Dietary and Lifestyle Interventions to Mitigate Oxidative Stress in Male and Female Fertility: Practical Insights for Infertility Management—A Narrative Review
Abstract
1. Introduction
2. Methodology
3. Mechanisms Linking OS to Infertility
3.1. Roles of OS in Spermatogenesis and Oocyte Quality
3.2. Mechanisms of DNA Fragmentation in Sperm and Implications of Embryo Viability
3.3. Mitochondrial Dysfunction as a Common Pathway
4. Dietary Interventions
5. Lifestyle Interventions
5.1. Regular Excerise
5.2. Weight Management
5.3. Plant-Based Diets and Nutraceutical Support
5.4. Smoking and Alcohol Cessation
5.5. Stress Reduction and Techniques
6. Gut Microbiome, OS, and Fertility
7. Potential Biomarkers for Measuring Efficacy
7.1. ROS in Seminal Plasma
7.2. Total Antioxidant Capacity (TAC) in Sperm
7.3. 8-Hydroxy-2′-deoxyguanosine (8-OHdG) as a Marker of Oxidative DNA Damage
7.4. Sperm Mitochondrial Activity
7.5. Sperm DNA Fragmentation (DFI)
8. Clinical and Translational Insights
8.1. Incorporating Dietary and Lifestyle Recommendations into Fertility Treatments
8.2. Translational Challenges and Gaps
8.3. Future Directions
9. Limitations of the Study
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Walke, G.; Gaurkar, S.S.; Prasad, R.; Lohakare, T.; Wanjari, M. The Impact of Oxidative Stress on Male Reproductive Function: Exploring the Role of Antioxidant Supplementation. Cureus [Internet]. 27 July 2023. Available online: https://www.cureus.com/articles/169642-the-impact-of-oxidative-stress-on-male-reproductive-function-exploring-the-role-of-antioxidant-supplementation (accessed on 13 June 2024).
- Ramya, S.; Poornima, P.; Jananisri, A.; Geofferina, I.P.; Bavyataa, V.; Divya, M.; Priyanga, P.; Vadivukarasi, J.; Sujitha, S.; Elamathi, S.; et al. Role of Hormones and the Potential Impact of Multiple Stresses on Infertility. Stresses 2023, 3, 454–474. [Google Scholar] [CrossRef]
- Kaltsas, A.; Zikopoulos, A.; Moustakli, E.; Zachariou, A.; Tsirka, G.; Tsiampali, C.; Palapela, N.; Sofikitis, N.; Dimitriadis, F. The Silent Threat to Women’s Fertility: Uncovering the Devastating Effects of Oxidative Stress. Antioxidants 2023, 12, 1490. [Google Scholar] [CrossRef]
- Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. 2013, 11, 66. [Google Scholar] [CrossRef]
- Sengupta, P.; Pinggera, G.M.; Calogero, A.E.; Agarwal, A. Oxidative stress affects sperm health and fertility-Time to apply facts learned at the bench to help the patient: Lessons for busy clinicians. Reprod. Med. Biol. 2024, 23, e12598. [Google Scholar] [CrossRef]
- Potiris, A.; Moustakli, E.; Trismpioti, E.; Drakaki, E.; Mavrogianni, D.; Matsas, A.; Zikopoulos, A.; Sfakianakis, A.; Tsakiridis, I.; Dagklis, T.; et al. From Inflammation to Infertility: How Oxidative Stress and Infections Disrupt Male Reproductive Health. Metabolites 2025, 15, 267. [Google Scholar] [CrossRef]
- Song, J.; Xiao, L.; Zhang, Z.; Wang, Y.; Kouis, P.; Rasmussen, L.J.; Dai, F. Effects of reactive oxygen species and mitochondrial dysfunction on reproductive aging. Front. Cell Dev. Biol. 2024, 12, 1347286. [Google Scholar] [CrossRef]
- May-Panloup, P.; Boucret, L.; Chao De La Barca, J.M.; Desquiret-Dumas, V.; Ferré-L’Hotellier, V.; Morinière, C.; Descamps, P.; Procaccio, V.; Reynier, P. Ovarian ageing: The role of mitochondria in oocytes and follicles. Hum. Reprod. Update 2016, 22, 725–743. [Google Scholar] [CrossRef] [PubMed]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.J.; Won, Y.S.; Kim, E.K.; Park, S.-I.; Lee, S.J. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef]
- Panner Selvam, M.K.; Sengupta, P.; Agarwal, A. Sperm DNA Fragmentation and Male Infertility. In Genetics of Male Infertility [Internet]; Arafa, M., Elbardisi, H., Majzoub, A., Agarwal, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 155–172. Available online: http://link.springer.com/10.1007/978-3-030-37972-8_9 (accessed on 29 April 2025).
- Hao, S.L.; Ni, F.D.; Yang, W.X. The dynamics and regulation of chromatin remodeling during spermiogenesis. Gene 2019, 706, 201–210. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, X.; Li, H. Mechanisms of oxidative stress-induced sperm dysfunction. Front. Endocrinol. 2025, 16, 1520835. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Zini, A.; Coward, R.M.; Evenson, D.P.; Gosálvez, J.; Lewis, S.E.M.; Sharma, R.; Humaidan, P. Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations. Andrologia 2021, 53, e13874. [Google Scholar] [CrossRef]
- Adler, A.; Roth, B.; Lundy, S.D.; Takeshima, T.; Yumura, Y.; Kuroda, S. Sperm DNA fragmentation testing in clinical management of reproductive medicine. Reprod. Med. Biol. 2023, 22, e12547. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P.; Roychoudhury, S.; Chakravarthi, S.; Wang, C.W.; Slama, P. Antioxidant Paradox in Male Infertility: ‘A Blind Eye’ on Inflammation. Antioxidants 2022, 11, 167. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Costa, J.; Braga, P.C.; Rebelo, I.; Oliveira, P.F.; Alves, M.G. Mitochondria Quality Control and Male Fertility. Biology 2023, 12, 827. [Google Scholar] [CrossRef] [PubMed]
- Babayev, E.; Seli, E. Oocyte mitochondrial function and reproduction. Curr. Opin. Obs. Gynecol. 2015, 27, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Imanaka, S. Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes. Int. J. Mol. Sci. 2024, 25, 13144. [Google Scholar] [CrossRef]
- Podolak, A.; Woclawek-Potocka, I.; Lukaszuk, K. The Role of Mitochondria in Human Fertility and Early Embryo Development: What Can We Learn for Clinical Application of Assessing and Improving Mitochondrial DNA? Cells 2022, 11, 797. [Google Scholar] [CrossRef]
- Wróblewski, M.; Wróblewska, W.; Sobiesiak, M. The Role of Selected Elements in Oxidative Stress Protection: Key to Healthy Fertility and Reproduction. Int. J. Mol. Sci. 2024, 25, 9409. [Google Scholar] [CrossRef]
- Kalogerakou, T.; Antoniadou, M. The Role of Dietary Antioxidants, Food Supplements and Functional Foods for Energy Enhancement in Healthcare Professionals. Antioxidants 2024, 13, 1508. [Google Scholar] [CrossRef] [PubMed]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.; Mitri, J. Dietary Advice For Individuals with Diabetes. In Endotext [Internet]; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: http://www.ncbi.nlm.nih.gov/books/NBK279012/ (accessed on 29 April 2025).
- Barati, E.; Nikzad, H.; Karimian, M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol. Life Sci. 2020, 77, 93–113. [Google Scholar] [CrossRef]
- Meng, Q.; Su, C.H. The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. Antioxidants 2024, 13, 573. [Google Scholar] [CrossRef]
- Yang, Y.J. An Overview of Current Physical Activity Recommendations in Primary Care. Korean J. Fam. Med. 2019, 40, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Li, G. The Positive and Negative Aspects of Reactive Oxygen Species in Sports Performance. In Current Issues in Sports and Exercise Medicine [Internet]; Hamlin, M., Ed.; InTech: Houston, TX, USA, 2013; Available online: http://www.intechopen.com/books/current-issues-in-sports-and-exercise-medicine/the-positive-and-negative-aspects-of-reactive-oxygen-species-in-sports-performance (accessed on 29 April 2025).
- Łakoma, K.; Kukharuk, O.; Śliż, D. The Influence of Metabolic Factors and Diet on Fertility. Nutrients 2023, 15, 1180. [Google Scholar] [CrossRef]
- Gill, K.; Fraczek, M.; Kurpisz, M.; Piasecka, M. Influence of Body Mass Index (BMI) and Waist–Hip Ratio (WHR) on Selected Semen Parameters. Int. J. Mol. Sci. 2025, 26, 4089. [Google Scholar] [CrossRef]
- Antinozzi, C.; Di Luigi, L.; Sireno, L.; Caporossi, D.; Dimauro, I.; Sgrò, P. Protective Role of Physical Activity and Antioxidant Systems During Spermatogenesis. Biomolecules 2025, 15, 478. [Google Scholar] [CrossRef]
- Vignesh, A.; Amal, T.C.; Sarvalingam, A.; Vasanth, K. A review on the influence of nutraceuticals and functional foods on health. Food Chem. Adv. 2024, 5, 100749. [Google Scholar] [CrossRef]
- Hever, J. Plant-Based Diets: A Physician’s Guide. Perm. J. 2016, 20, 15–82. [Google Scholar] [CrossRef]
- Sebastiani, G.; Herranz Barbero, A.; Borrás-Novell, C.; Alsina Casanova, M.; Aldecoa-Bilbao, V.; Andreu-Fernández, V.; Tutusaus, M.P.; Martínez, S.F.; Gómez-Roig, M.D.; García-Algar, Ó. The Effects of Vegetarian and Vegan Diet during Pregnancy on the Health of Mothers and Offspring. Nutrients 2019, 11, 557. [Google Scholar] [CrossRef]
- Skoracka, K.; Ratajczak, A.E.; Rychter, A.M.; Dobrowolska, A.; Krela-Kaźmierczak, I. Female Fertility and the Nutritional Approach: The Most Essential Aspects. Adv. Nutr. Bethesda Md. 2021, 12, 2372–2386. [Google Scholar] [CrossRef] [PubMed]
- Kanimozhi, N.V.; Sukumar, M. Aging through the lens of the gut microbiome: Challenges and therapeutic opportunities. Arch. Gerontol. Geriatr. Plus. 2025, 2, 100142. [Google Scholar]
- Muhammed Saeed, A.A.; Noreen, S.; Awlqadr, F.H.; Farooq, M.I.; Qadeer, M.; Rai, N.; Farag, H.A.; Saeed, M.N. Nutritional and herbal interventions for polycystic ovary syndrome (PCOS): A comprehensive review of dietary approaches, macronutrient impact, and herbal medicine in management. J. Health Popul. Nutr. 2025, 44, 143. [Google Scholar] [CrossRef] [PubMed]
- Omolaoye, T.S.; El Shahawy, O.; Skosana, B.T.; Boillat, T.; Loney, T.; du Plessis, S.S. The mutagenic effect of tobacco smoke on male fertility. Environ. Sci. Pollut. Res. Int. 2022, 29, 62055–62066. [Google Scholar] [CrossRef]
- SRamgir, S.; Abilash, V.G. Impact of Smoking and Alcohol Consumption on Oxidative Status in Male Infertility and Sperm Quality. Indian J. Pharm. Sci. 2019, 81, 933–945. [Google Scholar]
- Van Heertum, K.; Rossi, B. Alcohol and fertility: How much is too much? Fertil. Res. Pract. 2017, 3, 10. [Google Scholar] [CrossRef]
- Tan, H.K.; Yates, E.; Lilly, K.; Dhanda, A.D. Oxidative stress in alcohol-related liver disease. World J. Hepatol. 2020, 12, 332–349. [Google Scholar] [CrossRef]
- Mbiydzenyuy, N.E.; Qulu, L.A. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab. Brain Dis. 2024, 39, 1613–1636. [Google Scholar] [CrossRef]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. Overv. Biomed. 2020, 8, 201. [Google Scholar] [CrossRef]
- García-Hernández, S.; Monserrat-Mesquida, M.; Tur, J.; Bouzas, C. The Mediterranean diet and lifestyle. Arh. Za Farm. 2023, 73, 306–317. [Google Scholar] [CrossRef]
- Tardin, R.M.M.; Aparicio Martínez, P.; Bonow, M.P.; Schuffner, A. Mindfulness and yoga approach for fertility: The benefits of mindfulness in human reproduction treatments. In Fertility, Pregnancy, and Wellness [Internet]; Elsevier: Amsterdam, The Netherlands, 2022; pp. 183–191. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128183090000010 (accessed on 29 April 2025).
- Yadav, A.; Tiwari, P.; Dada, R. Yoga and Lifestyle Changes: A Path to Improved Fertility—A Narrative Review. Int. J. Yoga 2024, 17, 10–19. [Google Scholar] [CrossRef]
- Ma, B.; Barathan, M.; Ng, M.H.; Law, J.X. Oxidative Stress, Gut Microbiota, and Extracellular Vesicles: Interconnected Pathways and Therapeutic Potentials. Int. J. Mol. Sci. 2025, 26, 3148. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, T.; Ubaldi, F.; Volpini, V.; Valeriani, F.; Romano Spica, V. The Role of Gut Microbiota in Different Types of Physical Activity and Their Intensity: Systematic Review and Meta-Analysis. Sports 2024, 12, 221. [Google Scholar] [CrossRef] [PubMed]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2020, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Hills, R.; Pontefract, B.; Mishcon, H.; Black, C.; Sutton, S.; Theberge, C. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef]
- Varghese, S.; Rao, S.; Khattak, A.; Zamir, F.; Chaari, A. Physical Exercise and the Gut Microbiome: A Bidirectional Relationship Influencing Health and Performance. Nutrients 2024, 16, 3663. [Google Scholar] [CrossRef]
- Pedroza Matute, S.; Iyavoo, S. Exploring the gut microbiota: Lifestyle choices, disease associations, and personal genomics. Front. Nutr. 2023, 10, 1225120. [Google Scholar] [CrossRef]
- Mottola, F.; Palmieri, I.; Carannante, M.; Barretta, A.; Roychoudhury, S.; Rocco, L. Oxidative Stress Biomarkers in Male Infertility: Established Methodologies and Future Perspectives. Genes 2024, 15, 539. [Google Scholar] [CrossRef]
- Takalani, N.B.; Monageng, E.M.; Mohlala, K.; Monsees, T.K.; Henkel, R.; Opuwari, C.S. Role of oxidative stress in male infertility. Reprod. Fertil. 2023, 4, e230024. [Google Scholar] [CrossRef]
- Bartosz, G. Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free Radic. Res. 2010, 44, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Pilger, A.; Rüdiger, H.W. 8-Hydroxy-2′-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int. Arch. Occup. Environ. Health 2006, 80, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Omari Shekaftik, S.; Nasirzadeh, N. 8-Hydroxy-2′-deoxyguanosine (8-OHdG) as a biomarker of oxidative DNA damage induced by occupational exposure to nanomaterials: A systematic review. Nanotoxicology 2021, 15, 850–864. [Google Scholar] [CrossRef]
- Durairajanayagam, D.; Singh, D.; Agarwal, A.; Henkel, R. Causes and consequences of sperm mitochondrial dysfunction. Andrologia 2021, 53, e13666. [Google Scholar] [CrossRef]
- Vahedi Raad, M.; Firouzabadi, A.M.; Tofighi Niaki, M.; Henkel, R.; Fesahat, F. The impact of mitochondrial impairments on sperm function and male fertility: A systematic review. Reprod. Biol. Endocrinol. 2024, 22, 83. [Google Scholar] [CrossRef]
- Esteves, S.C.; Santi, D.; Simoni, M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology 2020, 8, 53–81. [Google Scholar] [CrossRef]
- Agarwal, A.; Majzoub, A.; Baskaran, S.; Panner Selvam, M.K.; Cho, C.L.; Henkel, R.; Finelli, R.; Leisegang, K.; Sengupta, P.; Barbarosie, C.; et al. Sperm DNA Fragmentation: A New Guideline for Clinicians. World J. Mens Health 2020, 38, 412. [Google Scholar] [CrossRef] [PubMed]
- Evans-Hoeker, E.; Wang, Z.; Groen, H.; Cantineau, A.E.P.; Thurin-Kjellberg, A.; Bergh, C.; Laven, J.S.E.; de Loos, A.D.; Jiskoot, G.; Baillargeon, J.-P.; et al. Dietary and/or physical activity interventions in women with overweight or obesity prior to fertility treatment: Protocol for a systematic review and individual participant data meta-analysis. BMJ Open 2022, 12, e065206. [Google Scholar] [CrossRef]
- Gitsi, E.; Livadas, S.; Argyrakopoulou, G. Nutritional and exercise interventions to improve conception in women suffering from obesity and distinct nosological entities. Front. Endocrinol. 2024, 15, 1426542. [Google Scholar] [CrossRef]
- Kohil, A.; Chouliaras, S.; Alabduljabbar, S.; Lakshmanan, A.P.; Ahmed, S.H.; Awwad, J.; Terranegra, A. Female infertility and diet, is there a role for a personalized nutritional approach in assisted reproductive technologies? A Narrative Review. Front. Nutr. 2022, 9, 927972. [Google Scholar] [CrossRef]
- Emokpae, M.A.; Brown, S.I. Effects of lifestyle factors on fertility: Practical recommendations for modification. Reprod. Fertil. 2021, 2, R13–R26. [Google Scholar] [CrossRef] [PubMed]
- Romer, S.E.; Blum, J.; Borrero, S.; Crowley, J.M.; Hart, J.; Magee, M.M.; Manzer, J.L.; Stern, L. Providing Quality Family Planning Services in the United States: Recommendations of the U.S. Office of Population Affairs (Revised 2024). Am. J. Prev. Med. 2024, 67, S41–S86. [Google Scholar] [CrossRef] [PubMed]
- Coman, L.I.; Ianculescu, M.; Paraschiv, E.A.; Alexandru, A.; Bădărău, I.A. Smart Solutions for Diet-Related Disease Management: Connected Care, Remote Health Monitoring Systems, and Integrated Insights for Advanced Evaluation. Appl. Sci. 2024, 14, 2351. [Google Scholar] [CrossRef]
- Irfat Ara, M.M. Reproductive Health of Women: Implications and Attributes. 28 November 2022. Available online: https://zenodo.org/record/7384716 (accessed on 2 June 2025).
- Torkel, S.; Wang, R.; Norman, R.J.; Zhao, L.; Liu, K.; Boden, D.; Xu, W.; Moran, L.; Cowan, S. Barriers and enablers to a healthy lifestyle in people with infertility: A mixed-methods systematic review. Hum. Reprod. Update 2024, 30, 569–583. [Google Scholar] [CrossRef]
- Al-Shorbaji, N. Improving Healthcare Access through Digital Health: The Use of Information and Communication Technologies. In Healthcare Access [Internet]; Agrawal, A., Kosgi, S., Eds.; IntechOpen: Houston, TX, USA, 2022; Available online: https://www.intechopen.com/chapters/78328 (accessed on 2 June 2025).
- Religioni, U.; Barrios-Rodríguez, R.; Requena, P.; Borowska, M.; Ostrowski, J. Enhancing Therapy Adherence: Impact on Clinical Outcomes, Healthcare Costs, and Patient Quality of Life. Med. Kaunas. Lith. 2025, 61, 153. [Google Scholar] [CrossRef]
- Costello, M.F.; Misso, M.L.; Balen, A.; Boyle, J.; Devoto, L.; Garad, R.M.; Hart, R.; Johnson, L.; Jordan, C.; Legro, R.S.; et al. A brief update on the evidence supporting the treatment of infertility in polycystic ovary syndrome. Aust. N. Z. J. Obs. Gynaecol. 2019, 59, 867–873. [Google Scholar] [CrossRef]
- Agarwal, A.; Maldonado Rosas, I.; Anagnostopoulou, C.; Cannarella, R.; Boitrelle, F.; Munoz, L.V.; Finelli, R.; Durairajanayagam, D.; Henkel, R.; Saleh, R. Oxidative Stress and Assisted Reproduction: A Comprehensive Review of Its Pathophysiological Role and Strategies for Optimizing Embryo Culture Environment. Antioxidants 2022, 11, 477. [Google Scholar] [CrossRef]
- Moustakli, E.; Stavros, S.; Katopodis, P.; Skentou, C.; Potiris, A.; Panagopoulos, P.; Domali, E.; Arkoulis, I.; Karampitsakos, T.; Sarafi, E.; et al. Oxidative Stress and the NLRP3 Inflammasome: Focus on Female Fertility and Reproductive Health. Cells 2025, 14, 36. [Google Scholar] [CrossRef]
- Vitolins, M.Z.; Case, T.L. What Makes Nutrition Research So Difficult to Conduct and Interpret? Diabetes Spectr. 2020, 33, 113–117. [Google Scholar] [CrossRef]
ROS Type | Role in Infertility Pathogenesis | Effect on Oocyte Quality | Effect on Sperm Quality |
---|---|---|---|
Superoxide anion (O2•−) | Primary ROS produced in mitochondria; initiates oxidative damage | Causes mitochondrial dysfunction, DNA fragmentation, and apoptosis | Induces sperm DNA fragmentation and reduces motility |
Hydrogen peroxide (H2O2) | Stable ROS that diffuses through membranes, propagates OS | Impairs oocyte maturation and reduces fertilization capacity | Decreases sperm motility and damages membrane integrity |
Hydroxyl radical (•OH) | Highly reactive; causes lipid peroxidation and DNA damage | Damages oocyte membrane lipids, affecting viability | Causes lipid peroxidation in sperm membranes, reducing fluidity |
Nitric oxide (NO) | Modulates vascular tone and sperm capacitation | In excess, disrupts meiotic progression and induces apoptosis | Alters sperm motility and capacitation at high concentrations |
Peroxynitrite (ONOO−) | Reactive nitrogen species formed from NO and superoxide | Promotes oxidative DNA damage and mitochondrial impairment | Induces oxidative damage leading to decreased sperm function |
Nutritional Components | Main Sources | Benefits in Fertility |
---|---|---|
Antioxidants |
| Neutralize ROS, protect reproductive tissues |
Selenium and zinc |
| Support enzymatic antioxidants such as glutathione peroxidase |
Omega-3 fatty acids |
| Improve sperm and oocyte quality, reduce inflammation |
Micronutrients |
| Enhance hormonal regulation (vitamin D, iodine), DNA synthesis and repair (folate, B12), oxygen transport (iron), and antioxidant enzyme function (magnesium) Essential for oocyte and sperm development; deficiencies linked to anovulation, poor sperm quality, and implantation failure |
Phytochemicals |
| Reduce OS, improve sperm quality |
Low-glycemic diet |
| Stabilizes blood glucose and insulin levels, reduces systemic inflammation and oxidative stress; particularly beneficial for women with PCOS and men with metabolic syndrome; enhances hormonal balance, ovulation, and sperm function |
Avoidance |
| Reduces ROS production, maintains antioxidant capacity |
Intervention | Action Mechanism | Impact on Fertility | Evidence and Notes |
---|---|---|---|
Regular exercise | Enhances circulation and strengthens antioxidant defense | Improves ovulation, hormonal balance, and sperm quality | Prevent ROS by avoiding excessive exercise |
Weight management | Reduces OS and hormonal imbalances | Enhances ovulation, ART success, and sperm parameters | Sustainable approaches are essential |
Plant-based diet and Nutraceuticals | Provides antioxidants and anti-inflammatory compounds; reduces systemic OS | Improves sperm quality, ovarian function, and hormonal balance | Rich in polyphenols, flavonoids, and vitamins C/E; supported by recent clinical studies |
Smoking cessation | Reduces ROS exposure and DNA damage | Decreases the depletion of ovarian reserves and increases sperm motility | Post-cessation benefits are substantial |
Alcohol reduction | Lowers systemic inflammation and prevents the depletion of antioxidants | Increases implantation rates and the quality of sperm and oocytes | Limit even moderate alcohol consumption |
Stress reduction | Balances the HPG axis and reduces cortisol | Improves the integrity of sperm DNA, ovulation cycles, and implantation | Includes yoga, mindfulness, and other beneficial techniques |
Biomarkers | Measurements | Clinical Relevance | Assessment Method |
---|---|---|---|
ROS in seminal plasma | Levels of ROS | The male reproductive tissues exhibit signs of OS | Chemiluminescence assays |
TAC in serum | Total antioxidant capacity | Represents the antioxidant defense system | Spectrophotometry |
8-OHdG | Oxidative DNA damage | Predicts the health of sperm and oocytes by identifying DNA damage in gametes | ELISA, HPLC, or immunoassays |
Sperm mitochondrial activity | Mitochondrial function in sperm | Indicates spermatozoa’s OS and energy metabolism | Mitochondrial membrane potential (MMP) assay |
Sperm DFI | The proportion of sperm DNA fragments | Associated with miscarriage, embryo quality, and fertilization success | TUNEL assay or sperm chromatin dispersion (SCD) |
Aspect | Crucial insight | Challenges | Proposed Solutions | Typical Dosage |
---|---|---|---|---|
Antioxidant supplementation | Decreases oxidative damage and improves gamete quality | Absence of customized regimens | Personalize supplements using biomarkers | Vitamin C: 500–1000 mg/day Vitamin E: 200–400 IU/day Coenzyme Q10: 100–300 mg/day L-carnitine: 1–3 g/day Zinc: 15–30 mg/day |
Lifestyle counseling | Enhances patient adherence to stress, alcohol, and smoking cessation | Absent assistance, adherence may be limited | Include follow-up sessions and digital tools | N/A |
Pre-treatment enhancement | Weight loss reduces OS and promotes hormonal balance | Pre-treatment counseling in not always offered | Consider prenatal care a regular occurrence | N/A |
Biomarker application | Enables the measurement of OS levels in real time | High cost and limited accessibility | Develop cost-effective, standardized assays | N/A |
Personalized interventions | Adapts care to each patient’s needs | Requires combining metabolic and genetic data | Invest in research in precision medicine | Dosages tailored per patient based on metabolic/genetic profile |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustakli, E.; Zikopoulos, A.; Katopodis, P.; Dafopoulos, S.; Paraschos, V.S.; Zachariou, A.; Dafopoulos, K. Dietary and Lifestyle Interventions to Mitigate Oxidative Stress in Male and Female Fertility: Practical Insights for Infertility Management—A Narrative Review. Metabolites 2025, 15, 379. https://doi.org/10.3390/metabo15060379
Moustakli E, Zikopoulos A, Katopodis P, Dafopoulos S, Paraschos VS, Zachariou A, Dafopoulos K. Dietary and Lifestyle Interventions to Mitigate Oxidative Stress in Male and Female Fertility: Practical Insights for Infertility Management—A Narrative Review. Metabolites. 2025; 15(6):379. https://doi.org/10.3390/metabo15060379
Chicago/Turabian StyleMoustakli, Efthalia, Athanasios Zikopoulos, Periklis Katopodis, Stefanos Dafopoulos, Vasilis Sebastian Paraschos, Athanasios Zachariou, and Konstantinos Dafopoulos. 2025. "Dietary and Lifestyle Interventions to Mitigate Oxidative Stress in Male and Female Fertility: Practical Insights for Infertility Management—A Narrative Review" Metabolites 15, no. 6: 379. https://doi.org/10.3390/metabo15060379
APA StyleMoustakli, E., Zikopoulos, A., Katopodis, P., Dafopoulos, S., Paraschos, V. S., Zachariou, A., & Dafopoulos, K. (2025). Dietary and Lifestyle Interventions to Mitigate Oxidative Stress in Male and Female Fertility: Practical Insights for Infertility Management—A Narrative Review. Metabolites, 15(6), 379. https://doi.org/10.3390/metabo15060379