Utilizing Microbial Inoculants to Alleviate Continuous Cropping Obstacles: Insights into the Metabolites and Transcriptomic Responses of Pinellia ternata
Abstract
1. Introduction
2. Method and Materials
2.1. Experimental Design and Sampling
2.2. Metabolites Profiling
2.3. RNA Sequencing
3. Results
3.1. Microbial Inoculants and Continuous Cropping Changed the Metabolite Profiles
3.1.1. Differential Metabolite Clustering Analysis
3.1.2. Differential Metabolite Machine Learning Analysis
3.2. Microbial Inoculants and Continuous Cropping Changed the Transcripts
3.3. Microbial Inoculants and Continuous Cropping Changed the Enzymes and Genes Involved in the Phenylpropanoid Biosynthesis Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, T.; Wang, J.; Wu, X.; Yang, K.; Zhang, Q.; Wang, C.; Wang, X.; Zhao, C. A review of the research progress on Pinellia ternata (Thunb.) Breit.: Botany, traditional uses, phytochemistry, pharmacology, toxicity and quality control. Heliyon 2023, 9, e22153. [Google Scholar] [CrossRef] [PubMed]
- Alami, M.M.; Xue, J.; Ma, Y.; Zhu, D.; Abbas, A.; Gong, Z.; Wang, X. Structure, Function, Diversity, and Composition of Fungal Communities in Rhizospheric Soil of Coptis chinensis Franch under a Successive Cropping System. Plants 2020, 9, 244. [Google Scholar] [CrossRef]
- Alami, M.M.; Xue, J.; Ma, Y.; Zhu, D.; Gong, Z.; Shu, S.; Wang, X. Structure, Diversity, and Composition of Bacterial Communities in Rhizospheric Soil of Coptis chinensis Franch under Continuously Cropped Fields. Diversity 2020, 12, 57. [Google Scholar] [CrossRef]
- Tan, G.; Liu, Y.; Peng, S.; Yin, H.; Meng, D.; Tao, J.; Gu, Y.; Li, J.; Yang, S.; Xiao, N.; et al. Soil potentials to resist continuous cropping obstacle: Three field cases. Environ. Res. 2021, 200, 111319. [Google Scholar] [CrossRef]
- Zeeshan Ul Haq, M.; Yu, J.; Yao, G.; Yang, H.; Iqbal, H.A.; Tahir, H.; Cui, H.; Liu, Y.; Wu, Y. A Systematic Review on the Continuous Cropping Obstacles and Control Strategies in Medicinal Plants. Int. J. Mol. Sci. 2023, 24, 12470. [Google Scholar] [CrossRef] [PubMed]
- Pervaiz, Z.H.; Iqbal, J.; Zhang, Q.; Chen, D.; Wei, H.; Saleem, M. Continuous Cropping Alters Multiple Biotic and Abiotic Indicators of Soil Health. Soil Syst. 2020, 4, 59. [Google Scholar] [CrossRef]
- Wang, G.; Ren, Y.; Bai, X.; Su, Y.; Han, J. Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. Plants 2022, 11, 3200. [Google Scholar] [CrossRef]
- Bao, L.; Liu, Y.; Ding, Y.; Shang, J.; Wei, Y.; Tan, Y.; Zi, F. Interactions Between Phenolic Acids and Microorganisms in Rhizospheric Soil From Continuous Cropping of Panax notoginseng. Front. Microbiol. 2022, 13, 791603. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Zheng, J.; Liu, J.; Liu, S.; Lin, W.; Wu, C. Soil microbial community structure and catabolic activity are significantly degenerated in successive rotations of Chinese fir plantations. Sci. Rep. 2017, 7, 6691. [Google Scholar] [CrossRef]
- Chen, Q.; Song, Y.; An, Y.; Lu, Y.; Zhong, G. Soil Microorganisms: Their Role in Enhancing Crop Nutrition and Health. Diversity 2024, 16, 734. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D.; Yan, X.; Jia, L.; Chen, N.; Liu, J.; Zhao, P.; Zhou, L.; Cao, Q. Effect of nitrogen, phosphorus and potassium fertilization management on soil properties and leaf traits and yield of Sapindus mukorossi. Front. Plant Sci. 2024, 15, 1300683. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, C.; Palumbo, G.; Vitullo, D.; Di Santo, P.; Fuggi, A. Regulation of mycorrhiza development in durum wheat by P fertilization: Effect on plant nitrogen metabolism. J. Plant Nutr. Soil Sci. 2018, 181, 429–440. [Google Scholar] [CrossRef]
- Di Martino, C.; Fioretto, A.; Palmieri, D.; Torino, V.; Palumbo, G. Influence of Tomato Plant Mycorrhization on Nitrogen Metabolism, Growth and Fructification on P-Limited Soil. J. Plant Growth Regul. 2019, 38, 1183–1195. [Google Scholar] [CrossRef]
- Suman, J.; Rakshit, A.; Ogireddy, S.D.; Singh, S.; Gupta, C.; Chandrakala, J. Microbiome as a Key Player in Sustainable Agriculture and Human Health. Front. Soil Sci. 2022, 2, 821589. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y. The Function of Root Exudates in the Root Colonization by Beneficial Soil Rhizobacteria. Biology 2024, 13, 95. [Google Scholar] [CrossRef]
- Canarini, A.; Kaiser, C.; Merchant, A.; Richter, A.; Wanek, W. Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Front. Plant Sci. 2019, 10, 157. [Google Scholar] [CrossRef]
- Hiremath, S.S.; Prasanna, N.L.; Nigam, R.; Kumar, S.; Elangovan, M. A Review on Role of Root Exudates in Shaping Plant-Microbe-Pathogen Interactions. J. Adv. Microbiol. 2024, 24, 1–17. [Google Scholar] [CrossRef]
- Mathieu, L.; Ballini, E.; Morel, J.-B.; Méteignier, L.-V. The root of plant-plant interactions: Belowground special cocktails. Curr. Opin. Plant Biol. 2024, 80, 102547. [Google Scholar] [CrossRef]
- Wang, F.; Zhan, P.; Zhang, X.; Xia, P.; Liang, Z. Unraveling rotational remedies: Deciphering the autotoxicity of Panax notoginseng saponins. Ind. Crops Prod. 2023, 206, 117601. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, D.; Kan, Y.; Zhao, L.; Jiang, C.; Pang, W.; Hu, J.; Zhou, M. Response of Soil Microorganisms and Phenolic to Pseudostelariae heterophylla Cultivation in Different Soil Types. Eurasian Soil Sci. 2024, 57, 446–459. [Google Scholar] [CrossRef]
- Zhang, B.; Weston, L.A.; Li, M.; Zhu, X.; Weston, P.A.; Feng, F.; Zhang, B.; Zhang, L.; Gu, L.; Zhang, Z. Rehmannia glutinosa Replant Issues: Root Exudate-Rhizobiome Interactions Clearly Influence Replant Success. Front. Microbiol. 2020, 11, 1413. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qin, X.; Tian, X.; Yang, T.; Deng, R.; Huang, J. Effects of continuous cropping of Pinellia ternata (Thunb.) Breit. on soil physicochemical properties, enzyme activities, microbial communities and functional genes. Chem. Biol. Technol. Agric. 2021, 8, 43. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Lin, W.-X. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Chin. J. Eco-Agric. 2009, 17, 189–196. [Google Scholar] [CrossRef]
- Liu-Xu, L.; González-Hernández, A.I.; Camañes, G.; Vicedo, B.; Scalschi, L.; Llorens, E. Harnessing Green Helpers: Nitrogen-Fixing Bacteria and Other Beneficial Microorganisms in Plant–Microbe Interactions for Sustainable Agriculture. Horticulturae 2024, 10, 621. [Google Scholar] [CrossRef]
- Yu, H.-Y.; He, W.-X.; Zou, Y.-N.; Alqahtani, M.D.; Wu, Q.-S. Arbuscular mycorrhizal fungi and rhizobia accelerate plant growth and N accumulation and contribution to soil total N in white clover by difficultly extractable glomalin-related soil protein. Appl. Soil Ecol. 2024, 197, 105348. [Google Scholar] [CrossRef]
- Solomon, W.; Janda, T.; Molnár, Z. Unveiling the significance of rhizosphere: Implications for plant growth, stress response, and sustainable agriculture. Plant Physiol. Biochem. 2024, 206, 108290. [Google Scholar] [CrossRef] [PubMed]
- Koza, N.; Adedayo, A.; Babalola, O.; Kappo, A. Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms 2022, 10, 1528. [Google Scholar] [CrossRef] [PubMed]
- Hang, Y.; Hu, T.; Tian, Y.; Zhang, Y.; Shangguan, L.; Liu, M.; Zhang, M. Physiological and transcriptomic responses of Pinellia ternata to continuous cropping. Ind. Crops Prod. 2023, 205, 117511. [Google Scholar] [CrossRef]
- Li, Z.; Alami, M.M.; Tang, H.; Zhao, J.; Nie, Z.; Hu, J.; Shu, S.; Zhu, D.; Yang, T. Applications of Streptomyces jingyangensis T. and Bacillus mucilaginosus A. improve soil health and mitigate the continuous cropping obstacles for Pinellia ternata (Thunb.) Breit. Ind. Crops Prod. 2022, 180, 114691. [Google Scholar] [CrossRef]
- dos Reis, G.A.; Martínez-Burgos, W.J.; Pozzan, R.; Pastrana Puche, Y.; Ocán-Torres, D.; de Queiroz Fonseca Mota, P.; Rodrigues, C.; Lima Serra, J.; Scapini, T.; Karp, S.G.; et al. Comprehensive Review of Microbial Inoculants: Agricultural Applications, Technology Trends in Patents, and Regulatory Frameworks. Sustainability 2024, 16, 8720. [Google Scholar] [CrossRef]
- Singh, D.P.; Singh, H.B.; Prabha, R. (Eds.) Microbial Inoculants in Sustainable Agricultural Productivity; Springer India: New Delhi, India, 2016; ISBN 978-81-322-2645-1. [Google Scholar]
- Miteu, G.D.; Emmanuel, A.A.; Addeh, I.; Ojeokun, O.; Olayinka, T.; Godwin, J.S.; Folayan, E.O.; Benneth, E.O. The Application of Microbial Inoculants as a Green Tool towards Achieving Sustainable Agriculture. IPS J. Nutr. Food Sci. 2023, 2, 52–61. [Google Scholar] [CrossRef]
- Kumari, H.K.; Vijaysri, D.; Chethan, T.; Swati; Mamtha, V. Impact of Microbial Inoculants on the Secondary Metabolites Production of Medicinal Plants. In Microbes Based Approaches for the Management of Hazardous Contaminants; Wiley: Hoboken, NJ, USA, 2024; pp. 367–377. [Google Scholar]
- Schmidt, R.; Köberl, M.; Mostafa, A.; Ramadan, E.M.; Monschein, M.; Jensen, K.B.; Bauer, R.; Berg, G. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front. Microbiol. 2014, 5, 64. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Ma, Y. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. Sci. Total Environ. 2024, 907, 167774. [Google Scholar] [CrossRef]
- Ali, S.; Akhtar, M.S.; Siraj, M.; Zaman, W. Molecular Communication of Microbial Plant Biostimulants in the Rhizosphere Under Abiotic Stress Conditions. Int. J. Mol. Sci. 2024, 25, 12424. [Google Scholar] [CrossRef]
- Desika, J.; Yogendra, K.; Hepziba, S.J.; Patne, N.; Vivek, B.S.; Ravikesavan, R.; Nair, S.K.; Jaba, J.; Razak, T.A.; Srinivasan, S.; et al. Exploring Metabolomics to Innovate Management Approaches for Fall Armyworm (Spodoptera frugiperda [J.E. Smith]) Infestation in Maize (Zea mays L.). Plants 2024, 13, 2451. [Google Scholar] [CrossRef]
- Wu, M.; Northen, T.R.; Ding, Y. Stressing the importance of plant specialized metabolites: Omics-based approaches for discovering specialized metabolism in plant stress responses. Front. Plant Sci. 2023, 14, 1272363. [Google Scholar] [CrossRef] [PubMed]
- Pahlavan Yali, M.; Bozorg-Amirkalaee, M. The effects of microbial inoculants on secondary metabolite production. In Sustainable Horticulture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 55–76. [Google Scholar]
- Sadashivaiah; Sunil, L.; Chandrakanth, R. Gene Expression in Medicinal Plants in Stress Conditions. In Stress-responsive Factors and Molecular Farming in Medicinal Plants; Springer Nature Singapore: Singapore, 2023; pp. 89–105. [Google Scholar]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.-M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, A.M.; Parra Cota, F.I.; Cira Chávez, L.A.; García Ortega, L.F.; Estrada Alvarado, M.I.; Santoyo, G.; de los Santos-Villalobos, S. Microbial Inoculants in Sustainable Agriculture: Advancements, Challenges, and Future Directions. Plants 2025, 14, 191. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Alami, M.M.; Gong, S.; Cheng, Q.; Chen, C.; Li, X.; Zhong, S.; He, Z.; Chen, D.; Feng, S.; et al. Utilizing Microbial Inoculants to Alleviate Continuous Cropping Obstacles: Insights into the Metabolites and Transcriptomic Responses of Pinellia ternata. Metabolites 2025, 15, 189. https://doi.org/10.3390/metabo15030189
Wang X, Alami MM, Gong S, Cheng Q, Chen C, Li X, Zhong S, He Z, Chen D, Feng S, et al. Utilizing Microbial Inoculants to Alleviate Continuous Cropping Obstacles: Insights into the Metabolites and Transcriptomic Responses of Pinellia ternata. Metabolites. 2025; 15(3):189. https://doi.org/10.3390/metabo15030189
Chicago/Turabian StyleWang, Xinyu, Mohammad Murtaza Alami, Shuqi Gong, Qinglin Cheng, Chaoqun Chen, Xinghui Li, Shumei Zhong, Zhigang He, Dilin Chen, Shengqiu Feng, and et al. 2025. "Utilizing Microbial Inoculants to Alleviate Continuous Cropping Obstacles: Insights into the Metabolites and Transcriptomic Responses of Pinellia ternata" Metabolites 15, no. 3: 189. https://doi.org/10.3390/metabo15030189
APA StyleWang, X., Alami, M. M., Gong, S., Cheng, Q., Chen, C., Li, X., Zhong, S., He, Z., Chen, D., Feng, S., Chen, S., & Shu, S. (2025). Utilizing Microbial Inoculants to Alleviate Continuous Cropping Obstacles: Insights into the Metabolites and Transcriptomic Responses of Pinellia ternata. Metabolites, 15(3), 189. https://doi.org/10.3390/metabo15030189