Current Prognostic Biomarkers for Peripheral Arterial Disease: A Comprehensive Systematic Review of the Literature
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Markers of Immunity and Inflammation
3.1.1. C-Reactive Protein (CRP)
3.1.2. Interleukin-6 (IL-6)
3.1.3. Growth Differentiation Factor 15 (GDF15)
3.1.4. Chitinase-3-Like Protein 1 (CHI3L1/YKL-40)
3.1.5. Serum Amyloid A (SAA)
3.1.6. Tumor Necrosis Factor-α (TNF-α)
3.1.7. Tumor Necrosis Factor-α Receptor 1 (TNFR1)
3.1.8. Lipocalin-2 (LCN2)
3.1.9. Calprotectin
3.1.10. Osteoprotegerin (OPG)
3.1.11. α-Defensin
3.1.12. Plasma Pentraxin 3 (PTX3)
3.1.13. Anti-Phosphorylcholine IgM
3.1.14. Galectin-3
3.2. Hemostasis
3.2.1. P-Selectin
3.2.2. Thrombin
3.2.3. Glycoprotein IIb/IIIa
3.2.4. Thrombin Receptor Activator Peptide 6 (TRAP-6)
3.2.5. D-Dimer
3.3. Kidney Function
3.3.1. Cystatin
3.3.2. Creatinine
3.4. Growth Factors and Hormones
3.4.1. Insulin-Like Growth Factor-I (IGF-I)
3.4.2. Insulin-Like Growth-Factor-Binding Protein 2 (IGFBP-2)
3.4.3. Pregnancy-Associated Plasma Protein-A (PAPP-A)
3.4.4. Angiopoietin-Like 2
3.5. Extracellular Matrix Remodeling
3.5.1. Matrix Metalloproteinase-10
3.5.2. Tissue Inhibitor of Metalloproteinase (TIMP)
3.6. Metabolism
3.6.1. Low-Density Lipoprotein
3.6.2. High-Density Lipoprotein
3.6.3. Malondialdehyde-Modified Low-Density Lipoprotein (MDA/LDL)
3.6.4. Homocysteine
3.7. Cardiac Markers
3.7.1. Brain Natriuretic Peptide
3.7.2. N-Terminal Prohormone of Brain Natriuretic Peptide
3.7.3. Cardiac Troponin T (cTnT)
3.7.4. Ischemia-Modified Albumin (IMA)
3.7.5. Hemoglobin A1c and Glycosylated Hemoglobin
3.8. Transport Proteins
3.8.1. Albumin
3.8.2. Hemoglobin
3.8.3. Fatty-Acid-Binding Protein-3 (FABP3)
3.8.4. Fatty-Acid-Binding Protein-4 (FABP4)
3.8.5. Adipocyte Fatty-Acid-Binding Protein (A-FABP)
3.8.6. Retinol-Binding Protein 4 (RBP-4)
3.9. Non-Traditional Glycemic Markers: Fructosamine, Glycated Albumin, and 1,5-Anhydroglucitol
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, B.; Shaikh, F.; Zamzam, A.; Syed, M.H.; Abdin, R.; Qadura, M. A machine learning algorithm for peripheral artery disease prognosis using biomarker data. iScience 2024, 27, 109081. [Google Scholar] [CrossRef] [PubMed]
- Gornik, H.L.; Aronow, H.D.; Goodney, P.P.; Arya, S.; Brewster, L.P.; Byrd, L.; Chandra, V.; Drachman, D.E.; Eaves, J.M.; Ehrman, J.K.; et al. 2024 ACC/AHA/AACVPR/APMA/ABC/SCAI/SVM/SVN/SVS/SIR/VESS Guideline for the Management of Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1313–e1410. [Google Scholar] [CrossRef]
- Madaudo, C.; Coppola, G.; Parlati, A.L.M.; Corrado, E. Discovering Inflammation in Atherosclerosis: Insights from Pathogenic Pathways to Clinical Practice. Int. J. Mol. Sci. 2024, 25, 6016. [Google Scholar] [CrossRef] [PubMed]
- Kasiri, M.M.; Mittlboeck, M.; Gollackner, B.; Neumayer, C. Mortality in Amputees with Peripheral Artery Disease during the Post-COVID Era: A Three-Year Analysis. Diseases 2024, 12, 133. [Google Scholar] [CrossRef] [PubMed]
- Jones, W.S.; Patel, M.R.; Dai, D.; Vemulapalli, S.; Subherwal, S.; Stafford, J.; Peterson, E.D. High mortality risks after major lower extremity amputation in Medicare patients with peripheral artery disease. Am. Heart J. 2013, 165, 809–815.e1. [Google Scholar] [CrossRef]
- Yammine, K.; Hayek, F.; Assi, C. A meta-analysis of mortality after minor amputation among patients with diabetes and/or peripheral vascular disease. J. Vasc. Surg. 2020, 72, 2197–2207. [Google Scholar] [CrossRef]
- Zemaitis, M.R.; Boll, J.M.; Dreyer, M.A. Peripheral Arterial Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK430745/ (accessed on 7 October 2022).
- Kim, M.S.; Hwang, J.; Yon, D.K.; Lee, S.W.; Jung, S.Y.; Park, S.; Johnson, C.O.; Stark, B.A.; Razo, C.; Abbasian, M.; et al. Global burden of peripheral artery disease and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Glob. Health 2023, 11, e1553–e1565. [Google Scholar] [CrossRef]
- Lecouturier, J.; Scott, J.; Rousseau, N.; Stansby, G.; Sims, A.; Allen, J. Peripheral arterial disease diagnosis and management in primary care: A qualitative study. BJGP Open 2019, 3, bjgpopen19X101659. [Google Scholar] [CrossRef]
- Society for Vascular Surgery Lower Extremity Guidelines Writing Group; Conte, M.S.; Pomposelli, F.B.; Clair, D.G.; Geraghty, P.J.; McKinsey, J.F.; Mills, J.L.; Moneta, G.L.; Murad, M.H.; Powell, R.J.; et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: Management of asymptomatic disease and claudication. J. Vasc. Surg. 2015, 61 (Suppl. S3), 2S–41S. [Google Scholar] [CrossRef]
- Ding, M.; Shi, J.; Xing, Y.; Sun, B.; Fang, Q.; Zhang, J.; Zhang, Q.; Chen, L.; Yu, D.; Li, C. Serum adipocyte fatty acid-binding protein levels are associated with peripheral arterial disease in women, but not men, with type 2 diabetes mellitus. J. Diabetes 2018, 10, 478–486. [Google Scholar] [CrossRef]
- Morisaki, K.; Matsumoto, T.; Matsubara, Y.; Inoue, K.; Aoyagi, Y.; Matsuda, D.; Tanaka, S.; Okadome, J.; Maehara, Y. Prognostic factor of the two-year mortality after revascularization in patients with critical limb ischemia. Vascular 2017, 25, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Ishii, H.; Aoyama, T.; Takahashi, H.; Kamoi, D.; Tanaka, M.; Yoshikawa, D.; Hayashi, M.; Matsubara, T.; Murohara, T. Serum albumin and C-reactive protein levels predict clinical outcome in hemodialysis patients undergoing endovascular therapy for peripheral artery disease. Atherosclerosis 2013, 227, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.E.; Korakas, E.; Karkos, C.; Maratou, E.; Kanonidis, I.; Plotas, P.; Papanas, N.; Moutsatsou, P.; Ikonomidis, I.; Lambadiari, V. The prognostic role of RBP-4 and adiponectin in patients with peripheral arterial disease undergoing lower limb endovascular revascularization. Cardiovasc. Diabetol. 2021, 20, 221. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Zeng, C.; Lewinger, J.P.; Wolfson, A.M.; Shavelle, D.; Weaver, F.; Garg, P.K. Preoperative hemoglobin A1c levels and increased risk of adverse limb events in diabetic patients undergoing infrainguinal lower extremity bypass surgery in the Vascular Quality Initiative. J. Vasc. Surg. 2019, 70, 1225–1234.e1. [Google Scholar] [CrossRef]
- Buelter, J.; Smith, J.B.; Carel, Z.A.; Kinsey, D.; Kruse, R.L.; Vogel, T.R.; Bath, J. Preoperative HbA1c and Outcomes following Lower Extremity Vascular Procedures. Ann. Vasc. Surg. 2022, 83, 298–304. [Google Scholar] [CrossRef]
- Nativel, M.; Schneider, F.; Saulnier, P.-J.; Gand, E.; Ragot, S.; Meilhac, O.; Rondeau, P.; Burillo, E.; Cournot, M.; Potier, L.; et al. Prognostic Values of Inflammatory and Redox Status Biomarkers on the Risk of Major Lower-Extremity Artery Disease in Individuals With Type 2 Diabetes. Diabetes Care 2018, 41, 2162–2169. [Google Scholar] [CrossRef]
- Nativel, M.; Schneider, F.; Saulnier, P.; Meilhac, O.; Rondeau, P.; Cournot, M.; Potier, L.; Velho, G.; Marre, M.; Roussel, R.; et al. Prognostic values of inflammation and oxidative stress biomarkers on the risk of peripheral arterial disease in type 2 diabetes. Diabetes 2018, 67, 2220-PUB. [Google Scholar]
- Martinez-Aguilar, E.; Orbe, J.; Fernández-Montero, A.; Fernández-Alonso, S.; Rodríguez, J.A.; Fernández-Alonso, L.; Páramo, J.A.; Roncal, C. Reduced high-density lipoprotein cholesterol: A valuable, independent prognostic marker in peripheral arterial disease. J. Vasc. Surg. 2017, 66, 1527–1533.e1. [Google Scholar] [CrossRef]
- Mueller, T.; Dieplinger, B.; Forstner, T.; Poelz, W.; Haltmayer, M. Pregnancy-associated plasma protein-A as a marker for long-term mortality in patients with peripheral atherosclerosis: Inconclusive findings from the Linz Peripheral Arterial Disease (LIPAD) study. Clin. Chem. Lab. Med. 2010, 48, 537–542. [Google Scholar] [CrossRef]
- Gremmel, T.; Koppensteiner, R.; Ay, C.; Panzer, S. Residual thrombin generation potential is inversely linked to the occurrence of atherothrombotic events in patients with peripheral arterial disease. Eur. J. Clin. Investig. 2014, 44, 319–324. [Google Scholar] [CrossRef]
- Skoglund, P.H.; Arpegard, J.; Ostergren, J.; Svensson, P. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein but not cystatin C predict cardiovascular events in male patients with peripheral artery disease independently of ambulatory pulse pressure. Am. J. Hypertens. 2014, 27, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Sobel, M.; Yagi, M.; Moreno, K.; Kohler, T.R.; Tang, G.L.; Wijelath, E.S.; Marshall, J.; Kenagy, R.D. Anti-phosphorylcholine IgM, an Anti-inflammatory Mediator, Predicts Peripheral Vein Graft Failure: A Prospective Observational Study. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2019, 57, 259–266. [Google Scholar] [CrossRef]
- Skau, E.; Wagner, P.; Leppert, J.; Arnlov, J.; Hedberg, P. Are the results from a multiplex proteomic assay and a conventional immunoassay for NT-proBNP and GDF-15 comparable? Clin. Proteom. 2023, 20, 5. [Google Scholar] [CrossRef]
- Stone, P.A.; Thompson, S.N.; Williams, D.; AbuRahma, Z.; Grome, L.; Schlarb, H.; AbuRahma, A.F. Biochemical markers in patients with open reconstructions with peripheral arterial disease. Vascular 2016, 24, 461–468. [Google Scholar] [CrossRef]
- Stone, P.A.; Schlarb, H.; Campbell, J.E.; Williams, D.; Thompson, S.N.; John, M.; Campbell, J.R.; AbuRahma, A.F. C-reactive protein and brain natriuretic peptide as predictors of adverse events after lower extremity endovascular revascularization. J. Vasc. Surg. 2014, 60, 652–660. [Google Scholar] [CrossRef]
- Bleda, S.; de Haro, J.; Varela, C.; Acin, F. C-reactive protein and endovascular treatment of lower limb peripheral artery disease: An independent prognostic factor. J. Endovasc. Ther. Off. J. Int. Soc. Endovasc. Spec. 2015, 22, 233–239. [Google Scholar] [CrossRef]
- Shahin, Y.; Hatfield, J.; Chetter, I. C-Reactive Protein and the Framingham Coronary Risk Score in Patients Newly Diagnosed With Intermittent Claudication: A Prospective Study. Vasc. Endovasc. Surg. 2012, 46, 242–245. [Google Scholar] [CrossRef]
- van Wijk, D.F.; Boekholdt, S.M.; Wareham, N.J.; Ahmadi-Abhari, S.; Kastelein, J.J.; Stroes, E.S.; Khaw, K.-T. C-Reactive Protein, Fatal and Nonfatal Coronary Artery Disease, Stroke, and Peripheral Artery Disease in the Prospective EPIC-Norfolk Cohort Study. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2888–2894. [Google Scholar] [CrossRef]
- Di, X.; Han, W.; Zhang, R.; Liu, C.; Zheng, Y. C-reactive Protein, Free Fatty Acid, and Uric Acid as Predictors of Adverse Events after Endovascular Revascularization of Arterial Femoropopliteal Occlusion Lesions. Ann. Vasc. Surg. 2022, 81, 333–342. [Google Scholar] [CrossRef]
- Vrsalovic, M.; Vucur, K.; Car, B.; Krcmar, T.; Vrsalovic Presecki, A. C-reactive protein, renal function, and cardiovascular outcome in patients with symptomatic peripheral artery disease and preserved left ventricular systolic function. Croat. Med. J. 2015, 56, 351–356. [Google Scholar] [CrossRef]
- McDermott, M.M.; Liu, K.; Green, D.; Greenland, P.; Tian, L.; Kibbe, M.; Tracy, R.; Shah, S.; Wilkins, J.T.; Huffman, M.; et al. Changes in D-dimer and inflammatory biomarkers before ischemic events in patients with peripheral artery disease: The BRAVO Study. Vasc. Med. 2016, 21, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Takamura, T.-A.; Tsuchiya, T.; Oda, M.; Watanabe, M.; Saito, R.; Sato-Ishida, R.; Akao, H.; Kawai, Y.; Kitayama, M.; Kajinami, K. Circulating malondialdehyde-modified low-density lipoprotein (MDA-LDL) as a novel predictor of clinical outcome after endovascular therapy in patients with peripheral artery disease (PAD). Atherosclerosis 2017, 263, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hsu, L.-A.; Cheng, S.-T.; Teng, M.-S.; Yeh, C.-H.; Sun, Y.-C.; Huang, H.-L.; Ko, Y.-L. Circulating YKL-40 level, but not CHI3L1 gene variants, is associated with atherosclerosis-related quantitative traits and the risk of peripheral artery disease. Int. J. Mol. Sci. 2014, 15, 22421–22437. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, X.; Tang, X.; Lu, J.; Zhou, M.; Wang, W.; Wang, L.; Guo, D.; Ding, F. Comparison of Serum Cystatin C and Creatinine Level Changes for Prognosis of Patients After Peripheral Arterial Angiography. Angiology 2015, 66, 766–773. [Google Scholar] [CrossRef]
- Li, B.; Nassereldine, R.; Zamzam, A.; Syed, M.H.; Mamdani, M.; Al-Omran, M.; Abdin, R.; Qadura, M. Development and evaluation of a prediction model for peripheral artery disease-related major adverse limb events using novel biomarker data. J. Vasc. Surg. 2024, 80, 490–497.e1. [Google Scholar] [CrossRef]
- Al-Thani, H.; El-Matbouly, M.; Al-Sulaiti, M.; Al-Thani, N.; Asim, M.; El-Menyar, A. Does Perioperative Hemoglobin A1c Level Affect the Incidence, Pattern and Mortality of Lower Extremity Amputation? Curr. Vasc. Pharmacol. 2019, 17, 354–364. [Google Scholar] [CrossRef]
- Li, B.; Zamzam, A.; Syed, M.H.; Jain, S.; Abdin, R.; Qadura, M. Fatty acid binding protein 4 has prognostic value in peripheral artery disease. J. Vasc. Surg. 2023, 78, 719–726. [Google Scholar] [CrossRef]
- Ding, N.; Yang, C.; Ballew, S.H.; Kalbaugh, C.A.; McEvoy, J.W.; Salameh, M.; Aguilar, D.; Hoogeveen, R.C.; Nambi, V.; Selvin, E.; et al. Fibrosis and Inflammatory Markers and Long-Term Risk of Peripheral Artery Disease: The ARIC Study. Arter. Thromb. Vasc. Biol. 2020, 40, 2322–2331. [Google Scholar] [CrossRef]
- Hjellestad, I.D.; Søfteland, E.; Husebye, E.S.; Jonung, T. HbA1c predicts long-term postoperative mortality in patients with unknown glycemic status at admission for vascular surgery: An exploratory study. J. Diabetes 2019, 11, 466–476. [Google Scholar] [CrossRef]
- Arya, S.; Binney, Z.O.; Khakharia, A.; Long, C.A.; Brewster, L.P.; Wilson, P.W.; Jordan, W.D.; Duwayri, Y. High hemoglobin A1c associated with increased adverse limb events in peripheral arterial disease patients undergoing revascularization. J. Vasc. Surg. 2018, 67, 217–228.e1. [Google Scholar] [CrossRef]
- Pohlhammer, J.; Kronenberg, F.; Rantner, B.; Stadler, M.; Peric, S.; Hammerer-Lercher, A.; Klein-Weigel, P.; Fraedrich, G.; Kollerits, B. High-sensitivity cardiac troponin T in patients with intermittent claudication and its relation with cardiovascular events and all-cause mortality--the CAVASIC Study. Atherosclerosis 2014, 237, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Chahrour, M.A.; Kharroubi, H.; Tannir, A.H.A.; Assi, S.; Habib, J.R.; Hoballah, J.J. Hypoalbuminemia is Associated with Mortality in Patients Undergoing Lower Extremity Amputation. Ann. Vasc. Surg. 2021, 77, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Westfall, J.C.; Cheng, T.W.; Farber, A.; Jones, D.W.; Eslami, M.H.; Kalish, J.A.; Rybin, D.; Siracuse, J.J. Hypoalbuminemia Predicts Increased Readmission and Emergency Department Visits After Lower Extremity Bypass. Vasc. Endovasc. Surg. 2019, 53, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Peacock, M.R.; Farber, A.; Eslami, M.H.; Kalish, J.A.; Rybin, D.; Doros, G.; Shah, N.K.; Siracuse, J.J. Hypoalbuminemia Predicts Perioperative Morbidity and Mortality after Infrainguinal Lower Extremity Bypass for Critical Limb Ischemia. Ann. Vasc. Surg. 2017, 41, 169–175.e4. [Google Scholar] [CrossRef]
- Urbonaviciene, G.; Frystyk, J.; Urbonavicius, S.; Lindholt, J.S. IGF-I and IGFBP2 in peripheral artery disease: Results of a prospective study. Scand. Cardiovasc. J. SCJ 2014, 48, 99–105. [Google Scholar] [CrossRef]
- Ishii, H.; Kumada, Y.; Takahashi, H.; Toriyama, T.; Aoyama, T.; Tanaka, M.; Yoshikawa, D.; Hayashi, M.; Kasuga, H.; Yasuda, Y.; et al. Impact of diabetes and glycaemic control on peripheral artery disease in Japanese patients with end-stage renal disease: Long-term follow-up study from the beginning of haemodialysis. Diabetologia 2012, 55, 1304–1309. [Google Scholar] [CrossRef]
- Wachsmann, A.; Maga, M.; Schönborn, M.; Olszewska, M.; Blukacz, M.; Cebeńko, M.; Trynkiewicz, A.; Maga, P. Impact of pre-operative glycated haemoglobin A1C level on 1-year outcomes of endovascular treatment in patients with critical limb ischemia in the course of diabetes mellitus. Folia Med. Cracov. 2019, 59, 49–60. [Google Scholar]
- Gremmel, T.; Steiner, S.; Seidinger, D.; Koppensteiner, R.; Panzer, S.; Kopp, C.W. In vivo and protease-activated receptor-1-mediated platelet activation but not response to antiplatelet therapy predict two-year outcomes after peripheral angioplasty with stent implantation. Thromb. Haemost. 2014, 111, 474–482. [Google Scholar] [CrossRef]
- Biscetti, F.; Ferraro, P.M.; Hiatt, W.R.; Angelini, F.; Nardella, E.; Cecchini, A.L.; Santoliquido, A.; Pitocco, D.; Landolfi, R.; Flex, A. Inflammatory Cytokines Associated With Failure of Lower-Extremity Endovascular Revascularization (LER): A Prospective Study of a Population With Diabetes. Diabetes Care 2019, 42, 1939–1945. [Google Scholar] [CrossRef]
- Cha, J.-J.; Kim, H.; Ko, Y.-G.; Choi, D.; Lee, J.-H.; Yoon, C.-H.; Chae, I.-H.; Yu, C.W.; Lee, S.W.; Lee, S.-R.; et al. Influence of preprocedural glycemic control on clinical outcomes of endovascular therapy in diabetic patients with lower extremity artery disease: An analysis from a Korean multicenter retrospective registry cohort. Cardiovasc. Diabetol. 2020, 19, 97. [Google Scholar] [CrossRef]
- Saenz-Pipaon, G.; Ravassa, S.; Larsen, K.L.; Martinez-Aguilar, E.; Orbe, J.; Rodriguez, J.A.; Fernandez-Alonso, L.; Gonzalez, A.; Martín-Ventura, J.L.; Paramo, J.A.; et al. Lipocalin-2 and Calprotectin Potential Prognosis Biomarkers in Peripheral Arterial Disease. Eur. J. Vasc. Endovasc. Surg. 2022, 63, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Aday, A.W.; Lawler, P.R.; Cook, N.R.; Ridker, P.M.; Mora, S.; Pradhan, A.D. Lipoprotein Particle Profiles, Standard Lipids, and Peripheral Artery Disease Incidence: Prospective Data From the Women’s Health Study. Circulation 2018, 138, 2330–2341. [Google Scholar] [CrossRef] [PubMed]
- Oshin, O.A.; Torella, F. Low Hemoglobin Concentration Is Associated With Poor Outcome After Peripheral Arterial Surgery. Vasc. Endovasc. Surg. 2013, 47, 449–453. [Google Scholar] [CrossRef]
- Urbonaviciene, G.; Frystyk, J.; Flyvbjerg, A.; Urbonavicius, S.; Henneberg, E.W.; Lindholt, J.S. Markers of inflammation in relation to long-term cardiovascular mortality in patients with lower-extremity peripheral arterial disease. Int. J. Cardiol. 2012, 160, 89–94. [Google Scholar] [CrossRef]
- Martinez-Aguilar, E.; Gomez-Rodriguez, V.; Orbe, J.; Rodriguez, J.A.; Fernández-Alonso, L.; Roncal, C.; Páramo, J.A. Matrix metalloproteinase 10 is associated with disease severity and mortality in patients with peripheral arterial disease. J. Vasc. Surg. 2015, 61, 428–435. [Google Scholar] [CrossRef]
- Amrock, S.M.; Weitzman, M. Multiple biomarkers for mortality prediction in peripheral arterial disease. Vasc. Med. 2016, 21, 105–112. [Google Scholar] [CrossRef]
- Hobaus, C.; Herz, C.T.; Wrba, T.; Koppensteiner, R.; Schernthaner, G.-H. Peripheral arterial disease and type 2 diabetes: Older patients still exhibit a survival benefit from glucose control. Diabetes Vasc. Dis. Res. 2020, 17, 1479164120914845. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Zhu, M.; Lu, R.; Wang, Y.; Ni, Z. Plasma Pentraxin 3 Is Closely Associated with Peripheral Arterial Disease in Hemodialysis Patients and Predicts Clinical Outcome: A 6-Year Follow-Up. Blood Purif. 2015, 39, 266–273. [Google Scholar] [CrossRef]
- McGinigle, K.L.; Kindell, D.G.; Strassle, P.D.; Crowner, J.R.; Pascarella, L.; Farber, M.A.; Marston, W.A.; Arya, S.; Kalbaugh, C.A. Poor glycemic control is associated with significant increase in major limb amputation and adverse events in the 30-day postoperative period after infrainguinal bypass. J. Vasc. Surg. 2020, 72, 987–994. [Google Scholar] [CrossRef]
- Abbas, A.E.; Goodman, L.M.; Timmis, R.; Boura, J. Predictors of poor outcome in female patients undergoing endovascular intervention. J. Interv. Cardiol. 2010, 23, 401–410. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, Z.; Wang, L.; Yuan, L.; Bao, J.; Zhou, J.; Jing, Z. Six-month results of stenting of the femoropopliteal artery and predictive value of interleukin-6: Comparison with high-sensitivity C-reactive protein. Vascular 2020, 28, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Haddad, D.; Rybin, D.; Howell, C.; Ghaderi, I.; Berman, S.; Zhou, W.; Tan, T.-W. The impact of hemoglobin A1c on outcomes after lower extremity bypass. J. Vasc. Surg. 2021, 73, 1332–1339.e5. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Kwak, L.; Ballew, S.H.; Jaar, B.; Hoogeveen, R.C.; Ballantyne, C.M.; Sharrett, A.R.; Folsom, A.R.; Heiss, G.; Salameh, M.; et al. Traditional and nontraditional glycemic markers and risk of peripheral artery disease: The Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis 2018, 274, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Paquissi, F.C. The role of inflammation in cardiovascular diseases: The predictive value of neutrophil–lymphocyte ratio as a marker in peripheral arterial disease. Ther. Clin. Risk Manag. 2016, 12, 851–860. [Google Scholar] [CrossRef]
- Nehring, S.M.; Goyal, A.; Patel, B.C. C Reactive Protein. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK441843/ (accessed on 21 November 2024).
- Amezcua-Castillo, E.; González-Pacheco, H.; Martín, A.S.-S.; Méndez-Ocampo, P.; Gutierrez-Moctezuma, I.; Massó, F.; Sierra-Lara, D.; Springall, R.; Rodríguez, E.; Arias-Mendoza, A.; et al. C-Reactive Protein: The Quintessential Marker of Systemic Inflammation in Coronary Artery Disease—Advancing toward Precision Medicine. Biomedicines 2023, 11, 2444. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Heinrich, P.C.; Castell, J.V.; Andus, T. Interleukin-6 and the acute phase response. Biochem. J. 1990, 265, 621–636. [Google Scholar] [CrossRef]
- Ishibashi, T.; Kimura, H.; Shikama, Y.; Uchida, T.; Kariyone, S.; Hirano, T.; Kishimoto, T.; Takatsuki, F.; Akiyama, Y. Interleukin-6 is a potent thrombopoietic factor in vivo in mice. Blood 1989, 74, 1241–1244. [Google Scholar] [CrossRef]
- Rašková, M.; Lacina, L.; Kejík, Z.; Venhauerová, A.; Skaličková, M.; Kolář, M.; Jakubek, M.; Rosel, D.; Smetana, K.; Brábek, J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis—Overview and Therapeutic Opportunities. Cells 2022, 11, 3698. [Google Scholar] [CrossRef]
- Lee, J.H.; Jang, J.H.; Park, J.H.; Jang, H.-J.; Park, C.S.; Lee, S.; Kim, S.-H.; Kim, J.Y.; Kim, H.K. The role of interleukin-6 as a prognostic biomarker for predicting acute exacerbation in interstitial lung diseases. PLoS ONE 2021, 16, e0255365. [Google Scholar] [CrossRef]
- Katkenov, N.; Mukhatayev, Z.; Kozhakhmetov, S.; Sailybayeva, A.; Bekbossynova, M.; Kushugulova, A. Systematic Review on the Role of IL-6 and IL-1β in Cardiovascular Diseases. J. Cardiovasc. Dev. Dis. 2024, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Silva-Bermudez, L.S.; Klüter, H.; Kzhyshkowska, J.G. Macrophages as a Source and Target of GDF-15. Int. J. Mol. Sci. 2024, 25, 7313. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Day, E.A.; Townsend, L.K.; Djordjevic, D.; Jørgensen, S.B.; Steinberg, G.R. GDF15: Emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat. Rev. Endocrinol. 2021, 17, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Hale, C.; Véniant, M.M. Growth differentiation factor 15 as a potential therapeutic for treating obesity. Mol. Metab. 2021, 46, 101117. [Google Scholar] [CrossRef]
- Spanopoulou, A.; Gkretsi, V. Growth differentiation factor 15 (GDF15) in cancer cell metastasis: From the cells to the patients. Clin. Exp. Metastasis 2020, 37, 451–464. [Google Scholar] [CrossRef]
- Li, M.; Duan, L.; Cai, Y.-L.; Li, H.-Y.; Hao, B.-C.; Chen, J.-Q.; Liu, H.-B. Growth differentiation factor-15 is associated with cardiovascular outcomes in patients with coronary artery disease. Cardiovasc. Diabetol. 2020, 19, 120. [Google Scholar] [CrossRef]
- Zhao, T.; Su, Z.; Li, Y.; Zhang, X.; You, Q. Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct. Target. Ther. 2020, 5, 201. [Google Scholar] [CrossRef]
- Qu, Z.; Lu, Y.; Ran, Y.; Xu, D.; Guo, Z.; Cheng, M. Chitinase-3 like-protein-1: A potential predictor of cardiovascular disease (Review). Mol. Med. Rep. 2024, 30, 176. [Google Scholar] [CrossRef]
- Ye, R.D.; Sun, L. Emerging functions of serum amyloid A in inflammation. J. Leukoc. Biol. 2015, 98, 923–929. [Google Scholar] [CrossRef]
- Chen, R.; Chen, Q.; Zheng, J.; Zeng, Z.; Chen, M.; Li, L.; Zhang, S. Serum amyloid protein A in inflammatory bowel disease: From bench to bedside. Cell Death Discov. 2023, 9, 154. [Google Scholar] [CrossRef]
- Johnson, B.D.; Kip, K.E.; Marroquin, O.C.; Ridker, P.M.; Kelsey, S.F.; Shaw, L.J.; Pepine, C.J.; Sharaf, B.; Merz, C.N.B.; Sopko, G.; et al. Serum Amyloid A as a Predictor of Coronary Artery Disease and Cardiovascular Outcome in Women. Circulation 2004, 109, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Idriss, H.T.; Naismith, J.H. TNF alpha and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 2000, 50, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Carter, P.; Bruzelius, M.; Vithayathil, M.; Kar, S.; Mason, A.M.; Lin, A.; Burgess, S.; Larsson, S.C. Effects of tumour necrosis factor on cardiovascular disease and cancer: A two-sample Mendelian randomization study. EBioMedicine 2020, 59, 102956. [Google Scholar] [CrossRef]
- Jang, D.-I.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Bradley, J. TNF-mediated inflammatory disease. J. Pathol. 2007, 214, 149–160. [Google Scholar] [CrossRef]
- Dhamoon, M.S.; Cheung, Y.-K.; Moon, Y.P.; Wright, C.B.; Willey, J.Z.; Sacco, R.L.; Elkind, M.S.V. Association Between Serum Tumor Necrosis Factor Receptor 1 and Trajectories of Functional Status. Am. J. Epidemiol. 2017, 186, 11–20. [Google Scholar] [CrossRef]
- Park, M.; Maristany, D.; Huang, D.; Shlipak, M.G.; Whooley, M. Associations of tumor necrosis factor alpha receptor type 1 with kidney function decline, cardiovascular events, and mortality risk in persons with coronary artery disease: Data from the Heart and Soul Study. Atherosclerosis 2017, 263, 68–73. [Google Scholar] [CrossRef]
- Al Jaberi, S.; Cohen, A.; D’souza, C.; Abdulrazzaq, Y.M.; Ojha, S.; Bastaki, S.; Adeghate, E.A. Lipocalin-2: Structure, function, distribution and role in metabolic disorders. Biomed. Pharmacother. 2021, 142, 112002. [Google Scholar] [CrossRef]
- Candido, S.; Maestro, R.; Polesel, J.; Catania, A.; Maira, F.; Signorelli, S.S.; Libra, M. Roles of neutrophil gelatinase-associated lipocalin (NGAL) in human cancer. Oncotarget 2014, 5, 1576. [Google Scholar] [CrossRef]
- Romejko, K.; Markowska, M.; Niemczyk, S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int. J. Mol. Sci. 2023, 24, 10470. [Google Scholar] [CrossRef]
- Jukic, A.; Bakiri, L.; Wagner, E.F.; Tilg, H.; Adolph, T.E. Calprotectin: From biomarker to biological function. Gut 2021, 70, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.A. Utility of faecal calprotectin analysis in adult inflammatory bowel disease. World J. Gastroenterol. 2012, 18, 6782–6789. [Google Scholar] [CrossRef] [PubMed]
- Bourgonje, A.R.; Bourgonje, M.F.; Gemert, S.l.B.; Nilsen, T.; Hidden, C.; Gansevoort, R.T.; Bakker, S.J.L.; Mulder, D.J.; Dullaart, R.P.F.; Abdulle, A.E.; et al. Plasma Calprotectin Levels Associate With New-Onset Hypertension in the General Population: A Prospective Cohort Study. J. Am. Heart Assoc. 2024, 13, e031458. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Flores-Guerrero, J.L.; Kieneker, L.M.; Nilsen, T.; Hidden, C.; Sundrehagen, E.; Seidu, S.; Dullaart, R.P.; Bakker, S.J. Plasma calprotectin and risk of cardiovascular disease: Findings from the PREVEND prospective cohort study. Atherosclerosis 2018, 275, 205–213. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Huang, Z.; Chen, X.; Zhang, B. The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Discov. 2022, 8, 252. [Google Scholar] [CrossRef]
- Rochette, L.; Meloux, A.; Rigal, E.; Zeller, M.; Cottin, Y.; Vergely, C. The Role of Osteoprotegerin and Its Ligands in Vascular Function. Int. J. Mol. Sci. 2019, 20, 705. [Google Scholar] [CrossRef]
- Van Campenhout, A.; Golledge, J. Osteoprotegerin, vascular calcification and atherosclerosis. Atherosclerosis 2008, 204, 321–329. [Google Scholar] [CrossRef]
- Xu, D.; Lu, W. Defensins: A Double-Edged Sword in Host Immunity. Front. Immunol. 2020, 11, 764. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Z.-H.; Tewary, P.; Chen, Q.; de la Rosa, G.; Oppenheim, J.J. Defensin Participation in Innate and Adaptive Immunity. Curr. Pharm. Des. 2007, 13, 3131–3139. [Google Scholar] [CrossRef]
- Nassar, H.; Lavi, E.; Akkawi, S.; Bdeir, K.; Heyman, S.N.; Raghunath, P.; Tomaszewski, J.; Higazi, A.A.-R. α-Defensin: Link between inflammation and atherosclerosis. Atherosclerosis 2007, 194, 452–457. [Google Scholar] [CrossRef]
- Shapira, M.; Roguin, A.; Fayad, I.; Medlij, L.; Khateeb, A.; Egbaria, D.; Amsalem, N.; Abu Fanne, R. Predictive value of baseline alpha defensin level in patients with stable coronary artery disease: A retrospective single center study. IJC Heart Vasc. 2024, 53, 101465. [Google Scholar] [CrossRef]
- Porte, R.; Davoudian, S.; Asgari, F.; Parente, R.; Mantovani, A.; Garlanda, C.; Bottazzi, B. The Long Pentraxin PTX3 as a Humoral Innate Immunity Functional Player and Biomarker of Infections and Sepsis. Front. Immunol. 2019, 10, 794. [Google Scholar] [CrossRef]
- Doni, A.; Stravalaci, M.; Inforzato, A.; Magrini, E.; Mantovani, A.; Garlanda, C.; Bottazzi, B. The Long Pentraxin PTX3 as a Link Between Innate Immunity, Tissue Remodeling, and Cancer. Front. Immunol. 2019, 10, 712. [Google Scholar] [CrossRef]
- Ristagno, G.; Fumagalli, F.; Bottazzi, B.; Mantovani, A.; Olivari, D.; Novelli, D.; Latini, R. Pentraxin 3 in Cardiovascular Disease. Front. Immunol. 2019, 10, 823. [Google Scholar] [CrossRef]
- Tong, M.; Jesu, J.; Qureshi, A.R.; Heimbu, O.; Ba, P.; Axelsson, J.; Suliman, M.E.; Alvestrand, A.; Stenvinkel, P.; Lindholm, B.; et al. Plasma Pentraxin 3 in Patients with Chronic Kidney Disease: Associations with Renal Function, Protein-Energy Wasting, Cardiovascular Disease, and Mortality. Clin. J. Am. Soc. Nephrol. 2007, 2, 889–897. [Google Scholar] [CrossRef]
- Samal, S.K.; Panda, P.K.; Vikström, M.; Leander, K.; de Faire, U.; Ahuja, R.; Frostegård, J. Antibodies Against Phosphorylcholine Among 60-Year-Olds: Clinical Role and Simulated Interactions. Front. Cardiovasc. Med. 2022, 9, 809007. [Google Scholar] [CrossRef]
- Frostegard, J.; Akesson, A.A.A.; Helte, E.H.E.; Soderlund, F.S.F.; Su, J.S.J.; Hua, X.H.X.; Rautiainen, S.R.S.; Wolk, A.W.A. Antibodies against phosphorylcholine in prediction of cardiovascular disease among women: A population-based prospective cohort study. Eur. Heart J. 2024, 45, ehae666.1292. [Google Scholar] [CrossRef]
- Grönlund, H.; Hallmans, G.; Jansson, J.H.; Boman, K.; Wikström, M.; de Faire, U.; Frostegård, J. Low levels of IgM antibodies against phosphorylcholine predict development of acute myocardial infarction in a population-based cohort from northern Sweden. Eur. J. Prev. Cardiol. 2009, 16, 382–386. [Google Scholar] [CrossRef]
- Gou, Y.; Chen, M.; Zhu, Z.; Cui, C. Galectin-3 and peripheral artery disease: A Mendelian randomization study. Front. Cardiovasc. Med. 2024, 10, 1279396. Available online: https://www.frontiersin.org/journals/cardiovascular-medicine/articles (accessed on 11 December 2024). [CrossRef]
- Endre, Z.H.; Walker, R.J. Chapter Eleven—Biomarkers of Cardiovascular Risk in Chronic Kidney Disease. In Biomarkers of Kidney Disease, 2nd ed.; Edelstein, C.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 485–511. [Google Scholar] [CrossRef]
- Giglio, R.V.; Stoian, A.P.; Haluzik, M.; Pafili, K.; Patti, A.M.; Rizvi, A.A.; Ciaccio, M.; Papanas, N.; Rizzo, M. Novel molecular markers of cardiovascular disease risk in type 2 diabetes mellitus. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2021, 1867, 166148. [Google Scholar] [CrossRef]
- Fashandi, A.Z.; Mehaffey, J.H.; Hawkins, R.B.; Kron, I.L.; Upchurch, G.R.; Robinson, W.P. Major adverse limb events and major adverse cardiac events after contemporary lower extremity bypass and infrainguinal endovascular intervention in patients with claudication. J. Vasc. Surg. 2018, 68, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Zamzam, A.; Syed, M.H.; Rand, M.L.; Singh, K.; A Hussain, M.; Jain, S.; Khan, H.; Verma, S.; Al-Omran, M.; Abdin, R.; et al. Altered coagulation profile in peripheral artery disease patients. Vascular 2020, 28, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.S.; Eraso, L.H.; Xie, D.; Sha, D.; Mohler, E.R. Mean platelet volume and prevalence of peripheral artery disease, the National Health and Nutrition Examination Survey, 1999–2004. Atherosclerosis 2010, 213, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, S.; Mckay, I.; Ford, I.; Bachoo, P.; Greaves, M.; Brittenden, J. Platelet activation increases with the severity of peripheral arterial disease: Implications for clinical management. J. Vasc. Surg. 2007, 46, 485–490. [Google Scholar] [CrossRef]
- Miceli, G.; Basso, M.G.; Rizzo, G.; Pintus, C.; Tuttolomondo, A. The Role of the Coagulation System in Peripheral Arterial Disease: Interactions with the Arterial Wall and Its Vascular Microenvironment and Implications for Rational Therapies. Int. J. Mol. Sci. 2022, 23, 14914. [Google Scholar] [CrossRef]
- Woollard, K.; Kling, D.; Kulkarni, S.; Dart, A.; Jackson, S.; Chin-Dusting, J. Raised Plasma Soluble P-Selectin in Peripheral Arterial Occlusive Disease Enhances Leukocyte Adhesion. Circ. Res. 2006, 98, 149–156. [Google Scholar] [CrossRef]
- Al-Amer, O.M. The role of thrombin in haemostasis. Blood Coagul. Fibrinolysis 2022, 33, 145–148. [Google Scholar] [CrossRef]
- Narayanan, S. Multifunctional roles of thrombin. Ann. Clin. Lab. Sci. 1999, 29, 275–280. [Google Scholar]
- Di Cera, E. Thrombin. Mol. Asp. Med. 2008, 29, 203–254. [Google Scholar] [CrossRef]
- Jaberi, N.; Soleimani, A.; Pashirzad, M.; Abdeahad, H.; Mohammadi, F.; Khoshakhlagh, M.; Khazaei, M.; A Ferns, G.; Avan, A.; Hassanian, S.M. Role of thrombin in the pathogenesis of atherosclerosis. J. Cell. Biochem. 2019, 120, 4757–4765. [Google Scholar] [CrossRef]
- Bennett, J.S. Structural biology of glycoprotein IIb-IIIa. Trends Cardiovasc. Med. 1996, 6, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Tummala, R.; Rai, M.P. Glycoprotein IIb/IIIa Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK554376/ (accessed on 12 December 2024).
- Bolander, F.F. CHAPTER 14—Modifications and Conformations of DNA and Nuclear Proteins. In Molecular Endocrinology, 3rd ed.; Bolander, F.F., Ed.; Academic Press: San Diego, CA, USA, 2004; pp. 445–472. Available online: https://www.sciencedirect.com/science/article/pii/B9780121112325500142 (accessed on 12 December 2024). [CrossRef]
- Adam, S.S.; Key, N.S.; Greenberg, C.S. D-dimer antigen: Current concepts and future prospects. Blood 2009, 113, 2878–2887. [Google Scholar] [CrossRef] [PubMed]
- Bounds, E.J.; Kok, S.J. D Dimer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK431064/ (accessed on 12 December 2024).
- Valdivielso, J.M.; Rodríguez-Puyol, D.; Pascual, J.; Barrios, C.; Bermúdez-López, M.; Sánchez-Niño, M.D.; Pérez-Fernández, M.; Ortiz, A. Atherosclerosis in Chronic Kidney Disease: More, Less, or Just Different? Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1938–1966. [Google Scholar] [CrossRef] [PubMed]
- Garimella, P.S.; Hirsch, A.T. Peripheral Artery Disease and Chronic Kidney Disease: Clinical Synergy to Improve Outcomes. Adv. Chronic Kidney Dis. 2014, 21, 460–471. [Google Scholar] [CrossRef]
- Wattanakit, K.; Folsom, A.R.; Selvin, E.; Coresh, J.; Hirsch, A.T.; Weatherley, B.D. Kidney Function and Risk of Peripheral Arterial Disease: Results from the Atherosclerosis Risk in Communities (ARIC) Study. J. Am. Soc. Nephrol. 2007, 18, 629–636. [Google Scholar] [CrossRef]
- O’hare, A.M.; Vittinghoff, E.; Hsia, J.; Shlipak, M.G. Renal Insufficiency and the Risk of Lower Extremity Peripheral Arterial Disease: Results from the Heart and Estrogen/Progestin Replacement Study (HERS). J. Am. Soc. Nephrol. 2004, 15, 1046–1051. [Google Scholar] [CrossRef]
- Selvin, E.; Erlinger, T.P. Prevalence of and Risk Factors for Peripheral Arterial Disease in the United States: Results from the National Health and Nutrition Examination Survey, 1999–2000. Circulation 2004, 110, 738–743. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Nault, P.; Giugliano, R.P.; Keech, A.C.; Pineda, A.L.; Kanevsky, E.; Kuder, J.; Murphy, S.A.; Jukema, J.W.; Lewis, B.S.; et al. Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease: Insights From the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation 2018, 137, 338–350. [Google Scholar] [CrossRef]
- Fernando, S.; Polkinghorne, K.R. Cystatin C: Not just a marker of kidney function. Braz. J. Nephrol. 2020, 42, 6–7. [Google Scholar] [CrossRef]
- Séronie-Vivien, S.; Delanaye, P.; Piéroni, L.; Mariat, C.; Froissart, M.; Cristol, J.-P. Cystatin C: Current position and future prospects. Clin. Chem. Lab. Med. 2008, 46, 1664–1686. [Google Scholar] [CrossRef]
- Hosten, A.O. BUN and Creatinine. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990. Available online: http://www.ncbi.nlm.nih.gov/books/NBK305/ (accessed on 11 December 2024).
- Ostermann, M.; Kashani, K.; Forni, L.G. The two sides of creatinine: Both as bad as each other? J. Thorac. Dis. 2016, 8, E628–E630. [Google Scholar] [CrossRef] [PubMed]
- Dabravolski, S.A.; Khotina, V.A.; Omelchenko, A.V.; Kalmykov, V.A.; Orekhov, A.N. The Role of the VEGF Family in Atherosclerosis Development and Its Potential as Treatment Targets. Int. J. Mol. Sci. 2022, 23, 931. [Google Scholar] [CrossRef] [PubMed]
- Razani, B.; Chakravarthy, M.V.; Semenkovich, C.F. Insulin Resistance and Atherosclerosis. Endocrinol. Metab. Clin. N. Am. 2008, 37, 603–621. [Google Scholar] [CrossRef]
- Aguirre, G.A.; De Ita, J.R.; de la Garza, R.G.; Castilla-Cortazar, I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J. Transl. Med. 2016, 14, 3. [Google Scholar] [CrossRef]
- Macvanin, M.; Gluvic, Z.; Radovanovic, J.; Essack, M.; Gao, X.; Isenovic, E.R. New insights on the cardiovascular effects of IGF-1. Front. Endocrinol. 2023, 14, 1142644. Available online: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2023.1142644/full (accessed on 11 December 2024). [CrossRef]
- Higashi, Y.; Sukhanov, S.; Anwar, A.; Shai, S.-Y.; Delafontaine, P. Aging, Atherosclerosis, and IGF-1. J. Gerontol. Ser. A 2012, 67A, 626–639. [Google Scholar] [CrossRef]
- Igfbp2 Insulin-Like Growth Factor Binding Protein 2 [Mus Musculus (House Mouse)]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/16008 (accessed on 11 December 2024).
- Yang, J.; Griffiths, M.; Nies, M.K.; Brandal, S.; Damico, R.; Vaidya, D.; Tao, X.; Simpson, C.E.; Kolb, T.M.; Mathai, S.C.; et al. Insulin-like growth factor binding protein-2: A new circulating indicator of pulmonary arterial hypertension severity and survival. BMC Med. 2020, 18, 268. [Google Scholar] [CrossRef]
- Mester, P.; Räth, U.; Popp, L.; Schmid, S.; Müller, M.; Buechler, C.; Pavel, V. Plasma Insulin-like Growth Factor-Binding Protein-2 of Critically Ill Patients Is Related to Disease Severity and Survival. Biomedicines 2023, 11, 3285. [Google Scholar] [CrossRef]
- Li, W.; Li, H.; Zhou, L.; Wang, Z.; Hua, B. Pregnancy-Associated Plasma Protein A Induces Inflammatory Cytokine Expression by Activating IGF-I/PI3K/Akt Pathways. Mediat. Inflamm. 2019, 2019, 8436985. [Google Scholar] [CrossRef]
- Mueller, T.; Dieplinger, B.; Poelz, W.; Haltmayer, M. Increased Pregnancy-Associated Plasma Protein-A as a Marker for Peripheral Atherosclerosis: Results from the Linz Peripheral Arterial Disease Study. Clin. Chem. 2006, 52, 1096–1103. [Google Scholar] [CrossRef]
- ANGPTL2 Angiopoietin Like 2 [Homo Sapiens (Human)]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/23452 (accessed on 11 December 2024).
- Liu, Y.-Z.; Zhang, C.; Jiang, J.-F.; Cheng, Z.-B.; Zhou, Z.-Y.; Tang, M.-Y.; Sun, J.-X.; Huang, L. Angiopoietin-like proteins in atherosclerosis. Clin. Chim. Acta 2021, 521, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Kadomatsu, T.; Endo, M.; Miyata, K.; Oike, Y. Diverse roles of ANGPTL2 in physiology and pathophysiology. Trends Endocrinol. Metab. 2014, 25, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Gellen, B.; Thorin-Trescases, N.; Sosner, P.; Gand, E.; Saulnier, P.-J.; Ragot, S.; Fraty, M.; Laugier, S.; Ducrocq, G.; Montaigne, D.; et al. ANGPTL2 is associated with an increased risk of cardiovascular events and death in diabetic patients. Diabetologia 2016, 59, 2321–2330. [Google Scholar] [CrossRef] [PubMed]
- Gialeli, C.; Shami, A.; Gonçalves, I. Extracellular matrix: Paving the way to the newest trends in atherosclerosis. Curr. Opin. Lipidol. 2021, 32, 277–285. [Google Scholar] [CrossRef]
- Adams, L.; Brangsch, J.; Hamm, B.; Makowski, M.R.; Keller, S. Targeting the Extracellular Matrix in Abdominal Aortic Aneurysms Using Molecular Imaging Insights. Int. J. Mol. Sci. 2021, 22, 2685. [Google Scholar] [CrossRef]
- Bloksgaard, M.; Lindsey, M.L.; Martinez-Lemus, L.A. Extracellular matrix in cardiovascular pathophysiology. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1687–H1690. [Google Scholar] [CrossRef]
- MMP10 Matrix Metallopeptidase 10 [Homo Sapiens (Human)]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/4319 (accessed on 11 December 2024).
- Gomez-Rodriguez, V.; Orbe, J.; Martinez-Aguilar, E.; Rodriguez, J.A.; Fernandez-Alonso, L.; Serneels, J.; Bobadilla, M.; Perez-Ruiz, A.; Collantes, M.; Mazzone, M.; et al. Functional MMP-10 is required for efficient tissue repair after experimental hind limb ischemia. FASEB J. 2015, 29, 960–972. [Google Scholar] [CrossRef]
- Gomez-Rodriguez, V.; Orbe, J.; Rodriguez, J.; Collantes, M.; Mazzone, M.; Mancho, C.R.; Paramo, J. A new role for mmp-10 in patients with peripheral artery disease and experimental arterial ischemia. Atherosclerosis 2014, 235, e161. [Google Scholar] [CrossRef]
- Mora-Gutiérrez, J.M.; Rodríguez, J.A.; Fernández-Seara, M.A.; Orbe, J.; Escalada, F.J.; Soler, M.J.; Roblero, M.F.S.; Riera, M.; Páramo, J.A.; Garcia-Fernandez, N. MMP-10 is Increased in Early Stage Diabetic Kidney Disease and can be Reduced by Renin-Angiotensin System Blockade. Sci. Rep. 2020, 10, 26. [Google Scholar] [CrossRef]
- Sundström, J.; Evans, J.C.; Benjamin, E.J.; Levy, D.; Larson, M.G.; Sawyer, D.B.; Siwik, D.A.; Colucci, W.S.; Wilson, P.W.; Vasan, R.S. Relations of plasma total TIMP-1 levels to cardiovascular risk factors and echocardiographic measures: The Framingham heart study. Eur. Heart J. 2004, 25, 1509–1516. [Google Scholar] [CrossRef]
- Buso, G.; Faggin, E.; Rosenblatt-Velin, N.; Pellegrin, M.; Galliazzo, S.; Calanca, L.; Rattazzi, M.; Mazzolai, L. The Role of Neutrophils in Lower Limb Peripheral Artery Disease: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 1169. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Hua, Q.; Xing, X.; Wen, J.; Liu, R.; Yang, Z. Impact of the Metalloproteinase-9/Tissue Inhibitor of Metalloproteinase-1 System on Large Arterial Stiffness in Patients with Essential Hypertension. Hypertens. Res. 2007, 30, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Brass, E.P. Skeletal Muscle Metabolism as a Target for Drug Therapy in Peripheral Arterial Disease. Vasc. Med. 1996, 1, 55–59. [Google Scholar] [CrossRef]
- Ismaeel, A.; Lavado, R.; Koutakis, P. Metabolomics of peripheral artery disease. Adv. Clin. Chem. 2022, 106, 67–89. [Google Scholar] [CrossRef] [PubMed]
- Tikkanen, E.; Jägerroos, V.; Holmes, M.V.; Sattar, N.; Ala-Korpela, M.; Jousilahti, P.; Lundqvist, A.; Perola, M.; Salomaa, V.; Würtz, P. Metabolic Biomarker Discovery for Risk of Peripheral Artery Disease Compared With Coronary Artery Disease: Lipoprotein and Metabolite Profiling of 31 657 Individuals From 5 Prospective Cohorts. J. Am. Heart Assoc. 2021, 10, e021995. [Google Scholar] [CrossRef]
- Venugopal, S.K.; Anoruo, M.; Jialal, I. Biochemistry, Low Density Lipoprotein. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK500010/ (accessed on 11 December 2024).
- Huff, T.; Boyd, B.; Jialal, I. Physiology, Cholesterol. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470561/ (accessed on 11 December 2024).
- Pirahanchi, Y.; Sinawe, H.; Dimri, M. Biochemistry, LDL Cholesterol. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK519561/ (accessed on 11 December 2024).
- Bandeali, S.; Farmer, J. High-Density Lipoprotein and Atherosclerosis: The Role of Antioxidant Activity. Curr. Atheroscler. Rep. 2012, 14, 101–107. [Google Scholar] [CrossRef]
- Bailey, A.; Mohiuddin, S.S. Biochemistry, High Density Lipoprotein. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK549802/ (accessed on 12 December 2024).
- Hou, J.-S.; Wang, C.-H.; Lai, Y.-H.; Kuo, C.-H.; Lin, Y.-L.; Hsu, B.-G.; Tsai, J.-P. Serum Malondialdehyde-Modified Low-Density Lipoprotein Is a Risk Factor for Central Arterial Stiffness in Maintenance Hemodialysis Patients. Nutrients 2020, 12, 2160. [Google Scholar] [CrossRef]
- Kumar, A.; Palfrey, H.A.; Pathak, R.; Kadowitz, P.J.; Gettys, T.W.; Murthy, S.N. The metabolism and significance of homocysteine in nutrition and health. Nutr. Metab. 2017, 14, 78. [Google Scholar] [CrossRef]
- Alam, S.F.; Kumar, S.; Ganguly, P. Measurement of homocysteine: A historical perspective. J. Clin. Biochem. Nutr. 2019, 65, 171–177. [Google Scholar] [CrossRef]
- Chow, S.L.; Maisel, A.S.; Anand, I.; Bozkurt, B.; de Boer, R.A.; Felker, G.M.; Fonarow, G.C.; Greenberg, B.; Januzzi, J.L., Jr.; Kiernan, M.S.; et al. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e1054–e1091. [Google Scholar] [CrossRef]
- Kremers, B.; Wübbeke, L.; Mees, B.; Cate, H.T.; Spronk, H.; Cate-Hoek, A.T. Plasma Biomarkers to Predict Cardiovascular Outcome in Patients With Peripheral Artery Disease: A Systematic Review and Meta-Analysis. Arter. Thromb. Vasc. Biol. 2020, 40, 2018–2032. [Google Scholar] [CrossRef]
- Yasue, H.; Yoshimura, M.; Sumida, H.; Kikuta, K.; Kugiyama, K.; Jougasaki, M.; Ogawa, H.; Okumura, K.; Mukoyama, M.; Nakao, K. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 1994, 90, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, Y.; Nishi, I.; Furuichi, S.; Noguchi, T.; Sase, K.; Kihara, Y.; Goto, Y.; Nonogi, H. B-Type Natriuretic Peptide Strongly Reflects Diastolic Wall Stress in Patients With Chronic Heart Failure: Comparison Between Systolic and Diastolic Heart Failure. J. Am. Coll. Cardiol. 2006, 47, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Jia, Y.; Zhu, B. BNP and NT-proBNP as Diagnostic Biomarkers for Cardiac Dysfunction in Both Clinical and Forensic Medicine. Int. J. Mol. Sci. 2019, 20, 1820. [Google Scholar] [CrossRef]
- Fonarow, G.C.; Peacock, W.F.; Horwich, T.B.; Phillips, C.O.; Givertz, M.M.; Lopatin, M.; Wynne, J. Usefulness of B-Type Natriuretic Peptide and Cardiac Troponin Levels to Predict In-Hospital Mortality from ADHERE. Am. J. Cardiol. 2008, 101, 231–237. [Google Scholar] [CrossRef]
- Sugiura, T.; Takase, H.; Toriyama, T.; Goto, T.; Ueda, R.; Dohi, Y. Circulating Levels of Myocardial Proteins Predict Future Deterioration of Congestive Heart Failure. J. Card. Fail. 2005, 11, 504–509. [Google Scholar] [CrossRef]
- Jourdain, P.; Jondeau, G.; Funck, F.; Gueffet, P.; Le Helloco, A.; Donal, E.; Aupetit, J.F.; Aumont, M.C.; Galinier, M.; Eicher, J.C.; et al. Plasma Brain Natriuretic Peptide-Guided Therapy to Improve Outcome in Heart Failure: The STARS-BNP Multicenter Study. J. Am. Coll. Cardiol. 2007, 49, 1733–1739. [Google Scholar] [CrossRef]
- Stone, P.A.; Schlarb, H.; Thompson, S. C-Reactive Protein and Brain Natriuretic Peptide as Predictors of Adverse Events Following Lower Extremity Endovascular Revascularization. J. Vasc. Surg. 2013, 58, 1729. [Google Scholar] [CrossRef]
- Mair, J.; Lindahl, B.; Hammarsten, O.; Müller, C.; Giannitsis, E.; Huber, K.; Möckel, M.; Plebani, M.; Thygesen, K.; Jaffe, A.S. How is cardiac troponin released from injured myocardium? Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 553–560. [Google Scholar] [CrossRef]
- A Kragten, J.; Hermens, W.T.; van Dieijen-Visser, M.P. Cardiac Troponin T Release into Plasma after Acute Myocardial Infarction: Only Fractional Recovery Compared with Enzymes. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 1996, 33, 314–323. [Google Scholar] [CrossRef]
- Sharma, R.; Gaze, D.C.; Pellerin, D.; Mehta, R.L.; Gregson, H.; Streather, C.P.; Collinson, P.O.; Brecker, S.J.D. Evaluation of ischaemia-modified albumin as a marker of myocardial ischaemia in end-stage renal disease. Clin. Sci. 2007, 113, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Abramson, B.L.; Al-Omran, M.; Anand, S.S.; Albalawi, Z.; Coutinho, T.; de Mestral, C.; Dubois, L.; Gill, H.L.; Greco, E.; Guzman, R.; et al. Canadian Cardiovascular Society 2022 Guidelines for Peripheral Arterial Disease. Can. J. Cardiol. 2022, 38, 560–587. [Google Scholar] [CrossRef] [PubMed]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark. Insights 2016, 11, 95–104. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association 6. Glycemic Targets: Standards of Medical Care in Diabetes—2019. Diabetes Care 2018, 42, S61–S70. [Google Scholar] [CrossRef]
- Levitt, D.G.; Levitt, M.D. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med. 2016, 9, 229–255. [Google Scholar] [CrossRef]
- Moman, R.N.; Gupta, N.; Varacallo, M. Physiology, Albumin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK459198/ (accessed on 11 December 2024).
- Gerstein, H.C.; Mann, J.F.E.; Yi, Q.; Zinman, B.; Dinneen, S.F.; Hoogwerf, B.; Hallé, J.P.; Young, J.; Rashkow, A.; Joyce, C.; et al. Albuminuria and Risk of Cardiovascular Events, Death, and Heart Failure in Diabetic and Nondiabetic Individuals. JAMA 2001, 286, 421–426. [Google Scholar] [CrossRef]
- Wachtell, K.; Palmieri, V.; Olsen, M.H.; Bella, J.N.; Aalto, T.; Dahlöf, B.; Gerdts, E.; Wright, J.T.; Papademetriou, V.; Mogensen, C.E.; et al. Urine albumin/creatinine ratio and echocardiographic left ventricular structure and function in hypertensive patients with electrocardiographic left ventricular hypertrophy: The LIFE study. Am. Heart J. 2002, 143, 319–326. [Google Scholar] [CrossRef]
- Microalbuminuria and Carotid Artery Intima-Media Thickness in Nondiabetic and NIDDM Subjects|Stroke. Available online: https://www.ahajournals.org/doi/10.1161/01.str.28.9.1710?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 11 December 2024).
- Cao, J.J.; Barzilay, J.I.; Peterson, D.; Manolio, T.A.; Psaty, B.M.; Kuller, L.; Wexler, J.; Bleyer, A.J.; Cushman, M. The association of microalbuminuria with clinical cardiovascular disease and subclinical atherosclerosis in the elderly: The Cardiovascular Health Study. Atherosclerosis 2006, 187, 372–377. [Google Scholar] [CrossRef]
- Li, B.; Syed, M.H.; Khan, H.; Singh, K.K.; Qadura, M. The Role of Fatty Acid Binding Protein 3 in Cardiovascular Diseases. Biomedicines 2022, 10, 2283. [Google Scholar] [CrossRef]
- Varrone, F.; Gargano, B.; Carullo, P.; Di Silvestre, D.; De Palma, A.; Grasso, L.; Di Somma, C.; Mauri, P.; Benazzi, L.; Franzone, A.; et al. The Circulating Level of FABP3 Is an Indirect Biomarker of MicroRNA-1. J. Am. Coll. Cardiol. 2013, 61, 88–95. [Google Scholar] [CrossRef]
- Amri, E.; Bertrand, B.; Ailhaud, G.; Grimaldi, P. Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J. Lipid Res. 1991, 32, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. Clin. Med. Insights Cardiol. 2015, 8, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Zamzam, A.; Syed, M.H.; Greco, E.; Wheatcroft, M.; Jain, S.; Khan, H.; Singh, K.K.; Forbes, T.L.; Rotstein, O.; Abdin, R.; et al. Fatty Acid Binding Protein 4—A Circulating Protein Associated with Peripheral Arterial Disease in Diabetic Patients. J. Clin. Med. 2020, 9, 2843. [Google Scholar] [CrossRef] [PubMed]
- Boord, J.B.; Fazio, S.; Linton, M.F. Cytoplasmic fatty acid-binding proteins: Emerging roles in metabolism and atherosclerosis. Curr. Opin. Lipidol. 2002, 13, 141–147. [Google Scholar] [CrossRef]
- Steinhoff, J.S.; Lass, A.; Schupp, M. Biological Functions of RBP4 and Its Relevance for Human Diseases. Front. Physiol. 2021, 12, 659977. [Google Scholar] [CrossRef]
- Rychter, A.M.; Skrzypczak-Zielińska, M.; Zielińska, A.; Eder, P.; Souto, E.B.; Zawada, A.; Ratajczak, A.E.; Dobrowolska, A.; Krela-Kaźmierczak, I. Is the Retinol-Binding Protein 4 a Possible Risk Factor for Cardiovascular Diseases in Obesity? Int. J. Mol. Sci. 2020, 21, 5229. [Google Scholar] [CrossRef]
- Zabetian-Targhi, F.; Mahmoudi, M.J.; Rezaei, N.; Mahmoudi, M. Retinol Binding Protein 4 in Relation to Diet, Inflammation, Immunity, and Cardiovascular Diseases. Adv. Nutr. 2015, 6, 748–762. [Google Scholar] [CrossRef]
- Gounden, V.; Ngu, M.; Anastasopoulou, C.; Jialal, I. Fructosamine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470185/ (accessed on 12 December 2024).
- Selvin, E.; Rawlings, A.M.; Grams, M.; Klein, R.; Sharrett, A.R.; Steffes, M.; Coresh, J. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: A prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2014, 2, 279–288. [Google Scholar] [CrossRef]
- Dungan, K.M. 1,5-anhydroglucitol (GlycoMark™) as a marker of short-term glycemic control and glycemic excursions. Expert Rev. Mol. Diagn. 2008, 8, 9–19. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Tanguay, J.-F.; Wright, S.R.; Duchatelle, V.; Petroni, T.; Grégoire, J.C.; Ibrahim, R.; Heinonen, T.M.; Robb, S.; Bertrand, O.F.; et al. Effects of the P-Selectin Antagonist Inclacumab on Myocardial Damage After Percutaneous Coronary Intervention for Non–ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2013, 61, 2048–2055. [Google Scholar] [CrossRef]
- Broch, K.; Anstensrud, A.K.; Woxholt, S.; Sharma, K.; Tøllefsen, I.M.; Bendz, B.; Aakhus, S.; Ueland, T.; Amundsen, B.H.; Damås, J.K.; et al. Randomized Trial of Interleukin-6 Receptor Inhibition in Patients With Acute ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2021, 77, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- McBane, R.D. Colchicine, a Novel Treatment of Peripheral Artery Disease. Mayo Clin. Proc. 2024, 99, 1354–1355. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.; Kinscherf, R.; Bonaterra, G.A. Role of the Stress- and Inflammation-Induced Cytokine GDF-15 in Cardiovascular Diseases: From Basic Research to Clinical Relevance. Rev. Cardiovasc. Med. 2023, 24, 81. [Google Scholar] [CrossRef] [PubMed]
- Fort-Gallifa, I.; Hernández-Aguilera, A.; García-Heredia, A.; Cabré, N.; Luciano-Mateo, F.; Simó, J.M.; Martín-Paredero, V.; Camps, J.; Joven, J. Galectin-3 in Peripheral Artery Disease. Relationships with Markers of Oxidative Stress and Inflammation. Int. J. Mol. Sci. 2017, 18, 973. [Google Scholar] [CrossRef]
- Fanaroff, A.C.; Yang, L.; Nathan, A.S.; Khatana, S.A.M.; Julien, H.; Wang, T.Y.; Armstrong, E.J.; Treat-Jacobson, D.; Glaser, J.D.; Wang, G.; et al. Geographic and Socioeconomic Disparities in Major Lower Extremity Amputation Rates in Metropolitan Areas. J. Am. Heart Assoc. 2021, 10, e021456. [Google Scholar] [CrossRef]
Authors | Proteins | Findings |
---|---|---|
Ding M, Shi J-Y, Xing Y-Z, Sun B, Fang Q-H, Zhang J-Y et al., 2017 [11] | Adipocyte fatty acid-binding protein (A-FABP) | Women in the third tertile of A-FABP values had significantly higher rates of stent stenosis compared to the first tertile. This trend was not found in men. |
Morisaki K, Matsumoto T, Matsubara Y, Inoue K, Aoyagi Y, Matsuda D et al., 2016 [12] | Albumin | Serum albumin < 2.5 g/dL was significantly associated with risk of two-year mortality (HR 3.45, 95% CI: 1.01–11.7, p = 0.04). |
Ishii H, Aoyama T, Takahashi H, Kamoi D, Tanaka M, Yoshikawa D et al., 2013 [13] | Albumin and C-reactive protein (CRP) | Serum albumin (HR 0.55, 95% CI: 0.38–0.79, p = 0.0014) and CRP (HR 1.01, 95% CI: 1.00–1.02, p = 0.0022) were significant independent predictors of major adverse cardiovascular events. Similarly for major adverse limb events. Serum albumin (HR 0.59, 95% CI: 0.36–0.95, p = 0.030) and CRP (HR 1.01, 95% CI: 1.00–1.02, p = 0.040) were significant independent predictors. |
Kadoglou NPE, Korakas E, Karkos C, Maratou E, Kanonidis I, Plotas P et al., 2021 [14] | Glycated hemoglobin (HbA1c), Retinol-Binding Protein-4 (RBP-4), adiponectin, high-sensitivity C-Reactive Protein (hsCRP) | RBP4 (β = 0.498, p < 0.001) and adiponectin (β = −0.288, p < 0.001) levels were independent predictors of PAD (R2 = 0.422, p < 0.001) after adjusting for age. After adjusting for cardiovascular risk factors, RBP4 levels remained a significant independent predictor of MACE (β = 0.455, p < 0.001). |
Singh N, Zeng C, Lewinger JP, Wolfson AM, Shavelle D, Weaver F et al., 2019 [15] | HbA1c | Patients with HbA1c > 8% had a higher odds of an adverse limb events compared to those with HbA1c, between 6 and 7% (OR 1.46, 95% CI: 1.07–2.00, p = 0.04). |
Buelter J, Smith JB, Carel ZA, Kinsey D, Kruse RL, Vogel TR et al. R et al., 2022 [16] | HbA1c | Patients with higher HbA1c < 6.5% were at a significantly higher risk of 30-day readmission post-procedure (OR 1.06, 95% CI: 1.00–1.12, p = 0.04) compared to those with lower HbA1c < 6.5%. |
Nativel M, Schneider F, Saulnier P-J, Gand E et al., 2018 [17] | HbA1c, tumor necrosis factor-α receptor 1 (TNFR1), angiopoietin-like 2, ischemia-modified albumin (IMA), CRP | Between the third and first tertiles, TNFR1 (HR 2.16, 95% CI: 1.19–3.92, p = 0.01), CRP (HR 7.14, 95% CI: 1.82–27.96; p = 0.005), and IMA (HR 2.04, 95% CI: 1.17–3.57, p = 0.01) were significantly associated with incidence of LEAD after adjusting for covariates. |
Nativel M., Schneider F., Saulnier P., Meilhac O., Rondeau P., Cournot M. et al., 2018 [18] | HbA1c, tumor necrosis factor-α receptor 1 (TNFR1), angiopoietin-like 2, ischemia-modified albumin (IMA), CRP | Between the third and first tertiles, TNFR1 (HR 2.16, 95% CI: 1.19–3.92, p = 0.01) was significantly associated with a need for revascularization. Between the third and first tertile, CRP was significantly associated with LEAD (HR 7.14, 95% CI: 1.82–28.0; p = 0.005). |
Martinez-Aguilar E, MD P, Orbe J, Fernandez-Montero A, Fernandez-Alonso S, Rodriguez J et al., 2017 [19] | High-density lipoprotein (HDL) | Patients with normal levels of HDL had a reduced incidence of mortality (HR 0.34, 95% CI: 0.21–0.57) |
Mueller T., Dieplinger B., Forstner T., Poelz W., Haltmayer M., 2010 [20] | Pregnancy-associated plasma protein-A (PAPP-A) | PAPP-A was significantly associated with 5-year mortality (RR 1.31, 95% CI: 1.01–1.73, p = 0.024) |
Gremmel T, Koppensteiner R, Ay C, Panzer S., 2014 [21] | Thrombin, and P-Selectin | <390 nM was established as a cut-off for peak thrombin to predict atherothrombotic events with a sensitivity of 85.7% and a specificity of 67%. P-selectin was elevated in patients with future atherothrombotic events but non-significantly (p = 0.08) |
Skoglund PH, Arpegard J, Ostergren J, Svensson P., 2014 [22] | Amino-terminal pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein (hs-CRP), and cystatin. | Log(NT-proBNP) (HR 1.68, 95% CI: 1.09–2.60, p < 0.05) and Log(hs-CRP) (HR 1.53, 95% CI: 1.13–2.08, p < 0.01) were significantly associated with cardiovascular events. There were no associated between cystatin and cardiovascular events. |
Sobel M, Yagi M, Moreno K, Kohler TR, Tang GL, Wijelath ES et al., 2019 [23] | Anti-phosphorylcholine IgM, CRP, IL-6 | Patients in the lowest quartile of re-operative anti-PC IgM were at significantly higher risk of graft failure (p = 0.03, HR 2.11, 95% CI 1.09–4.07). IL6 and CRP were not associated with graft failure. |
Skau E., Wagner P., Leppert J., Arnlov J., Hedberg P., 2023 [24] | N-terminal pro b-type natriuretic peptide (NT-proBNP) and Growth differentiation factor 15 (GDF-15) | NT-proBNP (HR: 1.59 95% CI: 1.32–1.91, p < 0.001) and GDF-15 (HR 2.32, 95% CI: 1.70–3.17, p < 0.001) were associated with 5-year adverse cardiovascular outcomes. |
Stone PA, Thompson SN, Williams D, AbuRahma Z, Grome L, Schlarb H et al., 2015 [25] | Highly sensitive C-reactive protein (hs-CRP) and Brain natriuretic peptide (BNP) | Elevated BNP levels were associated with CV events (HR 3.5, 95% CI: 1.2–10.3, p = 0.03). CRP levels were not associated with cardiovascular events |
Stone PA, Schlarb H, Campbell JE, Williams D, Thompson SN, John M et al., 2014 [26] | Highly sensitive C-reactive protein (hs-CRP) and Brain natriuretic peptide (BNP) | Elevated pre-operative hsCRP was associated with major adverse limb events, and elevated BNP and hsCRP were associated with CV events. Patients with higher baseline hsCRP and BNP experienced a 10.6-fold increase in major adverse cardiovascular events (95% CI: 2.6–42.9, p = 0.001). |
Bleda S, de Haro J, Varela C, Acin F., 2015 [27] | C-reactive protein (CRP) | Reintervention within 1-year post-EVT was associated with baseline CRP levels (HR 1.1, 95% CI: 1.05–1.2, p < 0.001). |
Shahin Y, Hatfield J, Chetter I, MD F., 2012 [28] | C-reactive protein (CRP) | High CRP at intermittent claudication diagnosis increased the 10-year risk of CV events (21% ± 11%; correlation coefficient with FRS and log-CRP r = 0.34, p = 0.002). |
van Wijk DF, Boekholdt SM, Wareham NJ, Ahmadi-Abhari S, Kastelein JJP, Stroes ESG et al., 2013 [29] | C-reactive protein (CRP) | High CRP predicted non-fatal PAD events (HR 1.36, 95% CI: 1.26–1.48, p < 0.001). The fourth quartile of CRP levels had a significantly increased risk of non-fatal PAD events (HR 2.48, 95% CI: 1.85–3.32, p < 0.001). |
Di X, Han W, Zhang R, Liu C, Zheng Y., 2022 [30] | C-reactive protein (CRP) | High hsCRP (HR 4.015, 95% CI, 1.628–10.551, p = 0.003) was associated with major adverse limb events. |
Vrsalovic M, Vucur K, Car B, Krcmar T, Vrsalovic Presecki A., 2015 [31] | C-reactive protein (CRP) | High CRP independently predicted major adverse cardiovascular events. Patients with high CRP (along with renal dysfunction) at baseline had a 3.59-fold increase in major adverse cardiovascular event risk than controls (95% CI = 1.89–6.83, p < 0.001). |
McDermott MM, Liu K, Green D, Greenland P, Tian L, Kibbe M et al., 2015 [32] | D-dimer, C-reactive protein (CRP), and serum amyloid A (SAA) | D-dimer levels were higher 8 months (p = 0.028), 6 months (p = 0.005), and 4 months (p = 0.017) before any ischemic heart disease (IHD) events (myocardial infarctions, IHD death, or unstable angina). CRP and SAA levels were not different between time periods leading up to IHD event. |
Takamura T-A, Tsuchiya T, Oda M, Watanabe M, Saito R, Sato-Ishida R et al., 2017 [33] | Malondialdehyde-modified low-density lipoprotein (MDA/LDL), IL-6; high-sensitivity C-reactive protein (hsCRP), and D-dimer | MDA/LDL ratios (comparing post- and pre-EVT values) divided participants into high (≥0.495) and low (<0.495) cohorts. The low-ratio cohort had more limb-related events or death (p < 0.001) and clinical endpoints (HR 0.4210, p = 0.0154). Lower MDA/LDL and pre-EVT hsCRP were found to have an inverse relationship (r = −0.42, p = 0.012). D-dimer (p < 0.01) and IL-6 did increase post-EVT (<0.001) but were not associated with adverse clinic outcomes. |
Wu S., Hsu L.-A., Cheng S.-T., Teng M.-S., Yeh C.-H., Sun Y.-C. et al., 2014 [34] | YKL-40 (cytokine) | YKL-40 level was associated with the PAD risk (p = 3.3 × 10−23). |
Yang Y, Zhao X, Tang X, Lu J, Zhou M, Wang W et al., 2014 [35] | Serum cystatin C (Cys C), creatinine (sCr), pre-albumin | When sCr increased by ≥25%, there was no association with major adverse events. When Cys C increased by ≥5%, there was an association with major adverse events (HR: 3.576, 95% CI: 1.354–9.447, p = 0.010). Low prealbumin levels (HR: 0.000, 95% CI: 0.000–0.0269, p = 0.022) and high serum Cys C predicted 1-year major adverse events. |
Li B., Nassereldine R., Zamzam A., Syed M.H., Mamdani M., Al-Omran M. et al., 2024 [36] | N-terminal pro-B-type natriuretic peptide [NT-proBNP], fatty acid binding protein 3 [FABP3], and FABP4 | Three-year major adverse limb event predictors include (1) FABP, (2) FABP4, and (3) NT-proBNP. The prediction model created had an area under the ROC = 0.88 (95% CI, 0.84–0.94); sensitivity, 88%; specificity, 84%; PPV, 83%; and NPV, 91%. |
Al-Thani H, El-Matbouly M, Al-Sulaiti M, Al-Thani N, Asim M, El-Menyar A., 2019 [37] | Hemoglobin A1c (HbA1c) | Despite having poorer glycemic control, patients with perioperative HbA1c values between 8.5 and 9.4% [HR 0.57 (95% CI 0.35–0.93)] and ≥9.5% [HR 0.46 (95% CI 0.31–0.69)] had a lower risk of morality after a lower extremity amputation compared to patients with perioperative HbA1c values < 8.5%, although they were not statistically significant after adjustments for age and sex. |
Li B, Zamzam A, Syed M, Djahanpour N, Jain S, Abdin R et al., 2023 [38] | Fatty acid binding protein 4 [FABP4] | Each one-unit increase in FABP4 was significantly associated with major adverse limb events (unadjusted HR 1.19, 95% CI 1.04–1.27; adjusted HR 1.18, 95% CI 1.03–1.27; p = 0.022) and worsening PAD (unadjusted HR 1.18, 95% CI 1.13–1.31; adjusted HR 1.17, 95% CI 1.12–1.28; p < 0.001). |
Ding N, Yang C, Ballew S, Kalbaugh C, McEvoy J, Salameh M et al., 2020 [39] | High-sensitivity C-reactive protein (hs-CRP), Galectin-3 | After adjusting for risk factors, higher log-galectin-3 levels independently increased PAD and CLI risk, with hazard ratios of 1.17 (95% CI, 1.05–1.31) for PAD and 1.25 (95% CI, 1.05–1.49) for CLI per standard deviation. The highest quartile of galectin-3 also showed significantly higher risks for PAD (HR = 1.52) and CLI (HR = 1.85). Higher hs-CRP levels were also associated with more than twice the risk of PAD and CLI, with individuals in the highest quartile having adjusted hazard ratios (HR) of 2.19 (95% CI, 1.50–3.22) for PAD and 2.22 (95% CI, 1.15–4.29) for CLI. |
Hjellestad ID, Softeland E, Husebye ES, Jonung T., 2018 [40] | Hemoglobin A1c (HbA1c) | HbA1c was significantly associated with all-cause mortality [HR: 1.75, 95% CI 1.24–2.46, p = 0.01] even after adjustments for age, sex, platelet inhibitors, statins, and antihypertensive medications [HR: 1.54, 95% CI 1.03–2.32, p = 0.04], although it was no longer significant after a fully adjusted analysis [HR: 1.39, 95% CI 0.92–2.309, p = 0.13]. |
Arya S, Binney ZO, Khakharia A, Long CA, Brewster LP, Wilson PW et al., 2018 [41] | Hemoglobin A1c (HbA1c) | Elevated HbA1c levels were associated with progressively higher risks of amputation: 26% (HR 1.26, 95% CI 1.15–1.39) for levels of 6.1–7.0%, 53% (HR 1.53, 95% CI 1.37–1.70) for levels of 7.1–8.0%, and 105% (HR 2.05, 95% CI 1.87–2.26) for levels above 8%, compared to those with HbA1c ≤ 6.0%. Similarly, the risk of major adverse limb events increased by 5% (HR 1.05, 95% CI 0.99–1.11), 21% (HR 1.21, 95% CI 1.13–1.29), and 33% (HR 1.33, 95% CI 1.25–1.42) for the respective HbA1c levels compared to those with HbA1c ≤ 6.0%. |
Pohlhammer J, Kronenberg F, Rantner B, Stadler M, Peric S, Hammerer-Lercher A et al., 2014 [42] | High-sensitivity cardiac troponin T (hs-cTnT) | In PAD patients, detectable hs-cTnT predicted prevalent CVD (OR = 3.42, 95% CI, 1.68–7.00, p = 0.001) and was a strong predictor of all-cause mortality, especially at levels ≥ 14 ng/L (HR = 5.06, 95% CI, 2.12–12.17, p < 0.001). Levels ≥ 14 ng/L were also linked to incident CVD (HR = 3.15, 95% CI, 1.26–7.89, p = 0.01). |
Chahrour MA, Kharroubi H, Al Tannir AH, Assi S, Habib JR, Hoballah JJ., 2021 [43] | Albumin | Serum albumin < 2.5 g/dL was strongly associated with increased mortality (adjusted odds ratio [AOR] = 2.25, 95% CI, 1.97–2.56, p < 0.001) and unplanned reoperation (AOR = 1.37, 95% CI, 1.26–1.49, p < 0.001) compared to normal albumin levels. Albumin levels between 2.5 and 3.39 g/dL also independently predicted higher mortality, with <2.5 g/dL levels showing the greatest risk. |
Westfall JC, Cheng TW, Farber A, Jones DW, Eslami MH, Kalish JA et al. A et al., 2019 [44] | Albumin | Severe hypoalbuminemia was significantly associated with higher rates of 30-day readmission (40% vs. 30.8% vs. 17.8%, p = 0.005), 90-day ER visits (55.6% vs. 33.8% vs. 29.6%, p = 0.006), and 90-day readmission (66.7% vs. 48.9% vs. 35.6%, p = 0.001) rates compared to moderate hypoalbuminemia and normal albumin levels. Severe hypoalbuminemia was independently associated with a greater likelihood of 90-day ER visits (OR = 2.8, 95% CI, 1.23–6.36, p = 0.014) and 90-day readmission (OR = 2.63, 95% CI, 1.21–5.71, p = 0.015). |
Peacock MR, Farber A, Eslami MH, Kalish JA, Rybin D, Doros G et al., 2017 [45] | Albumin | Serum album < 2.8 g/dL demonstrated significantly higher risk of 30-day mortality (OR 2.5, 95% CI 1.6–3.8, p < 0.001), return to the operating room in 30 days (OR 1.6, 95% CI 1.3–2.0, p ≤ 0.001), and prolonged length of stay (adjusted means ratio 1.2, 95% 1.1–1.2, p ≤ 0.001) when compared to individuals with serum album ≥ 3.5 g/dL. |
Urbonaviciene G, Frystyk J, Urbonavicius S, Lindholt JS., 2014 [46] | Insulin-like growth factor-I (IGF-I) and insulin-like growth-factor-binding protein 2 (IGFBP-2). | An increase of 100 μg/L in baseline IGFBP-2 was significantly associated with a higher risk of CVD mortality [adjusted HR 1.12, 95% CI: 1.01–1.24]. The receiver-operating curve showed a significant area under the curve of 0.61 (95% CI: 0.51–0.67, p = 0.022), demonstrating that the model has limited ability to predict CVD mortality risk using IGFBP-2. IGF-I demonstrated insignificant positive associations with all-cause [HR 1.06, 95% CI 0.74–1.54] and CVD mortality [HR 1.18, 95% CI 0.7–1.99]. |
Ishii H, Kumada Y, Takahashi H, Toriyama T, Aoyama T, Tanaka M et al., 2012 [47] | Hemoglobin A1c (HbA1c) | The incidence of PAD (HR 1.63, 95% CI 1.17, 2.28, p0.0038) and limb amputation (HR 2.99, 95% CI 1.17, 7.70, p0.023) significantly increased in diabetic patients with HbA1c levels > 51 mmol/mol compared to those with ≤51 mmol/mol. |
Wachsmann A, Maga M, Schonborn M, Olszewska M, Blukacz M, Cebenko M et al., 2021 [48] | Hemoglobin A1c (HbA1c) | Patients with HbA1c levels > 8.0% had significantly more restenosis (35.48% vs. 9.09%, p = 0.03), reduced Ulcer healing at 6 months (16.13% vs. 45.0%, p = 0.02), compared to patients with HbA1c levels ≤ 8%. No significant differences were found in 12-month major adverse cardiovascular events, death, or amputation rates between groups. Patients with HbA1c ≤ 8.0% showed better quality of life improvements in activities, symptoms, emotional well-being, and social well-being. |
Gremmel T, Steiner S, Seidinger D, Koppensteiner R, Panzer S, Kopp CW., 2014 [49] | GPIIb/IIIa, TRAP-6, P-selectin | Levels of TRAP-6 inducible GP11b/IIIa > 3.23 MFI were associated with a 2.9-fold increased risk of non-fatal myocardial infarction, ischemic stroke or transient ischemic attack, and recurrent PAD symptoms (95% CI: 1.1–7.5; p = 0.04). Further, TRAP-6 inducible P-selectin levels above 40.2 MFI were significantly associated with a 3-fold-increased risk of these outcomes (95% CI: 1.3–7; p = 0.009). |
Biscetti F, Ferraro P, Hiatt W, Angelini F, Nardella E, Cecchini A et al., 2019 [50] | Osteoprotegerin (OPG), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP). | OPG, TNF-α, IL-6, and CRP all exhibit significant correlation to risk of MALE at 12 months after baseline (p < 0.001) as well as exhibiting a linear association to risk to MACE at 12 months after baseline (p < 0.001). |
Cha J-J, Kim H, Ko Y-G, Choi D, Lee J-H, Yoon C-H et al., 2020 [51] | hemoglobin A1c (HbA1c) | The suboptimal glycemic control group (HbA1c ≥ 7.0) exhibited a higher incidence of MALEs in comparison to the optimal glycemic group (HbA1c < 7.0) (p = 0.072). |
Saenz-Pipaon G., Ravassa S., Larsen K.L., Martinez-Aguilar E., Orbe J., Rodriguez J.A. et al., 2022 [52] | Lipocalin-2 (LCN2) and calprotectin | LCN2 and calprotectin increased the risk of cardiovascular-related death or amputation by 5.6 folds (p < 0.001) and 1.8 folds (p = 0.034), respectively. |
Aday A,, Lawler P, Cook N, Ridker P et al., 2018 [53] | LDL particle (LDL-P), Tryglyceride-rich proteins, high-density lipoprotein (HDL) | High levels of total and small LDL particles were found to be associated with increased PAD risk (2.03; 95% CI, 1.14–3.59) (2.17; 95% CI, 1.10–4.27), whereas HDL particles were found to have an inverse relationship to PAD risk (0.29; 95% CI, 0.16 to 0.52; P trend < 0.0001). |
Oshin OA, Torella F., 2013 [54] | Hemoglobin (Hb) | Twenty-six patients of the cohort experienced a MACE, showing a correlation between a decrease in hemoglobin below the mean and the MACE (1.4 [95% 1.13–1.7]; p = 0.002) |
Urbonaviciene G, Frystyk J, Flyvbjerg A, Urbonavicius S, Henneberg EW, Lindholt JS., 2012 [55] | Plasma α-defensin and serum high sensitivity C reactive protein (hs-CRP) | High levels of α-defensin showed an increased risk of cardiovascular mortality (HR 3.04 95% CI 1.26–7.32; p = 0.013); hs-CRP was found to only be significantly correlated with cardiovascular mortality in univariate models but statistically insignificant in others (0.60, 95% CI 0.48–0.72; p = 0.089). |
Martinez-Aguilar E, Gomez-Rodriguez V, Orbe J, Rodriguez J, Fernandez-Alonso L, MD P et al., 2015 [56] | Matrix metalloproteinase-10 (MMP-10), tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) | MMP-10 was found in higher levels in PAD patients that underwent CLI (1086 ± 478 pg/mL vs. 822 ± 436 pg/mL; p < 0.001); univariate analysis found MMP-10 was increased with all-cause mortality and CV mortality (p < 0.03). |
Amrock SM, Weitzman M., 2016 [57] | High-sensitivity CRP, Homocysteine | Homocysteine was found to be strongly correlated to all-cause mortality (HR 1.31, 95% CI: 1.11–1.54, p < 0.001). |
Hobaus C, Herz CT, Wrba T, Koppensteiner R, Schernthaner G-H., 2020 [58] | HbA1C, C-reactive protein (CRP) | HbA1c > 7% (HR 1.3, 95% CI: 1.04–1.63) and elevated CRP (HR 1.5, 95% CI 1.2–2.0) were significantly associated with mortality. |
Zhou Y, Zhang J, Zhu M, Lu R, Wang Y, Ni Z., 2015 [59] | Plasma Pentraxin 3 (PTX3) | Increased PTX3 exhibited a significantly poor outcome (p < 0.0001) and was further confirmed to be an independent predictor of overall mortality (HR, 1.105, 95% CI p = 0.03). |
McGinigle KL, Kindell DG, Strassle PD, Crowner JR, Pascarella L, Farber MA et al. A et al., 2020 [60] | HbA1c | A significant correlation was found between hBA1c and MALEs, with very severe diabetes having 1.31 (95% CI, 1.10–1.55) times the odds of MALEs and 1.24 (95% CI, 0.82–1.87) times the odds of major limb amputation. |
Abbas AE, Goodman LM, Timmis R, Boura J., 2010 [61] | Creatinine, hemoglobin | Increased preintervention creatinine (p = 0.015) and decreased preprocedural hemoglobin (p = 0.0068) were found to have correlation with endovascular intervention and target vessel revascularization. Preintervention creatinine was also found to be a significant predictor of mortality (p < 0.0001). |
Guo S, Zhang Z, Jing Z et al., 2020 [62] | Interleukin-6 (IL-6) | Elevated Interleukin-6 levels at baseline (OR 1.11, 95% CI: 1.00–1.23, p = 0.044) were associated with 6-month in-stent stenosis. |
Lee A, Haddad D, Rybin D, Howell C, Ghaderi I, Berman S et al., 2021 [63] | HbA1c | Elevated HbA1c levels were protective from death within 1 year for HbA1c > 6.5% versus <5.7% (HR 0.75, 95% CI: 0.61–0.93, p = 0.01. |
Ding N, Kwak L, Ballew SH, Jaar B, Hoogeveen RC, Ballantyne CM et al., 2018 [64] | HbA1c | HbA1c > 7% was significantly associated with the risk of PAD (HR 6.00, 95% CI: 3.73–9.66) and CLI (HR 10.39, 95% CI: 4.79–22.53). |
Ding N, Kwak L, Ballew SH, Jaar B, Hoogeveen RC, Ballantyne CM et al., 2018 [64] | Glycohemoglobin, Glycoalbumin | HbA1c > 7% was significantly associated with risk of PAD (HR 6.00, 95% CI: 3.73–9.66) and CLI (HR 10.39, 95% CI: 4.79–22.53). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, H.; Girdharry, N.R.; Massin, S.Z.; Abu-Raisi, M.; Saposnik, G.; Mamdani, M.; Qadura, M. Current Prognostic Biomarkers for Peripheral Arterial Disease: A Comprehensive Systematic Review of the Literature. Metabolites 2025, 15, 224. https://doi.org/10.3390/metabo15040224
Khan H, Girdharry NR, Massin SZ, Abu-Raisi M, Saposnik G, Mamdani M, Qadura M. Current Prognostic Biomarkers for Peripheral Arterial Disease: A Comprehensive Systematic Review of the Literature. Metabolites. 2025; 15(4):224. https://doi.org/10.3390/metabo15040224
Chicago/Turabian StyleKhan, Hamzah, Natasha R. Girdharry, Sophia Z. Massin, Mohamed Abu-Raisi, Gustavo Saposnik, Muhammad Mamdani, and Mohammad Qadura. 2025. "Current Prognostic Biomarkers for Peripheral Arterial Disease: A Comprehensive Systematic Review of the Literature" Metabolites 15, no. 4: 224. https://doi.org/10.3390/metabo15040224
APA StyleKhan, H., Girdharry, N. R., Massin, S. Z., Abu-Raisi, M., Saposnik, G., Mamdani, M., & Qadura, M. (2025). Current Prognostic Biomarkers for Peripheral Arterial Disease: A Comprehensive Systematic Review of the Literature. Metabolites, 15(4), 224. https://doi.org/10.3390/metabo15040224