Mechanism Study on the Preventive Effect of ELITEA Compound Tea on Hyperuricemia in Rats Based on Serum Untargeted Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrument, Reagent, and Tools
2.2. Experimental Animals
2.3. Experimental Steps
2.4. Blood Uric Acid Concentration Detection Method
2.5. Untargeted Metabolomic Experimental Methods
2.5.1. Extraction of Metabolites and Preparation of QC Samples
2.5.2. Chromatographic Separation
2.5.3. Mass Spectrometry Collection
2.5.4. Data Preprocessing
3. Results
3.1. Changes in Serum Uric Acid Levels in Rats
3.2. Results of Untargeted Metabolomics Research
3.2.1. Experimental Quality Evaluation
3.2.2. Multivariable Statistics
3.2.3. Significant Differential Metabolite Analysis
3.2.4. Metabolic Pathway Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Zhang, R.; Zhang, X.; Wang, L.; Wei, J.; Zhang, C. Retrospective analysis of clinical risk factors for hyperuricemia in patients with chronic kidney disease. Chin. J. Exp. Diagn. 2023, 27, 173–178. [Google Scholar] [CrossRef]
- She, D.; Wang, Y.; Liu, J.; Luo, N.; Feng, S.; Li, Y.; Xu, J.; Xie, S.; Zhu, Y.; Xue, Y.; et al. Changes in the prevalence of hyperuricemia in clients of health examination in Eastern China, 2009 to 2019. BMC Endocr. Disord. 2022, 22, 202. [Google Scholar] [CrossRef]
- Chen, P.H.; Chen, Y.W.; Liu, W.J.; Hsu, S.W.; Chen, C.H.; Lee, C.L. Approximate Mortality Risks Between Hyperuricemia and Diabetes in the United States. J. Clin. Med. 2019, 8, 2127. [Google Scholar] [CrossRef]
- Seong, J.M.; Gi, M.Y.; Cha, J.A.; Sung, H.H.; Park, S.Y.; Park, C.H.; Yoon, H. Gender Difference in the Association of Hyperuricemia with Insulin Resistance and beta-cell Function in Nondiabetic Korean Adults: The 2019 Korea National Health and Nutrition Examination Survey. Endocr. Res. 2023, 48, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; He, M.; Zhao, G.; Liu, X.; Liu, X.; Xu, H.; Cheng, Y.; Jiang, Y.; Peng, Q.; Shi, J.; et al. The Association of Dietary Diversity with Hyperuricemia Among Community Inhabitants in Shanghai, China: A Prospective Research. Nutrients 2024, 16, 2968. [Google Scholar] [CrossRef]
- Gao, Y.; Cui, L.F.; Sun, Y.Y.; Yang, W.H.; Wang, J.R.; Wu, S.L.; Gao, X. Adherence to the Dietary Approaches to Stop Hypertension Diet and Hyperuricemia: A Cross-Sectional Study. Arthritis Care Res. 2021, 73, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Cai, S.; Sun, Y.; Chu, C. Chinese Sumac (Rhus chinensis Mill.) Fruits Prevent Hyperuricemia and Uric Acid Nephropathy in Mice Fed a High-Purine Yeast Diet. Nutrients 2024, 16, 184. [Google Scholar] [CrossRef]
- Li, J. Prevention of hyperuricemia in pilots. J. Aerosp. Med. 2014, 25, 1378–1379. [Google Scholar] [CrossRef]
- Čypienė, A.; Gimžauskaitė, S.; Rinkūnienė, E.; Jasiūnas, E.; Rugienė, R.; Kazėnaitė, E.; Ryliškytė, L.; Badarienė, J. The Association Between Water Consumption and Hyperuricemia and Its Relation with Early Arterial Aging in Middle-Aged Lithuanian Metabolic Patients. Nutrients 2023, 15, 723. [Google Scholar] [CrossRef]
- Li, X.; Song, P.; Li, J.; Wang, P.; Li, G. Relationship between hyperuricemia and dietary risk factors in Chinese adults: A cross-sectional study. Rheumatol. Int. 2015, 35, 2079–2089. [Google Scholar] [CrossRef]
- Huang, X.; Zhong, Z.; He, J.; Them, S.; Chen, M.; Liu, A.; Tan, H.; Wen, S.; Deng, J. Association Between Visceral Adiposity Index and Hyperuricemia Among Steelworkers: The Moderating Effects of Drinking Tea. Nutrients 2024, 16, 3221. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.P.; Su, Y.D.; Chen, D.D.; Guan, X.L.; Jia, M.; Gao, L.R.; Qiu, X.J. Preventive Effect of ELITEA Compound Tea on Hyperuricemia Model in Rats. Lat. Am. J. Pharm. 2024, 43, 211–217. [Google Scholar]
- Zhang, S.J.; Li, J.H.; Zhai, Y.F.; Xu, J.C.; Wang, Y.X.; Ding, X.C.; Qiu, X.J. Serum untargeted metabolomics analysis of the preventive mechanism of TAETEA Prebiotea on non-alcoholic fatty liver in rats. J. Pharm. Biomed. Anal. 2024, 247, 116218. [Google Scholar] [CrossRef]
- Gu, W.; Tong, Z. Clinical Application of Metabolomics in Pancreatic Diseases: A Mini-Review. Lab. Med. 2020, 51, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Carlos, G.; Dos Santos, F.P.; Fröehlich, P.E. Canine metabolomics advances. Metabolomics 2020, 16, 16. [Google Scholar] [CrossRef]
- Pinu, F.R.; Goldansaz, S.A.; Jaine, J. Translational Metabolomics: Current Challenges and Future Opportunities. Metabolites 2019, 9, 108. [Google Scholar] [CrossRef]
- Pinu, F.R.; Villas-Boas, S.G.; Martin, D. Pre-fermentative supplementation of fatty acids alters the metabolic activity of wine yeasts. Food Res. Int. 2019, 121, 835–844. [Google Scholar] [CrossRef]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. Laboratory animal—Guideline for ethical review of animal welfare.
- Du, L.; Zong, Y.; Li, H.; Wang, Q.; Xie, L.; Yang, B.; Pang, Y.; Zhang, C.; Zhong, Z.; Gao, J. Hyperuricemia and its related diseases: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 212. [Google Scholar] [CrossRef]
- Liu, C.; Ruan, F.; Chen, Z.; Han, J.; Ding, X.; Han, C.; Ye, L.; Yang, C.; Yu, Y.; Zuo, Z.; et al. Phenanthrene-induced hyperuricemia with intestinal barrier damage and the protective role of theabrownin: Modulation by gut microbiota-mediated bile acid metabolism. Sci. Total Environ. 2024, 949, 174923. [Google Scholar] [CrossRef]
- Ding, X.; Yuan, Q.; Han, C.; Shen, C.; Chen, M.; Yin, H.; Zhong, H.; Yang, C.; Huang, J.; He, C.; et al. Effects and mechanisms of theabrownin from black tea in improving hyperuricemia: Evidence from animal study and clinical trial. Int. J. Biol. Macromol. 2025, 293, 139373. [Google Scholar] [CrossRef]
- Zhao, S.; Cao, H.; Sun, F.; Xu, M.; Wang, X.; Jiang, J.; Luo, L.; Zeng, L. Investigating the modulatory effects of Pu-erh tea on the gut microbiota in ameliorating hyperuricemia induced by circadian rhythm disruption. Food Funct. 2025, 16, 2669–2686. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Sun, H.; Zhang, A.; Yan, G.; Wang, X.J. Chinmedomics, a new strategy for evaluating the therapeutic efficacy of herbal medicines. Pharmacol. Ther. 2020, 216, 107680. [Google Scholar] [CrossRef] [PubMed]
- Saka, W.A.; Akhigbe, R.E.; Abidoye, A.O.; Dare, O.S.; Adekunle, A.O. Suppression of uric acid generation and blockade of glutathione dysregulation by L-arginine ameliorates dichlorvos-induced oxidative hepatorenal damage in rats. Biomed. Pharmacother. 2021, 138, 111443. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Lozada, L.G.; Tapia, E.; López-Molina, R.; Nepomuceno, T.; Soto, V.; Ávila-Casado, C.; Nakagawa, T.; Johnson, R.J.; Herrera-Acosta, J.; Franco, M. Effects of acute and chronic L-arginine treatment in experimental hyperuricemia. Am. J. Physiol. Ren. Physiol. 2007, 292, F1238–F1244. [Google Scholar] [CrossRef] [PubMed]
- Rocić, B.; Vucić-Lovrencić, M.; Poje, N.; Poje, M.; Bertuzzi, F. Uric acid may inhibit glucose-induced insulin secretion via binding to an essential arginine residue in rat pancreatic beta-cells. Bioorganic Med. Chem. Lett. 2005, 15, 1181–1184. [Google Scholar] [CrossRef]
- Andres-Hernando, A.; Cicerchi, C.; Kuwabara, M.; Orlicky, D.J.; Sanchez-Lozada, L.G.; Nakagawa, T.; Johnson, R.J.; Lanaspa, M.A. Umami-induced obesity and metabolic syndrome is mediated by nucleotide degradation and uric acid generation. Nat. Metab. 2021, 3, 1189–1201. [Google Scholar] [CrossRef]
- Pan, L.; Han, P.; Ma, S.; Peng, R.; Wang, C.; Kong, W.; Cong, L.; Fu, J.; Zhang, Z.; Yu, H.; et al. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharm. Sin. B 2020, 10, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Schreckenberg, R.; Schlüter, K.D. Uric Acid Deteriorates Load-Free Cell Shortening of Cultured Adult Rat Ventricular Cardiomyocytes via Stimulation of Arginine Turnover. Biology 2022, 20, 4. [Google Scholar] [CrossRef]
- Onmaz, D.E.; Tezcan, D.; Abusoglu, S.; Yilmaz, S.; Kuzu, M.; Abusoglu, G.; Yerlikaya, F.H.; Unlu, A. Raised total methylated arginine load in patients with gout. Biomark. Med 2022, 16, 993–1004. [Google Scholar] [CrossRef]
Sample Comparison Group | R2X (cum) 1 | R2Y (cum) 2 | Q2 (cum) 3 | RMSEE 4 |
---|---|---|---|---|
A.vs.B | 0.414 | 0.998 | 0.913 | 0.0265 |
B.vs.D | 0.459 | 0.996 | 0.926 | 0.0361 |
A_B_D 5 | 0.26 | 0.989 | 0.763 | 0.112 |
Metabolite Name | Formula | RT (min) | Reference m/z | HMBD ID | A vs. B | B vs. D | ||||
---|---|---|---|---|---|---|---|---|---|---|
Trend | p.Value | VIP | Trend | p.Value | VIP | |||||
Biotin | C10H16N2O3S | 5.028 | 267.07742 | HMDB0000030 | ↓ | <0.001 | 1.85 | ↑ | <0.001 | 1.85 |
3-(6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-1-ol | C14H21NO3 | 6.278 | 252.15938 | --- | ↓ | <0.001 | 1.83 | ↑ | <0.001 | 1.84 |
2-hydroxy-4-methoxy-6-methylbenzoic acid | C9H10O4 | 5.121 | 181.10002 | --- | ↓ | <0.001 | 1.84 | ↑ | <0.001 | 1.84 |
Kobusone | C14H22O2 | 6.046 | 261.12515 | HMDB0036790 | ↓ | <0.001 | 1.84 | ↑ | <0.001 | 1.84 |
6-Hydroxypseudooxynicotine | C10H14N2O2 | 5.808 | 195.11278 | HMDB0240264 | ↓ | <0.001 | 1.84 | ↑ | <0.001 | 1.83 |
6-n-Propyluracil | C7H10N2O2 | 4.858 | 155.0815 | HMDB0247095 | ↓ | <0.001 | 1.84 | ↑ | <0.001 | 1.83 |
Ncgc00380138-01! | C11H15NO3 | 6.182 | 227.13902 | --- | ↓ | <0.001 | 1.85 | ↑ | <0.001 | 1.83 |
Anisole | C7H8O | 7.52 | 107.04969 | HMDB0033895 | ↓ | <0.001 | 1.84 | ↑ | <0.001 | 1.83 |
Hydroxytoluic acid | C8H8O3 | 7.518 | 151.04002 | HMDB0002390 | ↓ | <0.001 | 1.84 | ↑ | <0.001 | 1.83 |
Albuterol | C13H21NO3 | 8.675 | 240.15938 | HMDB0001937 | ↓ | <0.001 | 1.85 | ↑ | <0.001 | 1.83 |
1,3,6,7-tetrahydroxy-8-(3-hydroxy-3-methylbutyl)-2-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one | C23H26O7 | 5.127 | 437.15701 | HMDB0029511 | ↓ | <0.001 | 1.83 | ↑ | <0.001 | 1.82 |
2-{2-benzimidazol-2-yl-1-[(4-methylphenyl)methyl]ethyl}benzimidazole | C24H22N4 | 5.841 | 401.15381 | --- | ↓ | <0.001 | 1.84 | ↑ | <0.001 | 1.82 |
3′,5′-Dideoxythymidine | C10H14N2O3 | 5.028 | 211.10771 | HMDB0246113 | ↓ | <0.001 | 1.83 | ↑ | <0.001 | 1.82 |
L-Acetylleucine | C8H15NO3 | 5.098 | 196.09442 | HMDB0011756 | ↓ | <0.001 | 1.82 | ↑ | <0.001 | 1.82 |
3-carboxy-4-methyl-5-pentyl-2-furanpropanoic acid | C14H20O5 | 8.413 | 267.12326 | HMDB0061643 | ↓ | <0.001 | 1.81 | ↑ | <0.001 | 1.82 |
Valaciclovir | C13H20N6O4 | 8.372 | 323.14731 | HMDB0014716 | ↓ | <0.001 | 1.81 | ↑ | <0.001 | 1.81 |
PyroGlu-Pro | C10H14N2O4 | 5.124 | 227.10258 | --- | ↓ | <0.001 | 1.81 | ↑ | <0.001 | 1.81 |
[2-(5-fluoro-2-methylindol-3-yl)ethyl][(2-methoxy-4,5-dimethylphenyl)sulfonyl] amine | C20H23FN2O3S | 6.078 | 435.14001 | --- | ↓ | <0.001 | 1.85 | ↑ | <0.001 | 1.81 |
L,L-Cyclo(prolylalanyl) | C8H12N2O2 | 5.06 | 169.09715 | HMDB0303321 | ↓ | <0.001 | 1.81 | ↑ | <0.001 | 1.81 |
Alanylnorleucine | C9H18N2O3 | 5.814 | 185.129 | --- | ↓ | <0.001 | 1.81 | ↑ | <0.001 | 1.81 |
Sinapoylhexoside | C17H22O10 | 5.793 | 385.11401 | --- | ↑ | <0.001 | 1.84 | ↓ | <0.001 | 1.83 |
3,5-Di-tert-butyl-4-hydroxybenzoic acid | C15H22O3 | 9.404 | 251.16418 | HMDB0240642 | ↑ | <0.001 | 1.80 | ↓ | <0.001 | 1.80 |
cis-15-Octadecenoic acid | C18H34O2 | 10.819 | 283.26315 | HMDB0304765 | ↑ | <0.01 | 1.48 | ↓ | <0.001 | 1.79 |
Octadeca-9,12-dienal | C18H32O | 10.812 | 265.25259 | HMDB0247717 | ↑ | <0.01 | 1.54 | ↓ | <0.001 | 1.79 |
Cadabicilone | C15H22O3 | 9.391 | 249.14906 | HMDB0037559 | ↑ | < 0.001 | 1.81 | ↓ | <0.001 | 1.79 |
3,5-Dihydroxycinnamic acid sulfate | C9H8O7S | 5.552 | 258.99124 | HMDB0240449 | ↑ | <0.001 | 1.76 | ↓ | <0.001 | 1.77 |
L-Monomenthyl glutarate | C15H26O4 | 8.79 | 269.17584 | HMDB0303264 | ↑ | <0.001 | 1.68 | ↓ | <0.001 | 1.76 |
Dichlorprop | C9H8Cl2O3 | 5.086 | 232.97772 | HMDB0251202 | ↑ | <0.001 | 1.76 | ↓ | <0.001 | 1.76 |
Benzoic acid + 2O, O-Hex | C13H16O9 | 4.945 | 315.07211 | --- | ↑ | <0.01 | 1.53 | ↓ | <0.001 | 1.75 |
(R)-3-Hydroxy-Octadecanoic acid | C18H36O3 | 10.802 | 299.25861 | HMDB0010737 | ↑ | <0.01 | 1.49 | ↓ | <0.001 | 1.75 |
Phellopterin | C17H16O5 | 4.941 | 339.06973 | HMDB0256386 | ↑ | <0.01 | 1.47 | ↓ | < 0.001 | 1.75 |
7,4′-dihydroxy-3′-(gamma,gamma-dimethylallyl)isoflavone | C20H18O4 | 9.271 | 321.20209 | HMDB0255518 | ↑ | <0.01 | 1.56 | ↓ | <0.001 | 1.73 |
N-[1-(4-methoxy-6-oxopyran-2-yl)-2-methylpropyl]acetamide | C12H17NO4 | 0.911 | 257.14951 | --- | ↑ | <0.05 | 1.30 | ↓ | <0.001 | 1.72 |
3-(3,5-dihydroxyphenyl)-1-propanoic acid sulphate | C9H10O7S | 5.404 | 261.0069 | HMDB0061117 | ↑ | < 0.001 | 1.79 | ↓ | <0.001 | 1.71 |
Korseveriline | C27H45NO3 | 9.506 | 454.32913 | --- | ↑ | <0.001 | 1.80 | ↓ | <0.001 | 1.70 |
Racivir | C8H10FN3O3S | 5.94 | 246.0354 | HMDB0015017 | ↑ | <0.001 | 1.35 | ↓ | <0.001 | 1.70 |
beta-Gentiobiose | C12H22O11 | 5.165 | 381.07935 | HMDB0248216 | ↑ | <0.001 | 1.83 | ↓ | <0.001 | 1.69 |
1-(5,7-Dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-8-yl)-3-phenyl-2-propen-1-one | C21H20O4 | 7.25 | 335.12881 | --- | ↑ | <0.001 | 1.75 | ↓ | <0.001 | 1.67 |
15,16-DiHODE | C18H32O4 | 8.981 | 311.22223 | HMDB0010208 | ↑ | <0.01 | 1.47 | ↓ | <0.001 | 1.65 |
8-Hydroxy-9,10-epoxystearic acid | C18H34O4 | 9.312 | 337.23492 | --- | ↑ | <0.01 | 1.53 | ↓ | <0.001 | 1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhu, Y.; Wang, W.; Zhang, X.; Gao, L.; Qiu, X. Mechanism Study on the Preventive Effect of ELITEA Compound Tea on Hyperuricemia in Rats Based on Serum Untargeted Metabolomics. Metabolites 2025, 15, 336. https://doi.org/10.3390/metabo15050336
Liu S, Zhu Y, Wang W, Zhang X, Gao L, Qiu X. Mechanism Study on the Preventive Effect of ELITEA Compound Tea on Hyperuricemia in Rats Based on Serum Untargeted Metabolomics. Metabolites. 2025; 15(5):336. https://doi.org/10.3390/metabo15050336
Chicago/Turabian StyleLiu, Shulian, Yongliang Zhu, Wenjiong Wang, Xianghan Zhang, Linrui Gao, and Xiangjun Qiu. 2025. "Mechanism Study on the Preventive Effect of ELITEA Compound Tea on Hyperuricemia in Rats Based on Serum Untargeted Metabolomics" Metabolites 15, no. 5: 336. https://doi.org/10.3390/metabo15050336
APA StyleLiu, S., Zhu, Y., Wang, W., Zhang, X., Gao, L., & Qiu, X. (2025). Mechanism Study on the Preventive Effect of ELITEA Compound Tea on Hyperuricemia in Rats Based on Serum Untargeted Metabolomics. Metabolites, 15(5), 336. https://doi.org/10.3390/metabo15050336