Discriminative Capacity of Visceral Adiposity and Triglyceride Glucose-Waist Circumference Indices for Metabolic Syndrome in Spanish Adolescents: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Anthropometric Parameters
2.3. Biochemical Parameters
2.4. Blood Pressure Determination
2.5. Metabolic Syndrome Definition
2.6. Biochemical and/or Anthropometric Indices
- -
- TyG index: The TyG index was calculated as Ln (TG [mg/dL] × glucose [mg/dL]/2) [29].
- -
- Visceral adiposity index (VAI): VAI was estimated using the sex-specific formulas proposed by Amato et al. [30]:
- ○
- Males: VAI = (WC (cm)/(39.68 + (1.88 × BMI))) × (TG/1.03) × (1.31/HDL)
- ○
- Females: VAI = (WC (cm)/(36.58 + (1.89 × BMI))) × (TG/0.81) × (1.52/HDL)
- -
- LnCLAP index (children’s lipid accumulation product): The CLAP was calculated as waist circumference (WC (cm)) × abdominal skinfold thickness (AST (mm)) × triglyceride (TG (mmol/L))/100 [31].
- -
2.7. Strategies to Minimize Measurement Bias
2.8. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants
3.2. Logistic Regression Analyses of TyG-Derived Indices, VAI, LnCLAP, and Their Association with MetS
3.3. Determination of the Ability of Different Biochemical and/or Anthropometric Indices to Discriminate MetS by Analyzing Receiver Operating Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP | Blood pressure |
BMI | Body mass index |
GOD-PAP | Glucose oxidase-phenol aminophenazone |
HDL-c | HDL-cholesterol |
HC | Hip circumference |
HOMA-IR | Homeostasis Model Assessment-Insulin Resistance |
ISAK | International Society for the Advancement of Kinanthropometry |
LnCLAP | Logarithm children’s lipid accumulation product |
LDL-c | LDL-cholesterol |
MetS | Metabolic syndrome |
TG | Triglycerides |
TyG | Triglyceride glucose |
TyG-BMI | Triglyceride glucose-body mass index |
TyG-WC | Triglyceride glucose-waist circumference |
TyG-WHR | Triglyceride glucose-waist-to-hip ratio |
VAI | Visceral adiposity index |
WC | Waist circumference |
WHR | Waist-to-hip ratio |
References
- Codazzi, V.; Frontino, G.; Galimberti, L.; Giustina, A.; Petrelli, A. Mechanisms and Risk Factors of Metabolic Syndrome in Children and Adolescents. Endocrine 2023, 84, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Steinberger, J.; Moran, A.; Hong, C.-P.; Jacobs, D.R.; Sinaiko, A.R. Adiposity in Childhood Predicts Obesity and Insulin Resistance in Young Adulthood. J. Pediatr. 2001, 138, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Viitasalo, A.; Pitkänen, N.; Pahkala, K.; Lehtimäki, T.; Viikari, J.S.A.; Raitakari, O.; Kilpeläinen, T.O. Increase in Adiposity from Childhood to Adulthood Predicts a Metabolically Obese Phenotype in Normal-Weight Adults. Int. J. Obes. 2020, 44, 848–851. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.A.; Friedman, L.A.; Wang, P.; Glueck, C.J. Metabolic Syndrome in Childhood Predicts Adult Metabolic Syndrome and Type 2 Diabetes Mellitus 25 to 30 Years Later. J. Pediatr. 2008, 152, 201–206. [Google Scholar] [CrossRef]
- Konuthula, D.; Tan, M.M.; Burnet, D.L. Challenges and Opportunities in Diagnosis and Management of Cardiometabolic Risk in Adolescents. Curr. Diab. Rep. 2023, 23, 185–193. [Google Scholar] [CrossRef]
- Lischka:, J.; Schanzer, A.; De Gier, C.; Greber-Platzer, S.; Zeyda, M. Macrophage-Associated Markers of Metaflammation Are Linked to Metabolic Dysfunction in Pediatric Obesity. Cytokine 2023, 171, 156372. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Park, S.H.; Kim, Y.; Im, M.; Han, H.-S. The Cutoff Values of Indirect Indices for Measuring Insulin Resistance for Metabolic Syndrome in Korean Children and Adolescents. Ann. Pediatr. Endocrinol. Metab. 2016, 21, 143. [Google Scholar] [CrossRef] [PubMed]
- Aravindakshan, S.S.; David, A.; Saradakutty, G.; Agarwal, P. Prevalence of Metabolic Syndrome and Its Associated Risk Factors Among Schoolchildren Aged 11-13 Years Living in Thiruvananthapuram District, Kerala, India: A Nested Case-Control Study. Cureus 2024, 16, e72994. [Google Scholar] [CrossRef]
- Mendonça, G.; Barbosa, A.O.; Moura, I.R.D.; Silva, J.M.D.P.F.; Prazeres Filho, A.; da Silva, D.J.; Toscano, C.V.A.; de Farias Júnior, J.C. Sedentary Behavior and Cardiometabolic Markers in Adolescents: A 4-Year Longitudinal Study. Pediatr. Exerc. Sci. 2025, 37, 154–163. [Google Scholar] [CrossRef]
- Cheng, X.; Guo, Q.; Ju, L.; Gong, W.; Wei, X.; Xu, X.; Zhao, L.; Fang, H. Association between Sedentary Behavior, Screen Time and Metabolic Syndrome among Chinese Children and Adolescents. BMC Public Health 2024, 24, 1715. [Google Scholar] [CrossRef]
- Andrade, C. Physical Exercise and Health, 5: Sedentary Time, Independent of Health-Related Physical Activity, as a Risk Factor for Adverse Physical Health and Mental Health Outcomes. J. Clin. Psychiatry 2024, 85, 24f15261. [Google Scholar] [CrossRef] [PubMed]
- Leis, R.; De Lamas, C.; De Castro, M.-J.; Picáns, R.; Gil-Campos, M.; Couce, M.L. Effects of Nutritional Education Interventions on Metabolic Risk in Children and Adolescents: A Systematic Review of Controlled Trials. Nutrients 2019, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Dundar, C.; Terzi, O.; Arslan, H.N. Comparison of the Ability of HOMA-IR, VAI, and TyG Indexes to Predict Metabolic Syndrome in Children with Obesity: A Cross-Sectional Study. BMC Pediatr. 2023, 23, 74. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Kizhakkayil Padikkal, A.K.; Mishra, S.; Madhavanpillai, M. Association of Lipid Accumulation Product and Triglyceride-Glucose Index with Metabolic Syndrome in Young Adults: A Cross-Sectional Study. Int. J. Endocrinol. Metab. 2022, 20, e115428. [Google Scholar] [CrossRef]
- Raimi, T.H.; Dele-Ojo, B.F.; Dada, S.A.; Fadare, J.O.; Ajayi, D.D.; Ajayi, E.A.; Ajayi, O.A. Triglyceride-Glucose Index and Related Parameters Predicted Metabolic Syndrome in Nigerians. Metab. Syndr. Relat. Disord. 2021, 19, 76–82. [Google Scholar] [CrossRef]
- Gui, J.; Li, Y.; Liu, H.; Guo, L.; Li, J.; Lei, Y.; Li, X.; Sun, L.; Yang, L.; Yuan, T.; et al. Obesity- and Lipid-Related Indices as a Predictor of Obesity Metabolic Syndrome in a National Cohort Study. Front. Public Health 2023, 11, 1073824. [Google Scholar] [CrossRef]
- Lim, J.; Kim, J.; Koo, S.H.; Kwon, G.C. Comparison of Triglyceride Glucose Index, and Related Parameters to Predict Insulin Resistance in Korean Adults: An Analysis of the 2007–2010 Korean National Health and Nutrition Examination Survey. PLoS ONE 2019, 14, e0212963. [Google Scholar] [CrossRef]
- Miao, H.; Zhou, Z.; Yang, S.; Zhang, Y. The Association of Triglyceride-Glucose Index and Related Parameters with Hypertension and Cardiovascular Risk: A Cross-Sectional Study. Hypertens. Res. 2024, 47, 877–886. [Google Scholar] [CrossRef]
- Fernández-Aparicio, Á.; Perona, J.S.; Schmidt-RioValle, J.; Padez, C.; González-Jiménez, E. Assessment of Different Atherogenic Indices as Predictors of Metabolic Syndrome in Spanish Adolescents. Biol. Res. Nurs. 2022, 24, 163–171. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki. Recommendations Guiding Physicians in Biomedical Research Involving Human Subjects. JAMA 1997, 277, 925–926. [Google Scholar] [CrossRef]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; De Ridder, H. International Standards for Anthropometric Assessment, 3rd ed.; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011; ISBN 978-0-620-36207-8. [Google Scholar]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 23 July 2025).
- Brook, C.G.D. Determination of Body Composition of Children from Skinfold Measurements. Arch. Dis. Child. 1971, 46, 182–184. [Google Scholar] [CrossRef]
- Siri, W.E. Body Composition from Fluid Spaces and Density: Analysis of Methods. 1961. Nutrition 1993, 9, 480–491, discussion 480, 492. [Google Scholar] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for Blood Pressure Measurement in Humans and Experimental Animals: Part 1: Blood Pressure Measurement in Humans: A Statement for Professionals From the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 2005, 111, 697–716. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The Metabolic Syndrome in Children and Adolescents—an IDF Consensus Report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group Visceral Adiposity Index. A Reliable Indicator of Visceral Fat Function Associated with Cardiometabolic Risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, J.; Li, Z.; Li, T.; Chen, M.; Wu, L.; Liu, W.; Han, H.; Yao, R.; Fu, L. A Novel Indicator Of Lipid Accumulation Product Associated With Metabolic Syndrome In Chinese Children And Adolescents. DMSO 2019, 12, 2075–2083. [Google Scholar] [CrossRef]
- Er, L.-K.; Wu, S.; Chou, H.-H.; Hsu, L.-A.; Teng, M.-S.; Sun, Y.-C.; Ko, Y.-L. Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLoS ONE 2016, 11, e0149731. [Google Scholar] [CrossRef]
- Li, S.; Feng, L.; Ding, J.; Zhou, W.; Yuan, T.; Mao, J. Triglyceride Glucose-Waist Circumference: The Optimum Index to Screen Nonalcoholic Fatty Liver Disease in Non-Obese Adults. BMC Gastroenterol 2023, 23, 376. [Google Scholar] [CrossRef] [PubMed]
- Reckziegel, M.B.; Nepomuceno, P.; Machado, T.; Renner, J.D.P.; Pohl, H.H.; Nogueira-de-Almeida, C.A.; Mello, E.D.D. The Triglyceride-Glucose Index as an Indicator of Insulin Resistance and Cardiometabolic Risk in Brazilian Adolescents. Arch. Endocrinol. Metab. 2023, 67, 153–161. [Google Scholar] [CrossRef]
- Bredella, M.A. Sex Differences in Body Composition. In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity; Mauvais-Jarvis, F., Ed.; Advances in Experimental Medicine and, Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 1043, pp. 9–27. ISBN 978-3-319-70177-6. [Google Scholar]
- Wells, J.C.K. Sexual Dimorphism of Body Composition. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 415–430. [Google Scholar] [CrossRef]
- Ejtahed, H.-S.; Kelishadi, R.; Hasani-Ranjbar, S.; Angoorani, P.; Motlagh, M.E.; Shafiee, G.; Ziaodini, H.; Taheri, M.; Qorbani, M.; Heshmat, R. Discriminatory Ability of Visceral Adiposity Index as an Indicator for Modeling Cardio-Metabolic Risk Factors in Pediatric Population: The CASPIAN-V Study. J. Cardiovasc. Thorac. Res. 2019, 11, 280–286. [Google Scholar] [CrossRef]
- Dikaiakou, E.; Vlachopapadopoulou, E.A.; Paschou, S.A.; Athanasouli, F.; Panagiotopoulos, Ι.; Kafetzi, M.; Fotinou, A.; Michalacos, S. Τriglycerides-Glucose (TyG) Index Is a Sensitive Marker of Insulin Resistance in Greek Children and Adolescents. Endocrine 2020, 70, 58–64. [Google Scholar] [CrossRef]
- Dong, Y.; Bai, L.; Cai, R.; Zhou, J.; Ding, W. Visceral Adiposity Index Performed Better than Traditional Adiposity Indicators in Predicting Unhealthy Metabolic Phenotype among Chinese Children and Adolescents. Sci. Rep. 2021, 11, 23850. [Google Scholar] [CrossRef] [PubMed]
- Vizzuso, S.; Del Torto, A.; Dilillo, D.; Calcaterra, V.; Di Profio, E.; Leone, A.; Gilardini, L.; Bertoli, S.; Battezzati, A.; Zuccotti, G.V.; et al. Visceral Adiposity Index (VAI) in Children and Adolescents with Obesity: No Association with Daily Energy Intake but Promising Tool to Identify Metabolic Syndrome (MetS). Nutrients 2021, 13, 413. [Google Scholar] [CrossRef] [PubMed]
- Negrea, M.O.; Neamtu, B.; Dobrotă, I.; Sofariu, C.R.; Crisan, R.M.; Ciprian, B.I.; Domnariu, C.D.; Teodoru, M. Causative Mechanisms of Childhood and Adolescent Obesity Leading to Adult Cardiometabolic Disease: A Literature Review. Appl. Sci. 2021, 11, 11565. [Google Scholar] [CrossRef]
- Rattanatham, R.; Tangpong, J.; Chatatikun, M.; Sun, D.; Kawakami, F.; Imai, M.; Klangbud, W.K. Assessment of Eight Insulin Resistance Surrogate Indexes for Predicting Metabolic Syndrome and Hypertension in Thai Law Enforcement Officers. PeerJ 2023, 11, e15463. [Google Scholar] [CrossRef]
Variables | Boys (n = 456) | Girls (n= 525) | p-Value |
---|---|---|---|
HC (cm) | 84.2 ± 9.9 | 83.8 ± 8.6 | 0.510 |
WHR | 0.88 ± 0.06 | 0.87 ± 0.06 | <0.001 |
TyG | 8.5 ± 0.5 | 8.5 ± 0.4 | 0.417 |
VAI | 1.7 ± 1.1 | 2.4 ± 1.7 | <0.001 |
LnCLAP | 2.6 ± 0.8 | 2.7 ± 0.7 | 0.027 |
TyG-BMI | 183.1 ± 35.8 | 179.6 ± 32.8 | 0.113 |
TyG-WC | 629.6 ± 107.7 | 607.1 ± 89.0 | <0.001 |
TyG-WHR | 7.5 ± 0.8 | 7.2 ± 0.7 | <0.001 |
Variables | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | GoF | OR (95% CI) | p | GoF | OR (95% CI) | p | GoF | |
TyG | 5.21 (3.23–8.40) | <0.001 | 0.039 | 6.15 (3.73–10.25) | <0.001 | 0.610 | 2.78 (1.80–4.29) | <0.001 | <0.001 |
VAI | 1.55 (1.27–1.90) | <0.001 | <0.001 | 1.56 (1.28–1.90) | <0.001 | <0.001 | 1.51 (1.23–1.84) | <0.001 | <0.001 |
LnCLAP | 1.69 (1.24–2.30) | <0.001 | <0.001 | 1.72 (1.26–2.35) | <0.001 | <0.001 | 3.14 (1.57–6.30) | 0.001 | <0.001 |
TyG-BMI | 1.01 (1.01–1.02) | <0.001 | <0.001 | 1.01 (1.00–1.02) | <0.001 | <0.001 | 1.06 (1.01–1.10) | <0.001 | <0.001 |
TyG-WC | 1.00 (1.00–1.01) | <0.001 | <0.001 | 1.01 (1.00–1.01) | <0.001 | <0.001 | 1.02 (1.01–1.02) | <0.001 | <0.001 |
TyG-WHR | 2.02 (1.46–2.79) | <0.001 | <0.001 | 2.06 (1.49–2.86) | <0.001 | <0.001 | 3.19 (2.96–5.20) | <0.001 | <0.001 |
Glucose | 1.02 (1.01–1.02) | <0.001 | <0.001 | 1.02 (1.01–1.02) | <0.001 | <0.001 | 1.02 (1.01–1.02) | <0.001 | <0.001 |
TG | 1.01 (1.00–1.01) | <0.001 | <0.001 | 1.01 (1.00–1.02) | <0.001 | 0.068 | 1.01 (1.00–1.01) | <0.001 | <0.001 |
Cholesterol | 1.55 (1.26–1.91) | <0.001 | <0.001 | 1.55 (1.26–1.92) | <0.001 | <0.001 | 1.51 (1.22–1.87) | <0.001 | <0.001 |
HDL-c | 0.82 (0.76–0.88) | <0.001 | <0.001 | 0.82 (0.76–0.88) | <0.001 | <0.001 | 0.83 (0.77–0.89) | <0.001 | <0.001 |
Variables | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | GoF | OR (95% CI) | p | GoF | OR (95% CI) | p | GoF | |
TyG | 7.52 (4.29–13.20) | <0.001 | 0.026 | 7.62 (4.35–13.36) | <0.001 | <0.001 | 2.87 (1.79–4.61) | <0.001 | <0.001 |
VAI | 1.19 (1.03–1.38) | 0.021 | <0.001 | 1.19 (1.03–1.38) | 0.021 | <0.001 | 1.18 (1.02–1.36) | 0.022 | <0.001 |
LnCLAP | 1.03 (1.02–1.04) | <0.001 | <0.001 | 1.03 (1.02–1.04) | <0.001 | <0.001 | 1.04 (1.02–1.07) | 0.001 | <0.001 |
TyG-BMI | 1.71 (1.18–2.46) | 0.004 | <0.001 | 1.71 (1.19–2.47) | 0.004 | <0.001 | 3.68 (1.57–8.65) | 0.003 | <0.001 |
TyG-WC | 1.01 (1.00–1.02) | <0.001 | <0.001 | 1.01 (1.01–1.02) | <0.001 | <0.001 | 1.05 (1.02–1.10) | <0.001 | <0.001 |
TyG-WHR | 1.01 (1.00–1.01) | <0.001 | <0.001 | 1.01 (1.00–1.01) | <0.001 | <0.001 | 1.02 (1.01–1.02) | <0.001 | <0.001 |
Glucose | 1.01 (1.01–1.02) | <0.001 | <0.001 | 1.01 (1.01–1.02) | <0.001 | <0.001 | 1.01 (1.01–1.02) | <0.001 | <0.001 |
TG | 1.01 (1.01–1.01) | <0.001 | <0.001 | 1.01 (1.01–1.02) | <0.001 | 0.017 | 1.01 (1.00–1.01) | <0.001 | <0.001 |
Cholesterol | 1.56 (1.25–1.95) | <0.001 | <0.001 | 1.56 (1.25–1.95) | <0.001 | <0.001 | 1.57 (1.25–1.7) | <0.001 | <0.001 |
HDL-c | 0.82 (0.76–0.88) | <0.001 | <0.001 | 0.82 (0.76–0.88) | <0.001 | <0.001 | 0.83 (0.77–0.89) | <0.001 | <0.001 |
Variables | AUC ± SD | 95% CI | p | Cutoff | Sensitivity | Specificity | Youden Index |
---|---|---|---|---|---|---|---|
TyG | 0.847 ± 0.039 | 0.771–0.922 | <0.001 | 8.534 | 0.829 | 0.814 | 0.644 |
VAI | 0.926 ± 0.016 | 0.894–0.957 | <0.001 | 1.647 | 0.854 | 0.862 | 0.716 |
LnCLAP | 0.847 ± 0.026 | 0.796–0.898 | <0.001 | 3.228 | 0.756 | 0.769 | 0.524 |
TyG-BMI | 0.874 ± 0.023 | 0.829–0.919 | <0.001 | 201.549 | 0.780 | 0.810 | 0.590 |
TyG-WC | 0.908 ± 0.018 | 0.874–0.943 | <0.001 | 687.938 | 0.878 | 0.824 | 0.702 |
TyG-WHR | 0.881 ± 0.022 | 0.37–0.925 | <0.001 | 7.706 | 0.780 | 0.778 | 0.559 |
Variables | AUC ± SD | 95% CI | p | Cutoff | Sensitivity | Specificity | Youden Index |
---|---|---|---|---|---|---|---|
TyG | 0.896 ± 0.037 | 0.823–0.968 | <0.001 | 8.567 | 0.938 | 0.850 | 0.787 |
VAI | 0.935 ± 0.021 | 0.894–0.977 | <0.001 | 2.297 | 0.969 | 0.793 | 0.762 |
LnCLAP | 0.846 ± 0.034 | 0.780–0.912 | <0.001 | 3.033 | 0.844 | 0.686 | 0.529 |
TyG-BMI | 0.918 ± 0.019 | 0.881–0.954 | <0.001 | 210.932 | 0.781 | 0.895 | 0.676 |
TyG-WC | 0.927 ± 0.016 | 0.896–0.958 | <0.001 | 644.481 | 0.969 | 0.769 | 0.738 |
TyG-WHR | 0.867 ± 0.037 | 0.793–0.940 | <0.001 | 7.493 | 0.875 | 0.799 | 0.674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Aparicio, Á.; Mohatar-Barba, M.; Perona, J.S.; Schmidt-RioValle, J.; Navarro-Pérez, C.F.; González-Jiménez, E. Discriminative Capacity of Visceral Adiposity and Triglyceride Glucose-Waist Circumference Indices for Metabolic Syndrome in Spanish Adolescents: A Cross-Sectional Study. Metabolites 2025, 15, 535. https://doi.org/10.3390/metabo15080535
Fernández-Aparicio Á, Mohatar-Barba M, Perona JS, Schmidt-RioValle J, Navarro-Pérez CF, González-Jiménez E. Discriminative Capacity of Visceral Adiposity and Triglyceride Glucose-Waist Circumference Indices for Metabolic Syndrome in Spanish Adolescents: A Cross-Sectional Study. Metabolites. 2025; 15(8):535. https://doi.org/10.3390/metabo15080535
Chicago/Turabian StyleFernández-Aparicio, Ángel, Miriam Mohatar-Barba, Javier S. Perona, Jacqueline Schmidt-RioValle, Carmen Flores Navarro-Pérez, and Emilio González-Jiménez. 2025. "Discriminative Capacity of Visceral Adiposity and Triglyceride Glucose-Waist Circumference Indices for Metabolic Syndrome in Spanish Adolescents: A Cross-Sectional Study" Metabolites 15, no. 8: 535. https://doi.org/10.3390/metabo15080535
APA StyleFernández-Aparicio, Á., Mohatar-Barba, M., Perona, J. S., Schmidt-RioValle, J., Navarro-Pérez, C. F., & González-Jiménez, E. (2025). Discriminative Capacity of Visceral Adiposity and Triglyceride Glucose-Waist Circumference Indices for Metabolic Syndrome in Spanish Adolescents: A Cross-Sectional Study. Metabolites, 15(8), 535. https://doi.org/10.3390/metabo15080535