Metabolomic Prediction of Naphthalene Pneumo-Toxicity in the Snail Helix aspersa maxima
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Housing
2.2. Chemicals
2.3. Naphthalene Exposure
2.4. Hemolymph Sampling
2.5. Measurement of GST Activity
2.5.1. Sample Preparation
2.5.2. GST Assay
2.6. 1H-NMR Spectroscopy and Spectral Data Analysis
2.6.1. Sample Preparation and Acquisition of Metabolic Profiles
2.6.2. Statistical Analysis
3. Results
3.1. GST Activity in Pulmonary Membrane After Exposure to Naphthalene
3.2. 1H-NMR Profiles of Pulmonary Membrane After Exposure to Naphthalene
3.3. 1H-NMR Profiles of Hemolymph After Na Exposure
4. Discussion
4.1. Metabolomic Evidence for Energetic Adaptation to Naphthalene Exposure
4.2. Metabolomic Evidence for Naphthalene-Induced Oxidative Stress, Inflammatory Effects, and Immune System Response
4.3. A Tug of War for Nutrients in Highly Proliferative Cells?
4.4. GST Analysis in Pulmonary Membrane
5. Conclusions
6. Study Limitations and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PAH | Polycyclic aromatic hydrocarbon |
TCA | Tricarboxylic acid cycle |
BALF | Bronchial alveolar lavage fluid |
GST | Glutathione S-transferase |
GSH | Glutathione |
CDNB | 1-chloro-2,4-dinitrobenzene |
BSA | Bovine serum albumin |
D2O | Deuterium oxide |
TSP | D4-trimethylsilyl propionic acid |
FID | Free induction decay |
AUC | Area under the curve |
PLS-DA | Partial least squares discriminant analysis |
VIP | Variable importance in projection |
AMP | Adenosine monophosphate |
ATP | Adenosine triphosphate |
MCOD | Malonyl-CoA decarboxylase |
PDH | Pyruvate dehydrogenase |
i.p. | Intraperitoneal |
SDH | Succinate dehydrogenase |
HIF | Hypoxia-inducible factor |
ROS | Reactive oxygen species |
SAM | S-adenosylmethionine |
PTM | Post-translational modification |
BCAA | Branched-chain amino acid |
SCFA | Short-chain fatty acid |
References
- Berger, B.; Dallinger, R. Terrestrial snails as quantitative indicators of environmental metal pollution. Environ. Monit. Assess. 1993, 25, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Cortet, J.; Gomot-De Vauflery, A.; Poinsot-Balaguer, N.; Gomot, L.; Texier, C.; Cluzeau, D. The use of invertebrate soil fauna in monitoring pollutant effects. Eur. J. Soil Biol. 1999, 35, 115–134. [Google Scholar] [CrossRef]
- Kammenga, J.E.; Dallinger, R.; Donker, M.H.; Köhler, H.R.; Simonsen, V.; Triebskorn, R.; Weeks, J.M. Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment. Environ. Contam. Toxicol. 2000, 164, 93–147. [Google Scholar] [PubMed]
- de Vaufleury, A.; Cœurdassier, M.; Pandard, P.; Scheifler, R.; Lovy, C.; Crini, N.; Badot, P.-M. How terrestrial snails can be used in risk assessment of soils. Environ. Toxicol. Chem. 2006, 25, 797–806. [Google Scholar] [CrossRef]
- Altaf, J.; Qureschi, N.A.; Siddiqui, M.J.I. Terrestrial snails as bioindicators of environmental degradation. J. Biodivers. Environ. Sci. 2017, 10, 253–264. [Google Scholar]
- Dhiman, V.; Pant, D. Environmental biomonitoring by snails. Biomarkers 2021, 26, 221–239. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Singh, V.K. Snails as biological monitor (bioindicator). Asian J. Adv. Res. 2020, 3, 339–345. [Google Scholar]
- de Vaufleury, A. Landsnail for Ecotoxicological Assessment of Chemicals and Soil Contamination—Ecotoxicological Assessment of Chemicals and Contaminated Soils Using the Terrestrial Snail, Helix aspersa, at Various Stage of Its Life Cycle: A Review. In Environmental Indicators; Armon, R., Hänninen, O., Eds.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Viard, B.; Pihan, F.; Promeyrat, S.; Pihan, J.-C. Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: Bioaccumulation in soil, Graminaceae and land snails. Chemosphere 2004, 55, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Halim, K.Y.; Abo El-Saad, A.M.; Talha, M.M.; Hussein, A.A.; Bakry, N.M. Oxidative stress in the land snail Helix aspersa as an indicator organism for the ecotoxicological impacts of urban pollution with heavy metals. Chemosphere 2013, 93, 1131–1138. [Google Scholar] [CrossRef]
- Salih, A.H.S.H.; Hama, A.A.; Hawrami, K.A.M.; Ditta, A. The Land Snail, Eobania vermiculata, as a Bioindicator of the Heavy Metal Pollution in the Urban Areas of Sulaimani, Iraq. Sustainability 2021, 13, 13719. [Google Scholar] [CrossRef]
- Regoli, F.; Gorbi, S.; Fattorini, D.; Tedesco, S.; Notti, A.; Machella, N.; Bocchetti, R.; Benedetti, M.; Piva, F. Use of the Land Snail Helix aspersa as Sentinel Organism for Monitoring Ecotoxicologic Effects of Urban Pollution: An Integrated Approach. Environ. Health Perspect. 2006, 114, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Al-Alam, J.; Millet, M.; Khoury, D.; Rodrigues, A.; Akoury, E.; Tokajian, S.; Wazne, M. Biomonitoring of PAHs and PCBs in industrial, suburban, and rural areas using snails as sentinel organisms. Environ. Sci. Pollut. Res. 2024, 31, 4970–4984. [Google Scholar] [CrossRef] [PubMed]
- Itziou, A.; Dimitriadis, V.K. Effects of organic pollutants on Eobania vermiculata measured with five biomarkers. Ecotoxicology 2012, 21, 1484–1494. [Google Scholar] [CrossRef] [PubMed]
- El-Gendy, K.S.; Gad, A.F.; Radwan, M.A. Physiological and behavioral reactions of terrestrial molluscs as indicators for evaluating pollution effects: A review. Environ. Res. 2021, 193, 110558. [Google Scholar] [CrossRef]
- Beeby, A. The Role of Helix Aspersa as a Major Herbivore in the Transfer of Lead Through a Polluted Ecosystem. J. Appl. Ecol. 1985, 22, 267–275. [Google Scholar] [CrossRef]
- Laskowski, R.; Hopkin, S.P. Accumulation of Zn, Cu, Pb and Cd in the garden snail (Helix aspersa): Implications for predators. Environ. Pollut. 1996, 91, 289–297. [Google Scholar] [CrossRef]
- Scheifler, R.; Gomot-de Vaufleury, A.; Toussaint, M.-L.; Badot, P.-M. Transfer and effects of cadmium in an experimental food chain involving the snail Helix aspersa and the predatory carabid beetle Chrysocarabus splendens. Chemosphere 2002, 48, 571–579. [Google Scholar] [CrossRef]
- Taylor, J.W. Life history of British Helices: Helix (Pomatia) aspersa Müll. J. Conchol. 1883, 4, 88–105. Available online: https://www.biodiversitylibrary.org/page/31571513 (accessed on 7 February 2010).
- Hamza-Chaffai, A. Usefulness of Bioindicators and Biomarkers in Pollution Biomonitoring. Int. J. Biotechnol. Wellness Ind. 2014, 3, 19–26. [Google Scholar] [CrossRef]
- Galloway, T.S.; Brown, R.J.; Browne, M.A.; Dissanayake, A.; Lowe, D.; Jones, M.B.; Depledge, M.H. A multibiomarker approach to environmental assessment. Environ. Sci. Technol. 2004, 38, 1723–1731. [Google Scholar] [CrossRef]
- Hagger, J.A.; Jones, M.B.; Paul Leonard, D.R.; Owen, R.; Galloway, T.S. Biomarkers and integrated environmental risk assessment: Are there more questions than answers? Integr. Environ. Assess. Manag. Int. J. 2006, 2, 312–329. [Google Scholar] [CrossRef]
- Hochachka, P.W.; Fields, J.H.A.; Mommsen, T.P. Metabolic and enzyme regulation during rest-to-work transition: A mammal versus mollusc comparison. In The Mollusca; Hochachka, P.W., Ed.; Metabolic Biochemistry and Molecular Biomechanics; Elsevier: Amsterdam, The Netherlands, 1983; Volume 1, pp. 55–89. [Google Scholar]
- Stuart, J.A.; Ballantyne, J.S. Subcellular organization of intermediary metabolism in the hepatopancreas of the terrestrial snail, Cepaea nemoralis: A cytosolic β-hydroxybutyrate dehydrogenase. J. Exp. Zool. 1996, 274, 291–299. [Google Scholar] [CrossRef]
- Pradhan, S.; Das, A.; Meena, R.; Nanda, R.K.; Rajamani, P. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism. Sci. Rep. 2016, 6, 35972. [Google Scholar] [CrossRef]
- Vlaanderen, J.J.; Janssen, N.A.; Hoek, G.; Keski-Rahkonen, P.; Barupal, D.K.; Cassee, F.R.; Gosens, I.; Strak, M.; Steenhof, M.; Lan, Q.; et al. The influence of ambient air pollution on the human blood metabolome. Environ. Res. 2017, 156, 341–348. [Google Scholar] [CrossRef]
- Surowiec, I.; Karimpour, M.; Gouveia-Figueira, S.; Wu, J.; Unosson, J.; Bosson, J.A.; Blomberg, A.; Pourazar, J.; Sandström, T.; Behndig, A.F.; et al. Multi-platform metabolomics assays for human lung lavage fluids in an air pollution exposure study. Anal. Bioanal. Chem. 2016, 408, 4751–4764. [Google Scholar] [CrossRef]
- Ran, Z.; An, Y.; Zhou, J.; Yang, J.; Zhang, Y.; Yang, J.; Wang, L.; Li, X.; Lu, D.; Zhong, J.; et al. Subchronic exposure to concentrated ambient PM2.5 disrupts gut and lung microbiota as well as metabolic profiles in mice. Environ. Pollut. 2021, 272, 115987. [Google Scholar] [CrossRef] [PubMed]
- Mahvi, D.; Bank, H.; Harley, R. Morphology of a naphthalene-induced bronchiolar lesion. Am. J. Pathol. 1977, 86, 558–572. [Google Scholar] [PubMed]
- Van Winkle, L.S.; Nishio, S.J.; Brown, C.D.; Plopper, C.G. Early Events in Naphthalene-Induced Acute Clara Cell Toxicity, Comparison of Membrane Permeability and Ultrastructure. Am. J. Respir. Cell Mol. Biol. 1999, 21, 44–53. [Google Scholar] [CrossRef]
- West, J.A.A.; Pakehham, G.; Morin, D.; Fleschner, C.A.; Buckpitt, A.R.; Plopper, C.G. Inhaled Naphthalene Causes Dose Dependent Clara Cell Cytotoxicity in Mice but Not in Rats. Toxicol. Appl. Pharmacol. 2001, 173, 114–119. [Google Scholar] [CrossRef]
- Aoshiba, K.; Tsuji, T.; Itoh, M.; Semba, S.; Yamaguchi, K.; Nakamura, H.; Watanabe, H. A murine model of airway fibrosis induced by repeated naphthalene exposure. Exp. Toxicol. Pathol. 2014, 66, 169–177. [Google Scholar] [CrossRef]
- Recio, L.; Shepard, K.G.; Hernández, L.G.; Kedderis, G.L. Dose-Response Assessment of Naphthalene-Induced Genotoxicity and Glutathione Detoxication in Human TK6 Lymphoblasts. Toxicol. Sci. 2012, 126, 405–412. [Google Scholar] [CrossRef]
- Richieri, P.R.; Buckpitt, A.R. Efflux of naphthalene oxide and reactive naphthalene metabolites from isolated hepatocytes. J. Pharmacol. Exp. Ther. 1987, 242, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Kanekal, S.; Plopper, C.; Morin, D.; Buckpitt, A. Metabolism and cytotoxicity of naphthalene oxide in the isolated perfused mouse lung. J. Pharmacol. Exp. Ther. 1991, 256, 391–401. [Google Scholar] [CrossRef]
- Albuquerque, T.A.F.; Drummond do Val, L.; Doherty, A.; de Magalhães, J.P. From humans to hydra: Patterns of cancer across the tree of life. Biol. Rev. Camb. Philos. Soc. 2018, 93, 1715–1734. [Google Scholar] [CrossRef] [PubMed]
- Tascedda, F.; Ottaviani, E. Tumors in invertebrates. Invertebr. Surviv. J. 2014, 11, 197–203. [Google Scholar]
- Scharrer, B.; Lochhead, M.S. Tumors in the invertebrates: A review. Cancer Res. 1950, 10, 403–419. [Google Scholar] [PubMed]
- Robert, J. Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Dev. Comp. Immunol. 2010, 34, 915–925. [Google Scholar] [CrossRef]
- Richards, C.S. Tumors in the pulmonary cavity of Biomphalaria glabrata: Genetic studies. J. Invertebr. Pathol. 1973, 22, 283–289. [Google Scholar] [CrossRef]
- Hong, J.-H.; Lee, W.-C.; Hsu, Y.-M.; Liang, H.-J.; Wan, C.-H.; Chien, C.-L.; Lin, C.-Y. Characterization of the biochemical effects of naphthalene on the mouse respiratory system using NMR-based metabolomics. J. Appl. Toxicol. 2014, 34, 1379–1388. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Huang, F.-P.; Ling, Y.S.; Liang, H.-J.; Lee, S.-H.; Hu, M.-Y.; Tsao, P.-N. Use of Nuclear Magnetic Resonance-Based Metabolomics to Characterize the Biochemical Effects of Naphthalene on Various Organs of Tolerant Mice. PLoS ONE 2015, 10, e0120429. [Google Scholar] [CrossRef]
- Mitchell, A.; Lakritz, J.; Jones, A. Quantification of individual glutathione S-transferase isozymes in hepatic and pulmonary tissues of naphthalene-tolerant mice. Arch. Toxicol. 2000, 74, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, R.M.; Shultz, M.A.; Buckpitt, A.R. Bioactivation of the Pulmonary Toxicants Naphthalene and 1-Nitronaphthalene by Rat CYP2F4. J. Pharmacol. Exp. Ther. 2005, 312, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, K.J.; Henderson, C.J.; Wang, X.J.; Vassieva, O.; Carrie, D.; Farmer, P.B.; Gaskell, M.; Park, K.; Wolf, C.R. Glutathione Transferase π Plays a Critical Role in the Development of Lung Carcinogenesis following Exposure to Tobacco-Related Carcinogens and Urethane. Cancer Res. 2007, 67, 9248–9257. [Google Scholar] [CrossRef] [PubMed]
- Bocedi, A.; Noce, A.; Marrone, G.; Noce, G.; Cattani, G.; Gambardella, G.; Di Lauro, M.; Di Daniele, N.; Ricci, G. Glutathione Transferase P1-1 an Enzyme Useful in Biomedicine and as Biomarker in Clinical Practice and in Environmental Pollution. Nutrients 2019, 11, 1741. [Google Scholar] [CrossRef]
- Ismert, M.; Oster, T.; Bagrel, D. Effects of atmospheric exposure to naphthalene on xenobiotic-metabolising enzymes in the snail Helix aspersa. Chemosphere 2002, 46, 273–280. [Google Scholar] [CrossRef]
- Ling, Y.S.; Liang, H.J.; Chung, M.H.; Lin, M.H.; Lin, C.Y. NMR-and MS-based metabolomics: Various organ responses following naphthalene intervention. Mol. Biosyst. 2014, 10, 1918–1931. [Google Scholar] [CrossRef]
- Devalckeneer, A.; Bouviez, M.; Gautier, A.; Colet, J.-M. Metabolomic Prediction of Cadmium Nephrotoxicity in the Snail Helix aspersa maxima. Metabolites 2024, 14, 455. [Google Scholar] [CrossRef]
- Cooper, J.E. Bleeding of pulmonate snails. Lab. Anim. 1994, 28, 277–278. [Google Scholar] [CrossRef]
- Aude, D.; Marion, B.; Raphaël, C.; Colet, J.-M. Proton Nuclear Magnetic Resonance (1H NMR) profiling of isolated organs in the snail Helix aspersa maxima. Ecol. Indic. 2019, 105, 177–187. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Felig, P. The glucose-alanine cycle. Metab.—Clin. Exp. 1973, 22, 179–207. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Wang, Y.; Lang, L.; Ma, S.; Zhao, L.; Xiao, W.; Wang, Y. Tissue metabolomic profiling to reveal the therapeutic mechanism of reduning injection on LPS-induced acute lung injury rats. RSC Adv. 2018, 8, 10023–10031. [Google Scholar] [CrossRef] [PubMed]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Prag, H.A.; Murphy, M.P.; Krieg, T. Preventing mitochondrial reverse electron transport as a strategy for cardioprotection. Basic Res. Cardiol. 2023, 118, 34. [Google Scholar] [CrossRef]
- Bénit, P.; Kahn, A.; Chretien, D.; Bortoli, S.; Huc, L.; Schiff, M.; Gimenez-Roqueplo, A.-P.; Favier, J.; Gressens, P.; Rak, M.; et al. Evolutionarily conserved susceptibility of the mitochondrial respiratory chain to SDHI pesticides and its consequence on the impact of SDHIs on human cultured cells. PLoS ONE 2019, 14, e0224132. [Google Scholar] [CrossRef]
- Ersoy, M.; Akyol, M.B.; Ceylaner, S.; Biçer, N.Ç. A novel frameshift mutation of malonyl-CoA decarboxylase deficiency: Clinical signs and therapy response of a late-diagnosed case. Clin. Case Rep. 2017, 5, 1284. [Google Scholar] [CrossRef]
- Hendrickson, C.; Linden, K.; Kreyer, S.; Beilman, G.; Scaravilli, V.; Wendorff, D.; Necsoiu, C.; Batchinsky, A.I.; Cancio, L.C.; Chung, K.K.; et al. 1H-NMR metabolomics identifies significant changes in metabolism over time in a porcine model of severe burn and smoke inhalation. Metabolites 2019, 9, 142. [Google Scholar] [CrossRef]
- Lindeboom, L.; Nabuurs, C.I.; Hoeks, J.; Brouwers, B.; Phielix, E.; Kooi, M.E.; Hesselink, M.K.; Wildberger, J.E.; Stevens, R.D.; Koves, T.; et al. Long–echo time MR spectroscopy for skeletal muscle acetylcarnitine detection. J. Clin. Investig. 2014, 124, 4915–4925. [Google Scholar] [CrossRef]
- Constantin-Teodosiu, D.; Carlin, J.I.; Cederblad, G.; Harrist, R.C.; Hultman, E. Acetyl group accumulation and pyruvate dehydrogenase activity in human muscle during incremental exercise. Acta Physiol. Scand. 1991, 143, 367–372. [Google Scholar] [CrossRef]
- Yoshii, Y.; Furukawa, T.; Yoshii, H.; Mori, T.; Kiyono, Y.; Waki, A.; Kobayashi, M.; Tsujikawa, T.; Kudo, T.; Okazawa, H.; et al. Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: The possible function in tumor acetyl-CoA/acetate metabolism. Cancer Sci. 2009, 100, 821–827. [Google Scholar] [CrossRef]
- Bulusu, V.; Tumanov, S.; Michalopoulou, E.; van den Broek, N.J.; Mackay, G.; Nixon, C.; Dhayade, S.; Schug, Z.; Voorde, J.V.; Blyth, K.; et al. Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 2017, 18, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Agassandian, M.; Mallampalli, R.K. Surfactant phospholipid metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2013, 1831, 612–625. [Google Scholar] [CrossRef]
- Daniels, C.B.; Wood, P.G.; Lopatko, O.V.; Codd, J.R.; Johnston, S.D.; Orgeig, S. Surfactant in the gas mantle of the snail Helix aspersa. Physiol. Biochem. Zool. 1999, 72, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.R.; Yin, F.; Cadenas, E. Metabolic shift in lung alveolar cell mitochondria following acrolein exposure. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, S.; Campbell, A.; Engelhardt, D.; Duchesne, J.; Shaheen, F.; Pociask, D.; Kolls, J.; Jackson-Weaver, O. Dimethyl malonate protects the lung in a murine model of acute respiratory distress syndrome. J. Trauma Acute Care Surg. 2024, 96, 386–393. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Zhu, W.; Yu, J.; Wang, Q.; Zhang, J.; Cui, Y.; Pan, X.; Gao, X.; Sun, H. Succinate accumulation induces mitochondrial reactive oxygen species generation and promotes status epilepticus in the kainic acid rat model. Redox Biol. 2020, 28, 101365. [Google Scholar] [CrossRef]
- Altea-Manzano, P.; Vandekeere, A.; Edwards-Hicks, J.; Roldan, M.; Abraham, E.; Lleshi, X.; Guerrieri, A.N.; Berardi, D.; Wills, J.; Junior, J.M.; et al. Reversal of mitochondrial malate dehydrogenase 2 enables anaplerosis via redox rescue in respiration-deficient cells. Mol. Cell 2022, 82, 4537–4547. [Google Scholar] [CrossRef]
- Manhas, N.; Duong, Q.V.; Lee, P.; Richardson, J.D.; Robertson, J.D.; Moxley, M.A.; Bazil, J.N. Computationally modeling mammalian succinate dehydrogenase kinetics identifies the origins and primary determinants of ROS production. J. Biol. Chem. 2020, 295, 15262–15279. [Google Scholar] [CrossRef]
- Kamarauskaite, J.; Baniene, R.; Trumbeckas, D.; Strazdauskas, A.; Trumbeckaite, S. Increased succinate accumulation induces ROS generation in in vivo ischemia/reperfusion-affected rat kidney mitochondria. BioMed Res. Int. 2020, 2020, 8855585. [Google Scholar] [CrossRef]
- Gobelli, D.; Serrano-Lorenzo, P.; Esteban-Amo, M.J.; Serna, J.; Pérez-García, M.T.; Orduña, A.; Jourdain, A.A.; Martín-Casanueva, M.Á.; de la Fuente, M.Á.; Simarro, M. The mitochondrial succinate dehydrogenase complex controls the STAT3-IL-10 pathway in inflammatory macrophages. iScience 2023, 26, 107473. [Google Scholar] [CrossRef]
- Bénit, P.; Goncalves, J.; El Khoury, R.; Rak, M.; Favier, J.; Gimenez-Roqueplo, A.P.; Rustin, P. Succinate dehydrogenase, succinate, and superoxides: A genetic, epigenetic, metabolic, environmental explosive crossroad. Biomedicines 2022, 10, 1788. [Google Scholar] [CrossRef]
- Tretter, L.; Patocs, A.; Chinopoulos, C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta (BBA)-Bioenerg. 2016, 1857, 1086–1101. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Zhang, H.; Wang, X.; Zhang, X.; Nie, K. The role of succinic acid metabolism in ovarian cancer. Front. Oncol. 2021, 11, 769196. [Google Scholar] [CrossRef] [PubMed]
- Dalla Pozza, E.; Dando, I.; Pacchiana, R.; Liboi, E.; Scupoli, M.T.; Donadelli, M.; Palmieri, M. Regulation of succinate dehydrogenase and role of succinate in cancer. Semin. Cell Dev. Biol. 2020, 98, 4–14. [Google Scholar] [CrossRef]
- He, Y.; Han, Y.; Zou, L.; Yao, T.; Zhang, Y.; Lv, X.; Jiang, M.; Long, L.; Li, M.; Cheng, X.; et al. Succinate promotes pulmonary fibrosis through GPR91 and predicts death in idiopathic pulmonary fibrosis. Sci. Rep. 2024, 14, 14376. [Google Scholar] [CrossRef] [PubMed]
- Rafique, S.; Ge, W.; Gao, Z.; Chen, Y.; Xia, J.; Jiang, J.; Yang, S. Exploring Fucosylation in Lung Cancer: Mechanisms, Diagnosis, and Therapeutic Strategies. Adv. Biomark. Sci. Technol. 2024, 6, 174–190. [Google Scholar] [CrossRef]
- Alvarez, C.A.; Qian, E.; Glendenning, L.M.; Reynero, K.M.; Kukan, E.N.; Cobb, B.A. Acute and chronic lung inflammation drives changes in epithelial glycans. Front. Immunol. 2023, 14, 1167908. [Google Scholar] [CrossRef]
- Ali, I.; Conrad, R.J.; Verdin, E.; Ott, M. Lysine acetylation goes global: From epigenetics to metabolism and therapeutics. Chem. Rev. 2018, 118, 1216–1252. [Google Scholar] [CrossRef]
- Ding, P.; Ma, Z.; Liu, D.; Pan, M.; Li, H.; Feng, Y.; Zhang, Y.; Shao, C.; Jiang, M.; Lu, D.; et al. Lysine Acetylation/Deacetylation Modification of Immune-Related Molecules in Cancer Immunotherapy. Front. Immunol. 2022, 13, 865975. [Google Scholar] [CrossRef]
- Calder, P.C.; Yaqoob, P. Glutamine and the immune system. Amino Acids 1999, 17, 227–241. [Google Scholar] [CrossRef]
- Karinch, A.M.; Pan, M.; Lin, C.M.; Strange, R.; Souba, W.W. Glutamine metabolism in sepsis and infection. J. Nutr. 2001, 131, 2535S–2538S. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, A.S.; Appling, D.R. Compartmentalization of Mammalian Folate-Mediated One-Carbon Metabolism. Annu. Rev. Nutr. 2010, 30, 57–81. [Google Scholar] [CrossRef]
- Ducker, G.S.; Rabinowitz, J.D. One-carbon metabolism in health and disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Stewart, T.M.; Dunston, T.T.; Woster, P.M.; Casero, R.A., Jr. Polyamine catabolism and oxidative damage. J. Biol. Chem. 2018, 293, 18736–18745. [Google Scholar] [CrossRef] [PubMed]
- Klysz, D.D.; Fowler, C.; Malipatlolla, M.; Stuani, L.; Freitas, K.A.; Chen, Y.; Meier, S.; Daniel, B.; Sandor, K.; Xu, P.; et al. Inosine induces stemness features in CAR-T cells and enhances potency. Cancer Cell 2024, 42, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Gnanaprakasam, J.N.R.; Chen, X.; Kang, S.; Xu, X.; Sun, H.; Liu, L.; Rodgers, H.; Miller, E.; Cassel, T.A.; et al. Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction. Nat. Metab. 2020, 2, 635–647. [Google Scholar] [CrossRef]
- Kim, I.S.; Jo, E.K. Inosine: A bioactive metabolite with multimodal actions in human diseases. Front. Pharmacol. 2022, 13, 1043970. [Google Scholar] [CrossRef]
- da Rocha Lapa, F.; de Oliveira, A.P.L.; Accetturi, B.G.; de Oliveira Martins, I.; Domingos, H.V.; de Almeida Cabrini, D.; de Lima, W.T.; Santos, A.R.S. Anti-inflammatory effects of inosine in allergic lung inflammation in mice: Evidence for the participation of adenosine A 2A and A 3 receptors. Purinergic Signal. 2013, 9, 325–336. [Google Scholar] [CrossRef]
- Chalova, P.; Tazky, A.; Skultety, L.; Minichova, L.; Chovanec, M.; Ciernikova, S.; Mikus, P.; Piestansky, J. Determination of short-chain fatty acids as putative biomarkers of cancer diseases by modern analytical strategies and tools: A review. Front. Oncol. 2023, 13, 1110235. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, X.; Fei, W.; Ye, Y.; Zhao, M.; Zheng, C. The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–12. [Google Scholar] [CrossRef]
- Kim, C.H.; Park, J.; Kim, M. Gutmicrobiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw. 2014, 14, 277. [Google Scholar] [CrossRef]
- Meiser, J.; Vazquez, A. Give it or take it: The flux of one-carbon in cancer cells. FEBS J. 2016, 283, 3695–3704. [Google Scholar] [CrossRef]
- Pietzke, M.; Arroyo, S.F.; Sumpton, D.; Mackay, G.M.; Martin-Castillo, B.; Camps, J.; Joven, J.; Menendez, J.A.; Vazquez, A.; On behalf of the METTEN study group. Stratification of cancer and diabetes based on circulating levels of formate and glucose. Cancer Metab. 2019, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Labuschagne, C.F.; Van Den Broek, N.J.; Mackay, G.M.; Vousden, K.H.; Maddocks, O.D. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 2014, 7, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Geeraerts, S.L.; Heylen, E.; De Keersmaecker, K.; Kampen, K.R. The ins and outs of serine and glycine metabolism in cancer. Nat. Metab. 2021, 3, 131–141. [Google Scholar] [CrossRef]
- Jain, M.; Nilsson, R.; Sharma, S.; Madhusudhan, N.; Kitami, T.; Souza, A.L.; Kafri, R.; Kirschner, M.W.; Clish, C.B.; Mootha, V.K. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012, 336, 1040–1044. [Google Scholar] [CrossRef] [PubMed]
- Glunde, K.; Bhujwalla, Z.M.; Ronen, S.M. Choline metabolism in malignant transformation. Nat. Rev. Cancer 2011, 11, 835–848. [Google Scholar] [CrossRef]
- Sappington, D.R.; Siegel, E.R.; Hiatt, G.; Desai, A.; Penney, R.B.; Jamshidi-Parsian, A.; Griffin, R.J.; Boysen, G. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 836–843. [Google Scholar] [CrossRef]
- Yuan, Q.; Yin, L.; He, J.; Zeng, Q.; Liang, Y.; Shen, Y.; Zu, X. Metabolism of asparagine in the physiological state and cancer. Cell Commun. Signal. 2024, 22, 163. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, X.; Wang, C.; Zhang, H.; Cai, Z. Non-targeted and targeted metabolomics approaches to diagnosing lung cancer and predicting patient prognosis. Oncotarget 2016, 7, 63437. [Google Scholar] [CrossRef]
- Chagovets, V.; Starodubtseva, N.; Tokareva, A.; Novoselova, A.; Patysheva, M.; Larionova, I.; Prostakishina, E.; Rakina, M.; Kazakova, A.; Topolnitskiy, E.; et al. Specific changes in amino acid profiles in monocytes of patients with breast, lung, colorectal and ovarian cancers. Front. Immunol. 2024, 14, 1332043. [Google Scholar] [CrossRef]
- Gautier, C.; Huynh, M.A.; Peron, C.; Pol, J. Des bactéries modifiées pour produire la L-arginine potentialisent l’immunothérapie des cancers. Med. Sci. 2023, 39, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Soda, K. The mechanisms by which polyamines accelerate tumor spread. J. Exp. Clin. Cancer Res. 2011, 30, 95. [Google Scholar] [CrossRef]
- Pasquini, S.; Contri, C.; Borea, P.A.; Vincenzi, F.; Varani, K. Adenosine and Inflammation: Here, There and Everywhere. Int. J. Mol. Sci. 2021, 22, 7685. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Wei, M.; Lv, J.; Sun, Y.; Shen, X.; Zhao, D.; Xue, F.; Zhang, T.; Wang, J. Serum metabolomics analysis for the progression of esophageal squamous cell carcinoma. J. Cancer 2021, 12, 3190. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, H.; Park, S.; Kim, M.; Park, J.Y.; Jin, H.; Oh, K.; Bae, J.; Yang, Y.; Choi, H.-K. Integrative Metabolomic and Lipidomic Profiling of Lung Squamous Cell Carcinoma for Characterization of Metabolites and Intact Lipid Species Related to the Metastatic Potential. Cancers 2021, 13, 4179. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Rathinavel, A.K.; Radhakrishnan, P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188464. [Google Scholar] [CrossRef]
- Shan, M.; Yang, D.; Dou, H.; Zhang, L. Fucosylation in cancer biology and its clinical applications. Prog. Mol. Biol. Transl. Sci. 2019, 162, 93–119. [Google Scholar] [CrossRef]
- Sawke, N.G.; Sawke, G.K. Serum fucose level in malignant diseases. Indian J. Cancer 2010, 47, 452–457. [Google Scholar] [CrossRef]
- Sakai, T.; Yamamoto, K.; Yokota, H.; Hakozaki-Usui, K.; Hino, F.; Kato, I. Rapid, simple enzymatic assay of free L-fucose in serum and urine, and its use as a marker for cancer, cirrhosis, and gastric ulcers. Clin. Chem. 1990, 36, 474–476. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, J.; Ma, T.; Guo, Y.; Yu, Y.; Cui, J. The function of fucosylation in progression of lung cancer. Front. Oncol. 2018, 8, 565. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Z.; Li, J.; Xu, F.; Zhang, B.; Liu, M.; Liu, Y.; Chen, H.; Yang, J.; Zhang, J. Lysine acetylome study of human hepatocellular carcinoma tissues for biomarkers and therapeutic targets discovery. Front. Genet. 2020, 11, 572663. [Google Scholar] [CrossRef]
- Di Martile, M.; Del Bufalo, D.; Trisciuoglio, D. The multifaceted role of lysine acetylation in cancer: Prognostic biomarker and therapeutic target. Oncotarget 2016, 7, 55789. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Zhang, G.; Hwa, Y.L.; Li, J.; Dowdy, S.C.; Jiang, S.W. Nonhistone protein acetylation as cancer therapy targets. Expert Rev. Anticancer Ther. 2010, 10, 935–954. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Miao, Y.; Liu, M.; Zeng, Y.; Gao, Z.; Peng, D.; Hu, B.; Li, X.; Zheng, Y.; Xue, Y.; et al. Pan-cancer analysis reveals the functional importance of protein lysine modification in cancer development. Front. Genet. 2018, 9, 254. [Google Scholar] [CrossRef]
- Derveaux, E.; Thomeer, M.; Mesotten, L.; Reekmans, G.; Adriaensens, P. Detection of Lung Cancer via Blood Plasma and 1H-NMR Metabolomics: Validation by a Semi-Targeted and Quantitative Approach Using a Protein-Binding Competitor. Metabolites 2021, 11, 537. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bai, L.; Li, W.; Cui, J. The lipid metabolic landscape of cancers and new therapeutic perspectives. Front. Oncol. 2020, 10, 605154. [Google Scholar] [CrossRef]
- Shestakova, K.M.; Moskaleva, N.E.; Boldin, A.A.; Rezvanov, P.M.; Shestopalov, A.V.; Rumyantsev, S.A.; Zlatnik, E.Y.; Novikova, I.A.; Sagakyants, A.B.; Timofeeva, S.V.; et al. Targeted metabolomic profiling as a tool for diagnostics of patients with non-small-cell lung cancer. Sci. Rep. 2023, 13, 11072. [Google Scholar] [CrossRef]
- O’Brien, K.A.; Suverkropp, C.; Kanekal, S.; Plopper, C.G.; Buckpitt, A.R. Tolerance to multiple doses of the pulmonary toxicant, naphthalene. Toxicol. Appl. Pharmacol. 1989, 99, 487–500. [Google Scholar] [CrossRef]
- West, J.A.; Van Winkle, L.S.; Morin, D.; Fleschner, C.A.; Forman, H.J.; Plopper, C.G. Repeated inhalation exposures of the bioactivated cytotoxi-cant naphthalene (NA) produce airway specific Clara cell tolerance in mice. Toxicol. Sci. 2003, 75, 161–168. [Google Scholar] [CrossRef]
- Bogen, K.T.; Benson, J.M.; Yost, G.S.; Morris, J.B.; Dahl, A.R.; Clewell, H.J.; Krishnan, K.; Omiecinski, C.J. Naphthalene metabolism in relation to target tissue anatomy, physiology, cytotoxicity and tumorigenic mechanism of action. Regul. Toxicol. Pharmacol. 2008, 51, 27–36. [Google Scholar] [CrossRef] [PubMed]
- West, J.A.; Buckpitt, A.R.; Plopper, C.G. Elevated airway GSH resynthesis confers protection to Clara cells from naphthalene injury in mice made tolerant by repeated exposures. J. Pharmacol. Exp. Ther. 2000, 294, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Buonarati, M.; Jones, A.D.; Buckpitt, A. In vivo metabolism of isomeric naphthalene oxide glutathione conjugates. Drug Metab. Dispos. 1990, 18, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gao, J.; Lu, L.; Bold, T.; Li, X.; Wang, S.; Chang, Z.; Chen, J.; Kong, X.; Zheng, Y.; et al. Intracellular GSH/GST antioxidants system change as an earlier biomarker for toxicity evaluation of iron oxide nanoparticles. NanoImpact 2021, 23, 100338. [Google Scholar] [CrossRef]
In Pulmonary Tissue | In Hemolymph | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ppm | Metabolites | CTRL | After 24 H | After 4 Days | 4 Days/Daily | ppm | Metabolites | CTRL | After 24 H | 4 Days/Daily |
1.2 | Hydroxybutyrate | 100 | 44 | 1–1.01 | Isoleucine | 100 | 75 | 204 | ||
1.24 | Fucose | 100 | 205 | 1.08–1.1 | Isobutyrate | 100 | 119 | 41 | ||
1.32 | Lactate | 100 | 153 | 47 | 37 | 1.17–1.18 | Isopropanol | 100 | 155 | 81 |
1.48 | Alanine | 100 | 119 | 69 | 1.28–1.29 | Threonine | 100 | 88 | ||
1.72–1.76 | Putrescine | 100 | 168 | 1.17–1.20 | Ethanol | 100 | 84 | |||
1.78 | Ornithine | 100 | 65 | 1.33–1.34 | Lactate | 100 | 50 | 23 | ||
1.92 | Acetate | 100 | 106 | 50 | 107 | 1.45–1.47 | Alanine | 100 | 87 | |
2.03 | N-acetyl-Lysine | 100 | 153 | 1.92 | Acetate | 100 | 43 | 13 | ||
2.11–2.18 | Glutamine | 100 | 167 | 123 | 124 | 3.23 | Choline | 100 | 89 | 68 |
2.34–2.37 | Glutamate | 100 | 110 | 83 | 92 | 3.36 | Methanol | 100 | 179 | |
2.41 | Succinate | 100 | 197 | 30 | 18 | 3.55–3.58 | Glycerol | 100 | 126 | 113 |
2.54 | Isocitrate | 100 | 27 | 3.91 | Betaine | 100 | 17 | 35 | ||
2.71 | Dimethylamine | 100 | 90 | 6.72 | Unknown | 100 | 119 | |||
2.73 | Sarcosine | 100 | 57 | 6.74 | Unknown | 100 | 118 | |||
2.8 | Aspartate | 100 | 112 | 7.01 | Unknown | 100 | 51 | |||
2.86 | Dimethylformamide | 100 | 142 | 7.72 | Unknown | 100 | 44 | |||
2.88 | Asparagine | 100 | 300 | 7.76 | Unknown | 100 | 50 | |||
3.04 | Ornithine | 100 | 122 | 156 | ||||||
3.1 | Malonate | 100 | 132 | 50 | ||||||
3.19 | Acetylcarnitine | 100 | 67 | |||||||
3.21 | Choline | 100 | 92 | 119 | 134 | |||||
3.23 | Acetylcholine | 100 | 89 | 84 | 99 | |||||
3.24 | Carnitine | 100 | 109 | 102 | ||||||
3.27 | Betaine | 100 | 83 | 86 | ||||||
3.56 | Glycine | 100 | 101 | 59 | ||||||
3.65 | Glycerol | 100 | 182 | 145 | 303 | |||||
3.8 | Glucose | 100 | 79 | |||||||
5.97 | UDP-Glucose | 100 | 43 | |||||||
6.08 | Adenosine | 100 | 84 | |||||||
6.1 | Inosine | 100 | 123 | 198 | ||||||
6.15 | AMP | 100 | 20 | |||||||
6.52 | Fumarate | 100 | 114 | 101 | ||||||
6.88 | Tyrosine | 100 | 92 | |||||||
7.33 | Phenylalanine | 100 | 204 | |||||||
7.69 | Unkown | 100 | 281 | 125 | ||||||
7.88 | Uridine | 100 | 98 | |||||||
7.9 | Xanthine | 100 | 192 | |||||||
8 | Guanosine | 100 | 91 | |||||||
8.46 | Formate | 100 | 37 | |||||||
Level modifications of metabolites | ||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devalckeneer, A.; Bouviez, M.; Colet, J.-M. Metabolomic Prediction of Naphthalene Pneumo-Toxicity in the Snail Helix aspersa maxima. Metabolites 2025, 15, 448. https://doi.org/10.3390/metabo15070448
Devalckeneer A, Bouviez M, Colet J-M. Metabolomic Prediction of Naphthalene Pneumo-Toxicity in the Snail Helix aspersa maxima. Metabolites. 2025; 15(7):448. https://doi.org/10.3390/metabo15070448
Chicago/Turabian StyleDevalckeneer, Aude, Marion Bouviez, and Jean-Marie Colet. 2025. "Metabolomic Prediction of Naphthalene Pneumo-Toxicity in the Snail Helix aspersa maxima" Metabolites 15, no. 7: 448. https://doi.org/10.3390/metabo15070448
APA StyleDevalckeneer, A., Bouviez, M., & Colet, J.-M. (2025). Metabolomic Prediction of Naphthalene Pneumo-Toxicity in the Snail Helix aspersa maxima. Metabolites, 15(7), 448. https://doi.org/10.3390/metabo15070448