. [Google Scholar] [CrossRef]
- Krautbauer, S.; Eisinger, K.; Wiest, R.; Liebisch, G.; Buechler, C. Systemic saturated lysophosphatidylcholine is associated with hepatic function in patients with liver cirrhosis. Prostaglandins Other Lipid Mediat. 2016, 124, 27–33. [Google Scholar] [CrossRef]
- Knuplez, E.; Marsche, G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int. J. Mol. Sci. 2020, 21, 4501. [Google Scholar] [CrossRef]
- Taylor, L.A.; Arends, J.; Hodina, A.K.; Unger, C.; Massing, U. Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Dis. 2007, 6, 17. [Google Scholar] [CrossRef]
- Sekas, G.; Patton, G.M.; Lincoln, E.C.; Robins, S.J. Origin of plasma lysophosphatidylcholine: Evidence for direct hepatic secretion in the rat. J. Lab. Clin. Med. 1985, 105, 190–194. [Google Scholar]
- Schmitz, G.; Ruebsaamen, K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis 2010, 208, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Subbaiah, P.V.; Albers, J.J.; Chen, C.H.; Bagdade, J.D. Low density lipoprotein-activated lysolecithin acylation by human plasma lecithin-cholesterol acyltransferase. Identity of lysolecithin acyltransferase and lecithin-cholesterol acyltransferase. J. Biol. Chem. 1980, 255, 9275–9280. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Renaud, D.; Schmidt, R.; Einkemmer, M.; Laser, L.V.; Michel, E.; Dubowy, K.O.; Karall, D.; Laser, K.T.; Scholl-Bürgi, S. Altered Serum Proteins Suggest Inflammation, Fibrogenesis and Angiogenesis in Adult Patients with a Fontan Circulation. Int. J. Mol. Sci. 2024, 25, 5416. [Google Scholar] [CrossRef] [PubMed]
- Graessler, J.; Schwudke, D.; Schwarz, P.E.; Herzog, R.; Shevchenko, A.; Bornstein, S.R. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS ONE 2009, 4, e6261. [Google Scholar] [CrossRef]
- Beyene, H.B.; Olshansky, G.; AA, T.S.; Giles, C.; Huynh, K.; Cinel, M.; Mellett, N.A.; Cadby, G.; Hung, J.; Hui, J.; et al. High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: Evidence from two large population cohort studies. PLoS Biol. 2020, 18, e3000870. [Google Scholar] [CrossRef]
- Horta Remedios, M.; Liang, W.; González, L.N.; Li, V.; Da Ros, V.G.; Cohen, D.J.; Zaremberg, V. Ether lipids and a peroxisomal riddle in sperm. Front. Cell Dev. Biol. 2023, 11, 1166232. [Google Scholar] [CrossRef]
- Rutkowsky, J.M.; Knotts, T.A.; Ono-Moore, K.D.; McCoin, C.S.; Huang, S.; Schneider, D.; Singh, S.; Adams, S.H.; Hwang, D.H. Acylcarnitines activate proinflammatory signaling pathways. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1378–E1387. [Google Scholar] [CrossRef]
- Leventis, P.A.; Grinstein, S. The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 2010, 39, 407–427. [Google Scholar] [CrossRef]
- Kou, Y.; Zou, L.; Liu, R.; Zhao, X.; Wang, Y.; Zhang, C.; Dong, Z.; Kou, J.; Bi, Y.; Fu, L.; et al. Intravascular cells and circulating microparticles induce procoagulant activity via phosphatidylserine exposure in heart failure. J. Thromb. Thrombolysis 2019, 48, 187–194. [Google Scholar] [CrossRef]
- Yerushalmi, B.; Dahl, R.; Devereaux, M.W.; Gumpricht, E.; Sokol, R.J. Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 2001, 33, 616–626. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Coxito, P.M.; Sardão, V.A.; Palmeira, C.M.; Oliveira, P.J. Bile acids are toxic for isolated cardiac mitochondria: A possible cause for hepatic-derived cardiomyopathies? Cardiovasc. Toxicol. 2005, 5, 63–73. [Google Scholar] [CrossRef] [PubMed]
- van der Ven, J.P.G.; van den Bosch, E.; Bogers, A.; Helbing, W.A. State of the art of the Fontan strategy for treatment of univentricular heart disease. F1000Research 2018, 7, 935. [Google Scholar] [CrossRef] [PubMed]
Clinical Variable | Fontan (n = 20) | Control (n = 20) | p Value |
---|---|---|---|
Age (years) | 25.50 [22.75–30.25] | 30.00 [25.75–34.25] | 0.239 |
Sex (male) | 14 (70.0%) | 13 (65.0%) | 1.000 |
Body mass index (kg/m2) | 24.14 ± 4.47 | 26.12 ± 3.22 | 0.118 |
Body Surface Area (BSA) | 1.80 ± 0.22 | 1.92 ± 0.21 | 0.099 |
Total body water (L) | 36.80 ± 7.77 | 44.23 ± 9.37 | 0.010 |
Dry Lean Mass (kg) | 13.46 ± 2.82 | 16.21 ± 3.47 | 0.009 |
Body fat (%) | 27.49 ± 9.75 | 22.67 ± 8.34 | 0.101 |
Skeletal Muscle Mass (kg) | 27.88 ± 6.34 | 34.30 ± 7.81 | 0.007 |
Lean Body Mass(kg) | 50.77 ± 10.02 | 60.44 ± 12.84 | 0.012 |
Basal metabolic rate (kcal) | 1455.80 ± 228.77 | 1675.70 ± 277.38 | 0.010 |
5 m walk (seconds) | 3.87 ± 0.54 | 4.14 ± 0.65 | 0.158 |
Cardiopulmonary exercise test | |||
Maximum heart rate | 157.50 [138.00–171.25] | 185.00 [182.25–194.00] | <0.001 |
VO2max (L/min) | 1.67 ± 0.46 | 3.43 ± 0.93 | <0.001 |
Peak VO2 (ml/kg/min) | 23.73 ± 5.64 | 43.88 ± 8.63 | <0.001 |
VE(L/min) | 68.25 ± 17.76 | 129.15 ± 35.40 | <0.001 |
VCO2 | 1.76 ± 0.51 | 4.07 ± 1.14 | <0.001 |
VE/VCO2 | 39.34 ± 4.75 | 31.99 ± 3.55 | <0.001 |
Hemodynamics—rest | |||
SI | 27.65 ± 7.95 | 45.55 ± 7.40 | <0.001 |
CI | 2.13 ± 0.74 | 2.96 ± 0.50 | <0.001 |
CO | 3.90 ± 1.59 | 5.65 ± 1.14 | <0.001 |
CPI | 0.40 ± 0.16 | 0.60 ± 0.12 | <0.001 |
CPO | 0.74 ± 0.34 | 1.15 ± 0.27 | <0.001 |
TPRI | 3162.00 [2682.75–3875.00] | 2503.50 [2148.75–2781.75] | <0.001 |
Hemodynamics—post-exercise | |||
SI | 27.90 ± 7.66 | 46.95 ± 8.02 | <0.001 |
CI | 2.79 ± 0.81 | 4.92 ± 1.05 | <0.001 |
CO | 4.95 [3.58–5.55] | 9.05 [7.75–10.67] | <0.001 |
CPI | 0.57 ± 0.18 | 1.21 ± 0.28 | <0.001 |
CPO | 1.04 [0.77–1.17] | 2.22 [1.82–2.79] | <0.001 |
TPRI | 2863.20 ± 978.18 | 1894.45 ± 475.29 | <0.001 |
Δ Hemodynamics | |||
CI change | 0.66 ± 0.69 | 1.96 ± 0.86 | <0.001 |
CPI change | 0.17 ± 0.14 | 0.61 ± 0.26 | <0.001 |
CPO change | 0.30 ± 0.24 | 1.16 ± 0.52 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surendran, A.; Ravandi, A.; Shah, A.H. Plasma Lipidomic Alterations in Fontan Circulation Reflect Cardiovascular Functional Reserve. Metabolites 2025, 15, 592. https://doi.org/10.3390/metabo15090592
Surendran A, Ravandi A, Shah AH. Plasma Lipidomic Alterations in Fontan Circulation Reflect Cardiovascular Functional Reserve. Metabolites. 2025; 15(9):592. https://doi.org/10.3390/metabo15090592
Chicago/Turabian StyleSurendran, Arun, Amir Ravandi, and Ashish H. Shah. 2025. "Plasma Lipidomic Alterations in Fontan Circulation Reflect Cardiovascular Functional Reserve" Metabolites 15, no. 9: 592. https://doi.org/10.3390/metabo15090592
APA StyleSurendran, A., Ravandi, A., & Shah, A. H. (2025). Plasma Lipidomic Alterations in Fontan Circulation Reflect Cardiovascular Functional Reserve. Metabolites, 15(9), 592. https://doi.org/10.3390/metabo15090592