Phytochemical Analysis and Appraisal of Antiproliferative Activity of Magnolia alejandrae
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Identification of Plant Material
2.2. Extraction Procedure
2.3. Analysis by Ultra-Performance Liquid Chromatography (UPLC-MS)
2.4. Cell Lines and Culture Conditions
2.5. In Vitro Evaluation
3. Results
3.1. Extraction Efficiency
3.2. Chromatographic Parameters of Magnolol and Honokiol by UPLC-MS
3.3. Comparative Analysis of Secondary Metabolites from M. alejandre
3.4. Antiproliferative Evaluation of M. alejandrae Extracts Against Cancer Cell Lines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rempel, V.; Fuchs, A.; Hinz, S.; Karcz, T.; Lehr, M.; Koetter, U.; Müller, C.E. Magnolia extract, magnolol, and metabolites: Activation of cannabinoid CB2 receptors and blockade of the related GPR55. ACS Med. Chem. Lett. 2013, 4, 41–45. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, Y.M.; Lee, C.K.; Jung, J.K.; Han, S.B.; Hong, J.T. Therapeutic applications of compounds in the Magnolia family. Pharmacol. Ther. 2011, 130, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Fischer, N.H. Biologically active lignans and neolignans from Magnolia species. J. Mex. Chem. Soc. 1999, 43, 211–218. [Google Scholar]
- Olas, B. The Cardioprotective Effect of Magnolia officinalis and Its Major Bioactive Chemical Constituents. Int. J. Mol. Sci. 2025, 26, 4380. [Google Scholar] [CrossRef]
- Tan, L.H.; Zhang, D.; Yu, B.; Zhao, S.P.; Cao, W.G. Antioxidant activity of the different polar solvent extracts of Magnolia officinalis leaves and purification of main active compounds. Eur. Food. Res. Technol. 2015, 240, 815–822. [Google Scholar] [CrossRef]
- Walker, J.M.; Maitra, A.; Walker, J.; Ehrnhoefer-Ressler, M.M.; Inui, T.; Somoza, V. Identification of Magnolia officinalis L. bark extract as the most potent anti-inflammatory of four plant extracts. Am. J. Chin. Med. 2013, 41, 531–544. [Google Scholar] [CrossRef]
- Hu, Y.; Qiao, J.; Zhang, X.; Ge, C. Antimicrobial effect of Magnolia officinaliss extract against Staphylococcus aureus. J. Sci. Food Agric. 2011, 91, 1050–1056. [Google Scholar] [CrossRef]
- Youn, U.; Chen, Q.C.; Lee, I.S.; Kim, H.; Yoo, J.-K.; Lee, J.; Na, M.; Min, B.-S.; Bae, K. Two New Lignans from the Stem Bark of Magnolia obovata and Their Cytotoxic Activity. Chem. Pharm. Bull. 2008, 56, 115–117. [Google Scholar] [CrossRef]
- Xie, Q.; Chen, J.; Yang, H.; Liang, J.; Ma, R.; Guo, J.; Zeng, X. A Comprehensive Review of Coptidis Rhizoma and Magnoliae Officinalis Cortex Drug Pair and Their Chemical Composition, Pharmacological Effects and Pharmacokinetics Analysis. Drug Des. Devel. Ther. 2024, 18, 4413–4426. [Google Scholar] [CrossRef]
- Cristea, R.M.; Sava, C.; Căpățână, C.; Kanellou, A. Phytochemical Analysis and Specific Activities of Bark and Flower Extracts from Four Magnolia Plant Species. Horticulturae 2024, 10, 141. [Google Scholar] [CrossRef]
- Youn, U.J.; Fatima, N.; Chen, Q.C.; Chae, S.; Hung, T.M.; Min, B.S. Apoptosis-inducing and Antitumor Activity of Neolignans Isolated from Magnolia officinalis in HeLa Cancer Cells. Phytother. Res. 2013, 27, 1419–1422. [Google Scholar] [CrossRef]
- Usach, I.; Alaimo, A.; Fernández, J.; Ambrosini, A.; Mocini, S.; Ochiuz, L.; Peris, J.E. Magnolol and honokiol: Two natural compounds with similar chemical structure but different physicochemical and stability properties. Pharmaceutics 2021, 13, 224. [Google Scholar] [CrossRef] [PubMed]
- Mottaghi, S.; Abbaszadeh, H. Natural lignans honokiol and magnolol as potential anticarcinogenic and anticancer agents. A comprehensive mechanistic review. Nutr. Cancer 2022, 74, 761–778. [Google Scholar] [CrossRef]
- Hao, K.X.; Hao, Y.F.; Zhang, J.; Xu, X.L.; Jiang, J.G. Comparative Anti-Cancer and Anti-Inflammatory Activities of Essential Oils from the Bark and Flower of Magnolia officinalis Rehd. et Wils. Foods 2024, 13, 2074. [Google Scholar] [CrossRef]
- Park, E.H.; Kim, H.S.; Eom, S.J.; Kim, K.T.; Paik, H.D. Antioxidative and anticancer activities of magnolia (Magnolia denudata) flower petal extract fermented by Pediococcus acidilactici KCCM 11614. Molecules 2015, 20, 12154–12165. [Google Scholar] [CrossRef]
- Navarrete-Carriola, D.V.; Paz-González, A.D.; Vázquez-Jiménez, L.K.; De Luna-Santillana, E.; Cruz-Hernández, M.A.; Bandyopadhyay, D.; Rivera, G. Comparative Analysis of a Secondary Metabolite Profile from Roots and Leaves of Iostephane heterophylla by UPLC-MS and GC-MS. ACS Omega 2024, 9, 5429–5439. [Google Scholar] [CrossRef]
- Xie, J.; Li, H.; Zhu, X.; Wang, P.; Su, W. Efficient and selective extraction of magnolol from Magnolia officinalis by mechanochemical extraction technique. Chem. Eng. Process. Process Intensif. 2011, 50, 325–330. [Google Scholar] [CrossRef]
- Poivre, M.; Duez, P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J. Zhejiang Univ. Sci. B 2017, 18, 194. [Google Scholar] [PubMed]
- Gallardo-Yobal, S. Ecología y Estado de Conservacion de Magnolia alejandrae García-Morales (Magnoliaceae) una Especie Endémica del Noreste de México. Ph.D. Thesis, IEA, Paris, France, 2021. [Google Scholar]
- Akande, C.; Yobal, S. Magnolia alejandrae. The IUCN Red List of Threatened Species 2021: e.T182247087A196811648. Available online: https://www.iucnredlist.org/species/182247087/196811648 (accessed on 15 February 2025).
- Olazaran-Santibañez, F.E.; Heinz-Castro, R.T.; Rivera, G.; Rocandio-Rodríguez, M.; Navarrete-Carriola, D.V.; Zapata-Campos, C.C.; Chacón-Hernández, J.C. Evaluation of Ethanol Extract of Magnolia alejandrae (Magnoliales: Magnoliaceae) against Tetranychus merganser (Acari: Tetranychidae) 1. J. Entomol. Sci. 2024, 59, 193–210. [Google Scholar] [CrossRef]
- García-Morales, L.; Iamonico, D.; García-Jiménez, J. Nomenclatural remarks on Magnolia sect. Macrophylla (Magnoliaceae), with description of a new species from North America (Tamaulipas, Mexico). Phytotaxa 2017, 309, 16. [Google Scholar] [CrossRef]
- Saqib, F.; Shabir, A.; Manzoor, A.; Annamalai, M. Chapter 2—Extraction techniques. In Plant Extracts: Applications in the Food Industry; Academic Press: Cambridge, MA, USA, 2022; pp. 23–37. [Google Scholar]
- Safdar, M.N.; Kausar, T.; Jabbar, S.; Mumtaz, A.; Ahad, K.; Saddozai, A. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J. Food Drug Anal. 2017, 25, 488–500. [Google Scholar] [CrossRef]
- Van Tang, N.; Hong, N.T.P.; Bowyer, M.C.; van Altena, I.A.; Scarlett, C.J. Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus. Chem. Pap. 2016, 70, 556. [Google Scholar]
- Chisté, R.C.; de Toledo Benassi, M.; Mercadante, A.Z. Efficiency of different solvents on the extraction of bioactive compounds from the Amazonian fruit Caryocar villosum and the effect on its antioxidant and colour properties. Phytochem. Anal. 2014, 25, 364–372. [Google Scholar] [CrossRef]
- Jiang, Y.; Vaysse, J.; Gilard, V.; Balayssac, S.; Déjean, S.; Malet-Martino, M.; David, B.; Fiorini, C.; Barbin, Y. Quality Assessment of Commercial Magnoliae officinalis Cortex by 1H-NMR-based Metabolomics and HPLC Methods. Phytochem. Anal. 2012, 23, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Sun, W.; Gao, L.; Kim, K.S.; Kim, K.T.; Cai, L.; Zhang, Z.; Zheng, Y. Extracts of Magnolia Species-Induced Prevention of Diabetic Complications: A Brief Review. Int. J. Mol. Sci. 2016, 17, 1629. [Google Scholar] [CrossRef]
- Higashi, Y. Simultaneous Analysis of Honokiol and Magnolol in Rat Serum by HPLC with Fluorescence Detection after Solidphase Extraction for Pharmacokinetic Studies. Austin J. Anal. Pharm. Chem. 2015, 2, 1038. [Google Scholar]
- Wang, T.; Chen, F.; Chen, Z.; Wu, Y.F.; Xu, X.L.; Zheng, S.; Hu, X. Honokiol induces apoptosis through p53-independent pathway in human colorectal cell line RKO. World J. Gastroenterol. 2004, 10, 2205–2208. [Google Scholar] [CrossRef]
- Wang, Y.D.; Sun, X.J.; Yang, W.J.; Li, J.; Yin, J.J. Magnolol exerts anticancer activity in hepatocellular carcinoma cells through regulating endoplasmic reticulum stress-mediated apoptotic signaling. Onco Targets Ther. 2018, 11, 5219–5226. [Google Scholar] [CrossRef]
- Tse, A.K.; Wan, C.K.; Shen, X.L.; Yang, M.; Fong, W.F. Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation. Biochem. Pharmacol. 2005, 70, 1443–1457. [Google Scholar] [CrossRef]
- Bi, L.; Yu, Z.; Wu, J.; Yu, K.; Hong, G.; Lu, Z.; Gao, S. Honokiol Inhibits Constitutive and Inducible STAT3 Signaling via PU.1-Induced SHP1 Expression in Acute Myeloid Leukemia Cells. Tohoku J. Exp. Med. 2015, 237, 163–172. [Google Scholar] [CrossRef]
- Kim, S.Y.; Choi, Y.H. Honokiol induces paraptosis-like cell death through mitochondrial ROS-dependent endoplasmic reticulum stress in hepatocellular carcinoma Hep3B cells. Toxicol. Res. 2025, 41, 385–396. [Google Scholar] [CrossRef] [PubMed]
Standard | Retention Time (Min) | Theoretical m/z [M+H+]+ | Experimental m/z [M+H+]+ | Majority Ion | LOQ | LOD |
---|---|---|---|---|---|---|
Honokiol | 1.616 | 267.1413 | 267.62 | 267.62 | 0.025 | 0.0125 |
Magnolol | 3.504 | 267.1379 | 267.61 | 267.61 | 0.025 | 0.0125 |
Secondary Metabolite | MW | Part of Plant | Method/Solvent | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maceration | Ultrasound | Soxhlet | Reflux | |||||||||||
W | E | D | W | E | D | W | E | D | W | E | D | |||
Magnone A | 402.4 | F | + | + | ++ | + | + | + | + | + | + | + | - | ++ |
L | + | + | + | + | + | - | + | + | + | + | - | + | ||
B | ++ | ++ | ++ | + | + | ++ | + | ++ | ++ | + | + | + | ||
2,3,5,8-Tetramethyldecane | 198.4 | F | + | + | ++ | - | + | + | - | + | ++ | - | + | + |
L | - | - | + | + | ++ | - | + | + | ++ | + | - | - | ||
B | - | - | - | - | - | - | - | - | - | - | - | - | ||
Magnolialide | 249.1 | F | + | + | ++ | + | ++ | ++ | ++ | + | ++ | ++ | ++ | ++ |
L | - | - | - | - | + | - | + | + | + | - | - | - | ||
B | - | + | ++ | - | ++ | - | - | ++ | + | - | + | ++ | ||
Salicifoliol | 250.2 | F | + | + | + | + | ++ | ++ | ++ | + | ++ | ++ | ++ | ++ |
L | - | - | - | - | - | ++ | + | - | - | - | - | - | ||
B | + | + | ++ | - | + | + | - | + | + | + | + | - | ||
Pinoresinol | 358.4 | F | + | + | ++ | + | + | + | - | - | + | + | - | ++ |
L | + | + | + | ++ | + | - | + | + | + | + | ++ | + | ||
B | ++ | ++ | + | + | + | + | - | ++ | ++ | ++ | ++ | ++ | ||
Yangambin | 446.5 | F | + | + | ++ | + | + | + | + | + | - | + | - | ++ |
L | + | + | + | + | + | - | + | + | - | + | + | + | ||
B | ++ | ++ | + | + | ++ | + | - | ++ | + | + | ++ | + |
SM | MW | Part of Plant | Method/Solvent | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maceration | Ultrasound | Soxhlet | Reflux | |||||||||||
W | E | D | W | E | D | W | E | D | W | E | D | |||
C | 267.59 | F | - | - | - | - | + | ++ | - | - | - | - | - | - |
L | - | ++ | - | - | + | - | - | - | ++ | + | - | - | ||
B | + | + | + | - | - | - | + | - | + | + | + | + | ||
C1 | 401.73 | F | + | + | + | - | - | - | - | + | - | - | + | + |
L | - | + | - | - | - | - | - | + | + | - | - | - | ||
B | + | + | - | - | - | + | + | - | + | + | + | + | ||
C2 | 349.62 | F | - | + | ++ | - | + | + | - | + | + | - | - | + |
L | - | - | ++ | - | + | - | - | + | + | - | - | + | ||
B | + | ++ | - | + | - | ++ | + | - | + | - | + | + | ||
C3 | 440.80 | F | - | - | - | - | - | - | + | + | + | + | + | - |
L | - | + | - | - | - | - | - | - | - | - | - | - | ||
B | - | - | - | - | + | - | + | - | - | - | - | - | ||
C4 | 484.75 | F | - | - | + | - | - | - | + | + | + | + | + | + |
L | + | - | - | - | - | - | - | - | + | - | - | - | ||
B | - | - | - | - | - | - | + | - | - | - | + | - | ||
C5 | 453.54 | F | ++ | - | - | - | - | - | + | + | - | - | - | - |
L | ++ | - | - | - | - | - | - | - | - | - | - | + | ||
B | + | - | - | - | - | - | + | - | - | + | - | - | ||
C6 | 497.50 | F | ++ | - | - | - | - | - | + | - | - | + | + | - |
L | ++ | - | - | - | - | - | - | - | - | - | - | - | ||
B | - | - | - | + | - | - | - | - | - | - | + | - | ||
C7 | 541.44 | F | ++ | - | - | - | - | - | - | - | - | + | + | - |
L | ++ | - | - | - | - | - | - | - | + | - | - | - | ||
B | + | - | - | + | - | + | + | - | - | - | - | - | ||
C8 | 484.80 | F | + | - | - | - | - | - | + | + | + | + | - | + |
L | + | - | - | + | - | - | - | - | - | - | - | - | ||
B | - | - | - | - | - | - | + | - | - | - | + | - | ||
C9 | 481.55 | F | - | - | + | - | - | - | - | + | - | - | - | ++ |
L | - | - | - | - | - | - | - | - | + | - | - | - | ||
B | - | + | - | - | + | - | - | - | - | - | ++ | - |
Extracts | Cell Line IC50 (μg/mL) | |||||
---|---|---|---|---|---|---|
HeLa (Cervical) | MCF-7 (Breast) | A549 (Lung) | U373 (Glioma) | PC3 (Prostate) | MCF10A (Normal Cell) | |
LSW | >300 | >300 | >300 | >300 | >300 | >300 |
LSE | >300 | >300 | >300 | >300 | >300 | >300 |
LSD | >300 | >300 | >300 | >300 | >300 | >300 |
FSW | 107 ± 27 | 130 ± 11 | 54 ± 13 | 101 ± 17 | 125 ± 17 | >300 |
FSE | >300 | >300 | >300 | >300 | >300 | >300 |
FSD | >300 | >300 | >300 | >300 | >300 | >300 |
BSW | 102 ± 49 | 137 ± 56 | 34 ± 14 | 67 ± 18 | 49 ± 5 | >300 |
BSD | >300 | >300 | >300 | >300 | >300 | >300 |
BSE | >300 | >300 | >300 | >300 | >300 | >300 |
LUW | >300 | >300 | >300 | >300 | >300 | >300 |
LUE | 97 ± 42 | 235 ± 31 | 202 ± 32 | 249 ± 32 | 263 ± 34 | >300 |
LUD | 164 ± 78 | 161 ± 76 | 209 ± 76 | 283 ± 14 | 240 ± 48 | >300 |
Compounds | IC50 (µM) | |||||
Mag | 4.9 ± 0.1 | 4.6 ± 3.6 | 5.5 ± 1.5 | 6.1 ± 3.4 | 17.8 ± 9.3 | >150 |
Hon | 4.7 ± 0.4 | 6.2 ± 2.6 | 9.6 ± 3.8 | 8.1 ± 2.8 | 21.5 ± 10.8 | >150 |
Dx | 4.6 ± 0.6 | 5.8 ± 0.5 | 4.8 ± 0.5 | 8.8 ± 5.5 | 15.6 ± 8.5 | 1.5 ± 1.2 |
Cell Line | Extracts | Controls | |||||
---|---|---|---|---|---|---|---|
LUE | LUD | BSW | FSW | Mag | Hon | Doxorubicin | |
HeLa | 3.1 | 1.8 | 2.9 | 2.8 | 30.6 | 31.9 | 0.32 |
MCF-7 | 1.3 | 1.9 | 2.2 | 2.3 | 32.6 | 24.2 | 0.25 |
A549 | 1.5 | 1.4 | 8.8 | 5.6 | 27.3 | 15.6 | 0.31 |
U373 | 1.2 | 1.1 | 4.5 | 2.4 | 24.6 | 18.5 | 0.17 |
PC3 | 1.1 | 1.3 | 6.1 | 2.4 | 8.4 | 7 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero-Chávez, J.E.; Paz-González, A.D.; Navarrete-Carriola, D.V.; Olazarán-Santibañez, F.E.; Estevez-Carmona, M.M.; Nogueda-Torres, B.; Jiménez-Mondragón, F.E.; Márquez-Aguilar, M.X.; Pineda-Alcala, C.M.; Cisneros-Juárez, D.; et al. Phytochemical Analysis and Appraisal of Antiproliferative Activity of Magnolia alejandrae. Metabolites 2025, 15, 567. https://doi.org/10.3390/metabo15090567
Caballero-Chávez JE, Paz-González AD, Navarrete-Carriola DV, Olazarán-Santibañez FE, Estevez-Carmona MM, Nogueda-Torres B, Jiménez-Mondragón FE, Márquez-Aguilar MX, Pineda-Alcala CM, Cisneros-Juárez D, et al. Phytochemical Analysis and Appraisal of Antiproliferative Activity of Magnolia alejandrae. Metabolites. 2025; 15(9):567. https://doi.org/10.3390/metabo15090567
Chicago/Turabian StyleCaballero-Chávez, José E., Alma D. Paz-González, Diana V. Navarrete-Carriola, Fabián E. Olazarán-Santibañez, María Miriam Estevez-Carmona, Benjamín Nogueda-Torres, Fernando Emiliano Jiménez-Mondragón, Melany X. Márquez-Aguilar, Carmen Michelle Pineda-Alcala, Diego Cisneros-Juárez, and et al. 2025. "Phytochemical Analysis and Appraisal of Antiproliferative Activity of Magnolia alejandrae" Metabolites 15, no. 9: 567. https://doi.org/10.3390/metabo15090567
APA StyleCaballero-Chávez, J. E., Paz-González, A. D., Navarrete-Carriola, D. V., Olazarán-Santibañez, F. E., Estevez-Carmona, M. M., Nogueda-Torres, B., Jiménez-Mondragón, F. E., Márquez-Aguilar, M. X., Pineda-Alcala, C. M., Cisneros-Juárez, D., Marín-Hernández, Á., Bandyopadhyay, D., & Rivera, G. (2025). Phytochemical Analysis and Appraisal of Antiproliferative Activity of Magnolia alejandrae. Metabolites, 15(9), 567. https://doi.org/10.3390/metabo15090567