Dietary Black Soldier Fly Larvae Meal and Its Impact on the Growth Performance and Gut Health of Broilers Under an Intestinal Challenge
Abstract
1. Introduction
2. Materials and Methods
2.1. Broiler Husbandry
2.2. Dietary Treatments
2.3. Fatty Acids of Experimental Diets
2.4. Growth Performance
2.5. Intestinal Permeability and Ileal Digestibility
2.6. Jejunal Histomorphology and Molecular Analysis of Mucosa (qRT-PCR)
2.7. Short-Chain Fatty Acids of Cecal Contents and Lipid Profile of Breast Samples
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Ileal Digestibility, Intestinal Permeability, Jejunal Histomorphology, and Molecular Analysis of Mucosa (qRT-PCR)
3.3. Short-Chain Fatty Acids of Cecal Contents and Lipid Profile of Breast Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMPs | Antimicrobial properties |
BSF | Black soldier fly |
BW | Body weight |
BWG | Body weight gain |
CP | Crude protein |
DM | Dry matter |
FAMEs | Fatty acid methyl esters |
FCR | Feed conversion ratio |
FI | Feed intake |
FITC-d | Fluorescein isothiocyanate–dextran |
IDE | Ileal digestible energy |
GC | Gas chromatograph |
IFN- | Interferon |
IL | Interleukin |
MUC | Mucin |
MUFA | Medium unsaturated fatty acid |
qRT-PCR | Quantitative real-time PCR |
SBM | Soybean meal |
SCFA | Short-chain fatty acid |
References
- Abd El-Hack, M.E.; Shafi, M.E.; Alghamdi, W.Y.; Abdelnour, S.A.; Shehata, A.M.; Noreldin, A.E.; Ashour, E.A.; Swelum, A.A.; Al-sagan, A.A.; Alkhateeb, M.; et al. Black Soldier Fly (Hermetia illucens) Meal as a Promising Feed Ingredient for Poultry: A Comprehensive Review. Agriculture 2020, 10, 339. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; van Huis, A. Black Soldier Fly from Pest to “crown Jewel” of the Insects as Feed Industry: An Historical Perspective. J. Insects Food Feed 2020, 6, 1–4. [Google Scholar] [CrossRef]
- van Huis, A.; Oonincx, D.G.A.B.; Rojo, S.; Tomberlin, J.K. Insects as Feed: House Fly or Black Soldier Fly? J. Insects Food Feed 2020, 6, 221–229. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Nutritional Value of the Black Soldier Fly (Hermetia illucens) and Its Suitability as Animal Feed-a Review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Hartinger, K.; Greinix, J.; Thaler, N.; Ebbing, M.A.; Yacoubi, N.; Schedle, K.; Gierus, M. Effect of Graded Substitution of Soybean Meal by Hermetia Illucens Larvae Meal on Animal Performance, Apparent Ileal Digestibility, Gut Histology and Microbial Metabolites of Broilers. Animals 2021, 11, 1628. [Google Scholar] [CrossRef]
- Sumbule, E.K.; Ambula, M.K.; Osuga, I.M.; Changeh, J.G.; Mwangi, D.M.; Subramanian, S.; Salifu, D.; Alaru, P.A.O.; Githinji, M.; Van Loon, J.J.A.; et al. Cost-Effectiveness of Black Soldier Fly Larvae Meal as Substitute of Fishmeal in Diets for Layer Chicks and Growers. Sustainability 2021, 13, 6074. [Google Scholar] [CrossRef]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black Soldier Fly Defatted Meal as a Dietary Protein Source for Broiler Chickens: Effects on Growth Performance, Blood Traits, Gut Morphology and Histological Features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.B.; Kim, D.H.; Jeong, S.B.; Lee, J.W.; Kim, T.H.; Lee, H.G.; Lee, K.W. Black Soldier Fly Larvae Oil as an Alternative Fat Source in Broiler Nutrition. Poult. Sci. 2020, 99, 3133–3143. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Hernandez, C.E.; Wall, H.; Tahamtani, F.M.; Ivarsson, E.; Sun, L. Live Black Soldier Fly (Hermetia illucens) Larvae in Feed for Laying Hens: Effects on Hen Gut Microbiota and Behavior. Poult. Sci. 2024, 103, 103429. [Google Scholar] [CrossRef]
- Bellezza Oddon, S.; Biasato, I.; Imarisio, A.; Pipan, M.; Dekleva, D.; Colombino, E.; Capucchio, M.T.; Meneguz, M.; Bergagna, S.; Barbero, R.; et al. Black Soldier Fly and Yellow Mealworm Live Larvae for Broiler Chickens: Effects on Bird Performance and Health Status. J. Anim. Physiol. Anim. Nutr. 2021, 105, 10–18. [Google Scholar] [CrossRef]
- Koutsos, E.; Modica, B.; Freel, T. Immunomodulatory Potential of Black Soldier Fly Larvae: Applications beyond Nutrition in Animal Feeding Programs. Transl. Anim. Sci. 2022, 6, txac084. [Google Scholar] [CrossRef] [PubMed]
- Gasco, L.; Józefiak, A.; Henry, M. Beyond the Protein Concept: Health Aspects of Using Edible Insects on Animals. J. Insects Food Feed 2021, 7, 715–741. [Google Scholar] [CrossRef]
- Józefiak, A.; Engberg, R.M. Insect Proteins as a Potential Source of Antimicrobial Peptides in Livestock Production. A Review. J. Anim. Feed Sci. 2017, 26, 87–99. [Google Scholar] [CrossRef]
- Baderuddin, S.H.; David, L.S.; Wester, T.J.; Morel, P.C.H. Influence of Different Levels of Black Soldier Fly Larvae Meal on Growth Performance and Carcass Quality of Broiler Chickens. Livest. Sci. 2024, 290, 105588. [Google Scholar] [CrossRef]
- Cobb-Vantress. Cobb500 Broiler Management Supplement; Cobb-Vantress: Siloam Springs, AR, USA, 2018. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, A.; Texeira de Abreu, M.L.; Rodrigues, P.B.; Oliveira, R.F.; et al. Tabelas Brasileiras para Aves e Suínos. Composição de Alimentos e Exigências Nutricionais, 4th ed.; Universidade Federal deViçosa: Viçosa, Brazil, 2017. [Google Scholar]
- Matin, N.; Utterback, P.; Parsons, C.M. True Metabolizable Energy and Amino Acid Digestibility in Black Soldier Fly Larvae Meals, Cricket Meal, and Mealworms Using a Precision-Fed Rooster Assay. Poult. Sci. 2021, 100, 101146. [Google Scholar] [CrossRef] [PubMed]
- Stefanello, C.; Rosa, D.P.; Dalmoro, Y.K.; Segatto, A.L.; Vieira, M.S.; Moraes, M.L.; Santin, E. Protected Blend of Organic Acids and Essential Oils Improves Growth Performance, Nutrient Digestibility, and Intestinal Health of Broiler Chickens Undergoing an Intestinal Challenge. Front. Vet. Sci. 2020, 6, 491. [Google Scholar] [CrossRef]
- Stefanello, C.; Dalmoro, Y.K.; Rios, H.V.; Vieira, M.S.; Moraes, M.L.; Souza, O.F.; Araujo, M.P.; Stefanello, T.B.; García, R.S.; Boudry, C.; et al. A Bacillus subtilis Xylanase Improves Nutrient Digestibility, Intestinal Health and Growth Performance of Broiler Chickens Undergoing an Intestinal Challenge. Poult. Sci. 2025, 104, 104908. [Google Scholar] [CrossRef]
- Gilani, S.; Howarth, G.S.; Kitessa, S.M.; Tran, C.D.; Forder, R.E.A.; Hughes, R.J. New Biomarkers for Increased Intestinal Permeability Induced by Dextran Sodium Sulphate and Fasting in Chickens. J. Anim. Physiol. Anim. Nutr. 2017, 101, 237–245. [Google Scholar] [CrossRef]
- Vicuña, E.A.; Kuttappan, V.A.; Tellez, G.; Hernandez-Velasco, X.; Seeber-Galarza, R.; Latorre, J.D.; Faulkner, O.B.; Wolfenden, A.D.; Hargis, B.M.; Bielke, L.R. Dose Titration of FITC-D for Optimal Measurement of Enteric Inflammation in Broiler Chicks. Poult. Sci. 2015, 94, 1353–1359. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Evaluation of Amino Acid and Energy Utilization in Feedstuff for Swine and Poultry Diets. Asian-Australas. J. Anim. Sci. 2014, 27, 917–925. [Google Scholar] [CrossRef]
- Leal, K.W.; Alba, D.F.; Cunha, M.G.; Marcon, H.; Oliveira, F.C.; Wagner, R.; Silva, A.D.; Lopes, T.F.; de Jesus, L.S.B.; Schetinger, M.R.C.; et al. Effects of Biocholine Powder Supplementation in Ewe Lambs: Growth, Rumen Fermentation, Antioxidant Status, and Metabolism. Biotechnol. Rep. 2021, 29, 580. [Google Scholar] [CrossRef] [PubMed]
- Mwaniki, Z.; Neijat, M.; Kiarie, E. Egg Production and Quality Responses of Adding up to 7.5% Defatted Black Soldier Fly Larvae Meal in a Corn-Soybean Meal Diet Fed to Shaver White Leghorns from Wk 19 to 27 of Age. Poult. Sci. 2018, 97, 2829–2835. [Google Scholar] [CrossRef] [PubMed]
- Visentainer, J.V. Aspectos analíticos da resposta do detector de ionização em chama para ésteres de ácidos graxos em biodiesel e alimentos. Quim. Nova 2012, 35, 274–279. [Google Scholar] [CrossRef]
- Lee, K.W.; Lillehoj, H.S.; Jeong, W.; Jeoung, H.Y.; An, D.J. Avian Necrotic Enteritis: Experimental Models, Host Immunity, Pathogenesis, Risk Factors, and Vaccine Development. Poult. Sci. 2011, 90, 1381–1390. [Google Scholar] [CrossRef]
- de Souza, O.F.; Vecchi, B.; Gumina, E.; Matté, F.; Gazoni, F.L.; Hernandez-Velasco, X.; Hall, J.W.; Stefanello, C.; Layton, S. Development and Evaluation of a Commercial Direct-Fed Microbial (Zymospore®) on the Fecal Microbiome and Growth Performance of Broiler Chickens under Experimental Challenge Conditions. Animals 2022, 12, 1436. [Google Scholar] [CrossRef]
- Godoy, G.L.; Rodrigues, B.N.; Agilar, J.C.; Biselo, V.; Brutti, D.D.; Maysonnave, G.S.; Stefanello, C. Effects of Acacia mearnsii Tannins on Growth Performance, Footpad Dermatitis, Nutrient Digestibility, Intestinal Permeability, and Meat Quality of Broiler Chickens. Anim. Feed Sci. Technol. 2024, 308, 115875. [Google Scholar] [CrossRef]
- Lee, J.A.; Kim, Y.-M.; Park, Y.K.; Yang, Y.C.; Jung, B.-G.; Lee, B.-J. Black Soldier Fly (Hermetia illucens) Larvae Enhances Immune Activities and Increases Survivability of Broiler Chicks Against Experimental Infection of Salmonella Gallinarum. J. Vet. Med. Sci. 2018, 80, 736–740. [Google Scholar] [CrossRef]
- Dong, L.; Ariëns, R.M.C.; America, A.H.P.; Paul, A.; Veldkamp, T.; Mes, J.J.; Wichers, H.J.; Govers, C. Clostridium Perfringens Suppressing Activity in Black Soldier Fly Protein Preparations. LWT 2021, 149, 111806. [Google Scholar] [CrossRef]
- Dalmoro, Y.K.; Franceschi, C.H.; Stefanello, C. A Systematic Review and Metanalysis on the Use of Hermetia Illucens and Tenebrio Molitor in Diets for Poultry. Vet. Sci. 2023, 10, 702. [Google Scholar] [CrossRef]
- Mat, K.; Abdul Kari, Z.; Rusli, N.D.; Rahman, M.M.; Che Harun, H.; Al-Amsyar, S.M.; Mohd Nor, M.F.; Dawood, M.A.O.; Hassan, A.M. Effects of the Inclusion of Black Soldier Fly Larvae (Hermetia illucens) Meal on Growth Performance and Blood Plasma Constituents in Broiler Chicken (Gallus gallus domesticus) Production. Saudi J. Biol. Sci. 2022, 29, 809–815. [Google Scholar] [CrossRef]
- Lalev, M.; Hristakieva, P.; Mincheva, N.; Oblakova, M.; Ivanova, I. Insect Meal as Alternative Protein Ingredient in Broiler Feed. BJS 2022, 28, 743–751. [Google Scholar]
- Chobanova, S.; Karkelanov, N.; Mansbridge, S.C.; Whiting, I.M.; Simic, A.; Rose, S.P.; Pirgozliev, V.R. Defatted Black Soldier Fly Larvae Meal as an Alternative to Soybean Meal for Broiler Chickens. Poultry 2023, 2, 430–441. [Google Scholar] [CrossRef]
- Schiavone, A.; Dabbou, S.; Petracci, M.; Zampiga, M.; Sirri, F.; Biasato, I.; Gai, F.; Gasco, L. Black Soldier Fly Defatted Meal as a Dietary Protein Source for Broiler Chickens: Effects on Carcass Traits, Breast Meat Quality and Safety. Animal 2019, 13, 2397–2405. [Google Scholar] [CrossRef]
- Dong, L.; Wichers, H.J.; Govers, C. Beneficial Health Effects of Chitin and Chitosan. In Chitin and Chitosan: Properties and Applications, 1st ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 145–167. [Google Scholar]
- Jhong, J.H.; Chi, Y.H.; Li, W.C.; Lin, T.H.; Huang, K.Y.; Lee, T.Y. DbAMP: An Integrated Resource for Exploring Antimicrobial Peptides with Functional Activities and Physicochemical Properties on Transcriptome and Proteome Data. Nucleic Acids Res. 2019, 47, 285–297. [Google Scholar] [CrossRef]
- Ricke, S.C. Perspectives on the Use of Organic Acids and Short Chain Fatty Acids as Antimicrobials. Poult. Sci. 2003, 82, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Ajuwon, K.M.; Adeola, O. Impact of Partially Defatted Black Soldier Fly Larvae Meal on Coccidia-infected Chickens: Effects on Growth Performance, Intestinal Health, and Cecal Short-chain Fatty Acid Concentrations. J. Anim. Sci. Biotechnol. 2025, 16, 30. [Google Scholar] [CrossRef]
- Gomez-Osorio, L.M.; Dehaeck, B.; Cuello, C.; Chaparro-Gutierrez, J.J.; Lopez Osorio, S. From Understanding the Immune Response Against Coccidiosis to the Use of Coccidia Vaccines. In Poultry Farming-New Perspectives and Applications; Intechopen: England, UK, 2023. [Google Scholar]
- de Souza Vilela, J.; Andronicos, N.M.; Kolakshyapati, M.; Hilliar, M.; Sibanda, T.Z.; Andrew, N.R.; Swick, R.A.; Wilkinson, S.; Ruhnke, I. Black Soldier Fly Larvae in Broiler Diets Improve Broiler Performance and Modulate the Immune System. Anim. Nutr. 2021, 7, 695–706. [Google Scholar] [CrossRef]
- Biasato, I.; Ferrocino, I.; Dabbou, S.; Evangelista, R.; Gai, F.; Gasco, L.; Cocolin, L.; Capucchio, M.T.; Schiavone, A. Black Soldier Fly and Gut Health in Broiler Chickens: Insights into the Relationship between Cecal Microbiota and Intestinal Mucin Composition. J. Anim. Sci. Biotechnol. 2020, 11, 11. [Google Scholar] [CrossRef]
- Wigley, P.; Kaiser, P. Avian Cytokines in Health and Disease. Braz. J. Poult. Sci. 2003, 5, 1–14. [Google Scholar] [CrossRef]
- Sypniewski, J.; Kierończyk, B.; Benzertiha, A.; Mikołajczak, Z.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.; Sassek, M.; Rawski, M.; Czekała, W.; Józefiak, D. Replacement of Soybean Oil by Hermetia illucens Fat in Turkey Nutrition: Effect on Performance, Digestibility, Microbial Community, Immune and Physiological Status and Final Product Quality. Br. Poult. Sci. 2020, 61, 294–302. [Google Scholar] [CrossRef]
- Matsue, M.; Mori, Y.; Nagase, S.; Sugiyama, Y.; Hirano, R.; Ogai, K.; Ogura, K.; Kurihara, S.; Okamoto, S. Measuring the Antimicrobial Activity of Lauric Acid against Various Bacteria in Human Gut Microbiota Using a New Method. Cell Transpl. 2019, 28, 1528–1541. [Google Scholar] [CrossRef]
- Dabbou, S.; Lauwaerts, A.; Ferrocino, I.; Biasato, I.; Sirri, F.; Zampiga, M.; Bergagna, S.; Pagliasso, G.; Gariglio, M.; Colombino, E.; et al. Modified Black Soldier Fly Larva Fat in Broiler Diet: Effects on Performance, Carcass Traits, Blood Parameters, Histomorphological Features and Gut Microbiota. Animals 2021, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, L.; Coretti, L.; Dipineto, L.; Bovera, F.; Menna, F.; Chiariotti, L.; Nizza, A.; Lembo, F.; Fioretti, A. Insect-Based Diet, a Promising Nutritional Source, Modulates Gut Microbiota Composition and SCFAs Production in Laying Hens. Sci. Rep. 2017, 7, 16269. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Di Costanzo, M.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential Beneficial Effects of Butyrate in Intestinal and Extraintestinal Diseases. World J. Gastroenterol. 2011, 17, 1519–1528. [Google Scholar] [CrossRef]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or Total Replacement of Soybean Oil by Black Soldier Fly Larvae (Hermetia illucens L.) Fat in Broiler Diets: Effect on Growth Performances, Feed-Choice, Blood Traits, Carcass Characteristics and Meat Quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef]
- Woods, V.B.; Fearon, A.M. Dietary Sources of Unsaturated Fatty Acids for Animals and Their Transfer into Meat, Milk and Eggs: A Review. Livest. Sci. 2009, 126, 1–20. [Google Scholar] [CrossRef]
- Aprianto, M.A.; Muhlisin; Kurniawati, A.; Hanim, C.; Ariyadi, B.; Anas, M. Al Effect Supplementation of Black Soldier Fly Larvae Oil (Hermetia illucens L.) Calcium Salt on Performance, Blood Biochemical Profile, Carcass Characteristic, Meat Quality, and Gene Expression in Fat Metabolism Broilers. Poult. Sci. 2023, 102, 102984. [Google Scholar] [CrossRef]
- Batovska, D.I.; Todorova, I.T.; Tsvetkova, I.V.; Najdenski, H.M. Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: Individual effects and synergistic relationships. Pol. J. Microbiol. 2009, 58, 43–47. [Google Scholar]
- Hoa, V.B.; Song, D.H.; Seol, K.H.; Kang, S.M.; Kim, H.W.; Kim, J.H.; Cho, S.H. Coating with Chitosan Containing Lauric Acid (C12:0) Significantly Extends the Shelf-Life of Aerobically–Packaged Beef Steaks during Refrigerated Storage. Meat Sci. 2022, 184, 108696. [Google Scholar] [CrossRef]
Item, % | BSF Larvae Meal 1 |
---|---|
Dry matter | 95.0 |
Gross energy, kcal/kg | 5402 |
Crude protein | 52.0 |
Insect protein corrected for chitin | 37.0 |
Ether extract | 16.0 |
Crude fiber | 11.0 |
Ash | 11.0 |
Calcium | 2.0 |
Total phosphorus | 0.68 |
Available phosphorus | 0.65 |
Total amino acids | |
Histidine | 1.23 |
Isoleucine | 1.47 |
Leucine | 3.45 |
Lysine | 2.88 |
Methionine | 0.73 |
Phenylalanine | 1.82 |
Threonine | 1.71 |
Valine | 2.27 |
Tryptophan | 0.37 |
Cysteine | 0.35 |
Tyrosine | 2.12 |
Glycine | 1.16 |
Item | Starter (1 to 14 Days) | Grower (14 to 28 Days) | Finisher (28 to 40 Days) | |||
---|---|---|---|---|---|---|
Basal | BSF 1 | Basal | BSF | Basal | BSF | |
Ingredient, % | ||||||
Corn | 58.88 | 57.81 | 62.62 | 60.97 | 67.30 | 65.62 |
Soybean meal | 35.79 | 33.26 | 32.41 | 30.45 | 28.17 | 26.21 |
BSF larvae meal | 0 | 5.00 | 0 | 5.00 | 0 | 5.00 |
Soybean oil | 1.41 | 0.43 | 1.50 | 0.82 | 1.43 | 0.73 |
Dicalcium phosphate | 1.17 | 1.00 | 1.02 | 0.85 | 0.84 | 0.67 |
Limestone | 1.21 | 1.01 | 1.14 | 0.94 | 1.05 | 0.85 |
Salt | 0.52 | 0.52 | 0.44 | 0.44 | 0.42 | 0.42 |
DL-Met, 99% | 0.43 | 0.39 | 0.31 | 0.27 | 0.24 | 0.20 |
L-Lys HCl, 78% | 0.25 | 0.08 | 0.23 | 0.06 | 0.22 | 0.06 |
L-Thr, 98.5% | 0.09 | 0.03 | 0.06 | 0.00 | 0.05 | 0.00 |
L-Val, 98% | 0.06 | 0.00 | 0.05 | 0.00 | 0.04 | 0.00 |
Choline chloride, 60% | 0.04 | 0.04 | 0.06 | 0.06 | 0.08 | 0.08 |
Vit. and Min. Premix 2 | 0.155 | 0.155 | 0.155 | 0.155 | 0.155 | 0.155 |
Calculated nutrient and energy composition expressed in % or as described | ||||||
Metabolizable energy, kcal/kg | 2950 | 2950 | 3000 | 3000 | 3050 | 3050 |
Crude protein | 22.85 | 22.85 | 20.11 | 20.40 | 18.49 | 18.40 |
Calcium | 0.94 | 0.94 | 0.88 | 0.88 | 0.80 | 0.80 |
Available phosphorus | 0.45 | 0.45 | 0.42 | 0.42 | 0.38 | 0.38 |
Sodium | 0.22 | 0.22 | 0.19 | 0.19 | 0.18 | 0.18 |
Potassium | 0.81 | 0.81 | 0.79 | 0.78 | 0.73 | 0.72 |
Chloride | 0.41 | 0.41 | 0.39 | 0.39 | 0.38 | 0.38 |
Total choline, mg/kg | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
Chitin 3, g/kg | 0 | 3.50 | 0 | 3.50 | 0 | 3.50 |
Dig. Lys | 1.22 | 1.22 | 1.12 | 1.12 | 1.02 | 1.02 |
Dig. Met + Cys | 0.98 | 0.98 | 0.85 | 0.85 | 0.75 | 0.75 |
Dig. Thr | 0.80 | 0.80 | 0.74 | 0.75 | 0.67 | 0.69 |
Dig. Trp | 0.25 | 0.25 | 0.22 | 0.22 | 0.20 | 0.22 |
Dig. Arg | 1.40 | 1.40 | 1.35 | 1.35 | 1.10 | 1.10 |
Dig. Val | 0.94 | 0.94 | 0.91 | 0.91 | 0.78 | 0.78 |
Dig. Ile | 0.85 | 0.85 | 0.76 | 0.76 | 0.69 | 0.69 |
Item 1 | Starter (1 to 14 Days) | Grower (14 to 28 Days) | Finisher (28 to 40 Days) | |||
---|---|---|---|---|---|---|
Basal | BSF 2 | Basal | BSF | Basal | BSF | |
Lauric | 0 | 4.90 | 0 | 4.77 | 0 | 4.70 |
Myristic | 1.57 | 2.61 | 1.30 | 2.31 | 1.39 | 2.01 |
Palmitic | 13.95 | 15.75 | 14.07 | 15.83 | 13.85 | 15.61 |
Palmitoleic | 2.19 | 2.77 | 3.01 | 2.63 | 2.26 | 2.10 |
Stearic | 2.46 | 2.54 | 2.39 | 2.58 | 2.54 | 2.56 |
Oleic | 25.17 | 23.17 | 24.44 | 22.86 | 25.51 | 23.73 |
Rumenic | 15.14 | 16.27 | 15.35 | 15.47 | 16.77 | 16.79 |
Linoleic | 31.31 | 23.95 | 31.31 | 25.99 | 29.07 | 25.71 |
Alpha-linolenic | 3.08 | 2.51 | 2.93 | 2.28 | 2.86 | 2.61 |
Eicosapentaenoic | 1.04 | 1.48 | 1.09 | 1.50 | 1.40 | 1.49 |
Unknown MUFA | 3.79 | 3.99 | 3.80 | 3.89 | 4.08 | 4.66 |
Total SFA | 17.98 | 25.50 | 17.76 | 25.48 | 18.04 | 25.09 |
Total MUFA | 31.44 | 30.29 | 31.56 | 29.29 | 31.85 | 29.49 |
Total PUFA | 50.58 | 44.20 | 50.68 | 45.23 | 50.10 | 45.41 |
Item | Diet | Challenge | SEM | p-Value Main Factors | ||||
---|---|---|---|---|---|---|---|---|
Basal | BSF | Non-Challenged | Challenged 1 | Diet | Challenge | Diet × Challenge | ||
1 to 7 days | ||||||||
BWG 2, g | 144 | 144 | 159 a | 130 b | 3.3 | 0.965 | 0.001 | 0.919 |
FI 3, g | 191 x | 181 y | 193 a | 177 b | 2.7 | 0.062 | 0.001 | 0.602 |
FCR 4 | 1.323 | 1.254 | 1.214 b | 1.363 a | 0.025 | 0.115 | 0.002 | 0.567 |
7 to 14 days | ||||||||
BWG, g | 258 | 262 | 273 a | 247 b | 4.0 | 0.609 | 0.006 | 0.093 |
FI, g | 369 | 359 | 372 a | 356 b | 2.9 | 0.289 | 0.001 | 0.341 |
FCR | 1.431 a | 1.370 b | 1.363 b | 1.440 a | 0.016 | 0.027 | 0.006 | 0.091 |
14 to 21 days | ||||||||
BWG, g | 510 | 526 | 528 a | 507 b | 5.2 | 0.118 | 0.039 | 0.462 |
FI, g | 660 | 655 | 654 | 660 | 7.8 | 0.676 | 0.100 | 0.699 |
FCR | 1.295 x | 1.246 y | 1.239 b | 1.302 a | 0.015 | 0.072 | 0.026 | 0.370 |
21 to 28 days | ||||||||
BWG, g | 712 | 714 | 728 a | 698 b | 7.2 | 0.882 | 0.048 | 0.462 |
FI, g | 1085 | 1063 | 1083 | 1064 | 12.8 | 0.354 | 0.439 | 0.768 |
FCR | 1.524 | 1.489 | 1.488 | 1.525 | 0.034 | 0.369 | 0.363 | 0.894 |
28 to 35 days | ||||||||
BWG, g | 826 | 841 | 850 | 817 | 10.7 | 0.481 | 0.139 | 0.968 |
FI, g | 1478 | 1447 | 1440 | 1484 | 14.6 | 0.241 | 0.190 | 0.334 |
FCR | 1.789 | 1.721 | 1.694 b | 1.816 a | 0.017 | 0.184 | 0.021 | 0.462 |
35 to 40 days | ||||||||
BWG, g | 582 | 609 | 606 | 585 | 14.0 | 0.361 | 0.473 | 0.376 |
FI, g | 1251 | 1217 | 1231 | 1238 | 12.0 | 0.340 | 0.439 | 0.768 |
FCR | 2.150 x | 1.998 y | 2.032 | 2.116 | 0.028 | 0.062 | 0.297 | 0.393 |
1 to 21 days | ||||||||
BWG, g | 913 | 932 | 960 a | 885 b | 8.9 | 0.103 | 0.001 | 0.112 |
FI, g | 1207 | 1187 | 1208 a | 1149 b | 11.2 | 0.965 | 0.001 | 0.919 |
FCR | 1.322 a | 1.274 b | 1.258 b | 1.298 a | 0.008 | 0.002 | 0.043 | 0.162 |
21 to 40 days | ||||||||
BWG, g | 2121 | 2165 | 2184 a | 2102 b | 15.5 | 0.115 | 0.005 | 0.358 |
FI, g | 3794 | 3709 | 3735 b | 3767 a | 29.9 | 0.609 | 0.006 | 0.093 |
FCR | 1.789 a | 1.713 b | 1.710 b | 1.792 a | 0.014 | 0.002 | 0.001 | 0.202 |
1 to 40 days | ||||||||
BWG, g | 3034 b | 3097 a | 3144 a | 2986 b | 21.8 | 0.048 | 0.001 | 0.180 |
FI, g | 5000 | 4896 | 4980 a | 4912 b | 32.9 | 0.118 | 0.039 | 0.462 |
FCR | 1.648 a | 1.581 b | 1.584 b | 1.645 a | 0.011 | 0.003 | 0.009 | 0.100 |
Item | Diet | Challenge | SEM | p-Value Main Factors | ||||
---|---|---|---|---|---|---|---|---|
Basal | BSF | Non-Challenged | Challenged 1 | Diet | Challenge | Diet Challenge | ||
Intestinal integrity | ||||||||
FITC-d 2, μg/mL | 0.114 | 0.110 | 0.101 b | 0.124 a | 0.006 | 0.852 | 0.041 | 0.318 |
Jejunal gene expression | ||||||||
Mucin-(MUC2) | 1.105 | 1.262 | 1.303 | 1.064 | 0.08 | 0.346 | 0.157 | 0.879 |
Interleukin-6 (IL-6) | 2.180 a | 1.709 b | 1.307 b | 2.582 a | 0.22 | 0.021 | 0.002 | 0.891 |
Jejunal histomorphology | ||||||||
Villus height, μm | 518 y | 544 x | 538 | 523 | 9.06 | 0.086 | 0.378 | 0.124 |
Crypt depth, μm | 93.1 | 91.1 | 93.0 | 92.5 | 2.04 | 0.532 | 0.903 | 0.795 |
Muscular height, μm | 142 | 148 | 143 | 148 | 3.46 | 0.440 | 0.507 | 0.508 |
Villus–Crypt ratio | 5.6 y | 6.0 x | 5.7 | 5.9 | 0.14 | 0.065 | 0.577 | 0.156 |
Apparent ileal digestibility | ||||||||
IDE 3, kcal/kg | 3305 | 3276 | 3289 | 3292 | 24.8 | 0.581 | 0.956 | 0.957 |
Dry matter, % | 70.1 | 68.9 | 70.0 | 69.0 | 0.64 | 0.377 | 0.465 | 0.839 |
Crude protein, % | 81.4 | 80.5 | 81.0 | 80.9 | 0.49 | 0.423 | 0.887 | 0.694 |
Energy, % | 73.1 | 72.2 | 72.8 | 72.4 | 0.55 | 0.438 | 0.744 | 0.916 |
Item | Diet | Challenge | SEM | p-Value Main Factors | ||||
---|---|---|---|---|---|---|---|---|
Basal | BSF | Non-Challenged | Challenged 1 | Diet | Challenge | Diet × Challenge | ||
Short-chain fatty acids, 21 days | ||||||||
Acetic | 42.3 b | 54.8 a | 52.8 | 49.30 | 1.830 | 0.040 | 0.324 | 0.569 |
Propionic | 6.24 | 6.51 | 6.33 | 6.41 | 0.540 | 0.810 | 0.949 | 0.519 |
Propanoic | 0.79 | 0.82 | 0.72 b | 0.89 a | 0.042 | 0.789 | 0.046 | 0.719 |
Butyric | 9.01 b | 12.41 a | 11.76 | 9.70 | 0.019 | 0.013 | 0.115 | 0.759 |
Isobutyric | 1.29 | 1.50 | 1.33 | 1.45 | 0.078 | 0.194 | 0.453 | 0.627 |
Valeric | 1.58 | 1.78 | 1.75 | 1.61 | 0.136 | 0.497 | 0.608 | 0.785 |
Short-chain fatty acids, 40 days | ||||||||
Acetic | 52.5 | 57.5 | 57.20 | 52.3 | 2.010 | 0.205 | 0.269 | 0.373 |
Propionic | 13.60 | 14.2 | 13.30 | 14.50 | 1.260 | 0.619 | 0.307 | 0.308 |
Propanoic | 0.99 | 1.02 | 0.92 b | 1.09 a | 0.053 | 0.689 | 0.050 | 0.225 |
Butyric | 10.30 b | 12.90 a | 10.70 | 12.50 | 0.020 | 0.030 | 0.144 | 0.456 |
Isobutyric | 1.53 | 1.54 | 1.43 | 1.64 | 0.060 | 0.932 | 0.063 | 0.262 |
Valeric | 1.82 | 1.83 | 1.74 | 1.91 | 0.132 | 0.939 | 0.437 | 0.978 |
Fatty Acids | Diet | Challenge | SEM | p-Value Main Factors | ||||
---|---|---|---|---|---|---|---|---|
Basal | BSF | Non-Challenged | Challenged 1 | Diet | Challenge | Diet × Challenge | ||
C12:0 Lauric | 0.24 b | 1.46 a | 0.81 | 0.89 | 0.138 | 0.001 | 0.571 | 0.081 |
C14:0 Myristic | 0.56 b | 1.28 a | 0.90 | 0.95 | 0.072 | 0.001 | 0.474 | 0.815 |
C16:0 Palmitic | 26.9 | 27.3 | 27.0 | 27.20 | 0.260 | 0.505 | 0.518 | 0.169 |
C16:1 Palmitoleic | 3.48 | 3.01 | 3.22 | 3.27 | 0.080 | 0.164 | 0.871 | 0.777 |
C18:0 Stearic | 7.79 | 8.00 | 8.00 | 7.79 | 0.143 | 0.479 | 0.460 | 0.126 |
C18:1 Oleic | 34.7 | 34.2 | 34.0 | 34.90 | 0.530 | 0.623 | 0.393 | 0.443 |
C18:2 Linoleic | 23.7 | 22.7 | 23.9 | 22.50 | 0.440 | 0.291 | 0.103 | 0.922 |
C20:1 Eicosennoic | 0.41 | 0.44 | 0.45 | 0.40 | 0.027 | 0.345 | 0.184 | 0.464 |
C18:3 Alpha-linoleic | 1.04 | 0.98 | 1.07 | 0.95 | 0.039 | 0.392 | 0.128 | 0.758 |
C20:2 Eicosadienoic | 0.51 | 0.53 | 0.53 | 0.50 | 0.037 | 0.790 | 0.693 | 0.382 |
C20:4 Arachidonic | 0.58 | 0.64 | 0.59 | 0.63 | 0.029 | 0.301 | 0.552 | 0.639 |
Total fatty acid (%) | 1.27 | 1.30 | 1.30 | 1.26 | 0.051 | 0.825 | 0.789 | 0.788 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalmoro, Y.K.; de Godoy, G.L.; Agilar, J.C.; Raddatz, G.A.; de Oliveira, F.d.C.; Witt, N.; Stefanello, C. Dietary Black Soldier Fly Larvae Meal and Its Impact on the Growth Performance and Gut Health of Broilers Under an Intestinal Challenge. Metabolites 2025, 15, 347. https://doi.org/10.3390/metabo15060347
Dalmoro YK, de Godoy GL, Agilar JC, Raddatz GA, de Oliveira FdC, Witt N, Stefanello C. Dietary Black Soldier Fly Larvae Meal and Its Impact on the Growth Performance and Gut Health of Broilers Under an Intestinal Challenge. Metabolites. 2025; 15(6):347. https://doi.org/10.3390/metabo15060347
Chicago/Turabian StyleDalmoro, Yuri Katagiri, Guilherme Librelotto de Godoy, Jessica Cristina Agilar, Glauco Anderson Raddatz, Fernanda de Candido de Oliveira, Natieli Witt, and Catarina Stefanello. 2025. "Dietary Black Soldier Fly Larvae Meal and Its Impact on the Growth Performance and Gut Health of Broilers Under an Intestinal Challenge" Metabolites 15, no. 6: 347. https://doi.org/10.3390/metabo15060347
APA StyleDalmoro, Y. K., de Godoy, G. L., Agilar, J. C., Raddatz, G. A., de Oliveira, F. d. C., Witt, N., & Stefanello, C. (2025). Dietary Black Soldier Fly Larvae Meal and Its Impact on the Growth Performance and Gut Health of Broilers Under an Intestinal Challenge. Metabolites, 15(6), 347. https://doi.org/10.3390/metabo15060347