The Role of Inflammatory Markers in Linking Metabolic Syndrome to Cognitive Decline in Middle-Aged Women: A Focus on TNF-α and IL-6
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Anthropometry
2.3. Clinical and Biochemical Measurements
2.4. Assessment of PA Level
2.5. Cognitive State Assessment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Samson, S.L.; Garber, A.J. Metabolic Syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic Syndrome: Definitions and Controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, K.; Kanaya, A.; Lindquist, K.; Simonsick, E.M.; Harris, T.; Shorr, R.I.; Tylavsky, F.A.; Newman, A.B. The Metabolic Syndrome, Inflammation, and Risk of Cognitive Decline. JAMA 2004, 292, 2237–2242. [Google Scholar] [CrossRef]
- Mohammadi, M.; Gozashti, M.H.; Aghadavood, M.; Mehdizadeh, M.R.; Hayatbakhsh, M.M. Clinical Significance of Serum IL-6 and TNF-α Levels in Patients with Metabolic Syndrome. Rep. Biochem. Mol. Biol. 2017, 6, 74–79. [Google Scholar]
- He, Q.; Dong, M.; Pan, Q.; Wang, X.; Guo, L. Correlation between Changes in Inflammatory Cytokines and the Combination with Hypertension in Patients with Type 2 Diabetes Mellitus. Minerva Endocrinol. 2019, 44, 252–258. [Google Scholar] [CrossRef]
- Yang, J.; Ran, M.; Li, H.; Lin, Y.; Ma, K.; Yang, Y.; Fu, X.; Yang, S. New Insight into Neurological Degeneration: Inflammatory Cytokines and Blood–Brain Barrier. Front. Mol. Neurosci. 2022, 15, 1013933. [Google Scholar] [CrossRef]
- Ogunmokun, G.; Dewanjee, S.; Chakraborty, P.; Valupadas, C.; Chaudhary, A.; Kolli, V.; Anand, U.; Vallamkondu, J.; Goel, P.; Paluru, H.P.R.; et al. The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer’s Disease. Cells 2021, 10, 2790. [Google Scholar] [CrossRef]
- Rasgon, N.L.; Kenna, H.A.; Wroolie, T.E.; Kelley, R.; Silverman, D.; Brooks, J.; Williams, K.E.; Powers, B.N.; Hallmayer, J.; Reiss, A. Insulin Resistance and Hippocampal Volume in Women at Risk for Alzheimer’s Disease. Neurobiol. Aging 2011, 32, 1942–1948. [Google Scholar] [CrossRef]
- Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of Dementia in Diabetes Mellitus: A Systematic Review. Lancet Neurol. 2006, 5, 64–74. [Google Scholar] [CrossRef]
- Brinton, R.D. The Healthy Cell Bias of Estrogen Action: Mitochondrial Bioenergetics and Neurological Implications. Trends Neurosci. 2008, 31, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Skoczek-Rubińska, A.; Chmurzynska, A.; Muzsik-Kazimierska, A.; Bajerska, J. The Association Between Fat Taste Sensitivity, Eating Habits, and Metabolic Health in Menopausal Women. Nutrients 2021, 13, 4506. [Google Scholar] [CrossRef]
- Laitinen, M.H.; Ngandu, T.; Rovio, S.; Helkala, E.-L.; Uusitalo, U.; Viitanen, M.; Nissinen, A.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Fat Intake at Midlife and Risk of Dementia and Alzheimer’s Disease: A Population-Based Study. Dement. Geriatr. Cogn. Disord. 2006, 22, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; O’Reilly, É.J.; Kay, C.; Sampson, L.; Franz, M.; Forman, J.P.; Curhan, G.; Rimm, E.B. Habitual Intake of Flavonoid Subclasses and Incident Hypertension in Adults. Am. J. Clin. Nutr. 2011, 93, 338–347. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 Year Multidomain Intervention of Diet, Exercise, Cognitive Training, and Vascular Risk Monitoring versus Control to Prevent Cognitive Decline in at-Risk Elderly People (FINGER): A Randomised Controlled Trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef] [PubMed]
- Middleton, L.E.; Barnes, D.E.; Lui, L.-Y.; Yaffe, K. Physical Activity over the Life Course and Its Association with Cognitive Performance and Impairment in Old Age. J. Am. Geriatr. Soc. 2010, 58, 1322–1326. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Saltin, B. Exercise as Medicine—Evidence for Prescribing Exercise as Therapy in 26 Different Chronic Diseases. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 3), 1–72. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise Training Increases Size of Hippocampus and Improves Memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef]
- Barnes, D.E.; Yaffe, K. The Projected Effect of Risk Factor Reduction on Alzheimer’s Disease Prevalence. Lancet Neurol. 2011, 10, 819–828. [Google Scholar] [CrossRef]
- Ma, Y.-L.; Jin, C.-H.; Zhao, C.-C.; Ke, J.-F.; Wang, J.-W.; Wang, Y.-J.; Lu, J.-X.; Huang, G.-Z.; Li, L.-X. Waist-to-Height Ratio Is a Simple and Practical Alternative to Waist Circumference to Diagnose Metabolic Syndrome in Type 2 Diabetes. Front. Nutr. 2022, 9, 986090. [Google Scholar] [CrossRef]
- Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. Available online: https://www.who.int/publications/i/item/9789241501491 (accessed on 20 December 2024).
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef] [PubMed]
- HOMA Calculator. Available online: https://www.rdm.ox.ac.uk/about/our-clinical-facilities-and-units/DTU/software/homa (accessed on 20 December 2024).
- Assessment of Preferred Methods to Measure Insulin Resistance in Asian Patients with Hypertension—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/33415834/ (accessed on 18 June 2024).
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Mackin, R.S.; Ayalon, L.; Feliciano, L.; Areán, P.A. The Sensitivity and Specificity of Cognitive Screening Instruments to Detect Cognitive Impairment in Older Adults With Severe Psychiatric Illness. J. Geriatr. Psychiatry Neurol. 2010, 23, 94–99. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, Y.; Huang, J.; Yang, Y.; Yang, Q.; Hu, H. Efficacy of Inulin Supplementation in Improving Insulin Control, HbA1c and HOMA-IR in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Biochem. Nutr. 2020, 66, 176–183. [Google Scholar] [CrossRef]
- Kern, P.A.; Ranganathan, S.; Li, C.; Wood, L.; Ranganathan, G. Adipose Tissue Tumor Necrosis Factor and Interleukin-6 Expression in Human Obesity and Insulin Resistance. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E745–E751. [Google Scholar] [CrossRef] [PubMed]
- Uysal, K.T.; Wiesbrock, S.M.; Hotamisligil, G.S. Functional Analysis of Tumor Necrosis Factor (TNF) Receptors in TNF-Alpha-Mediated Insulin Resistance in Genetic Obesity. Endocrinology 1998, 139, 4832–4838. [Google Scholar] [CrossRef] [PubMed]
- Bastard, J.-P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent Advances in the Relationship between Obesity, Inflammation, and Insulin Resistance. Eur. Cytokine Netw. 2006, 17, 4–12. [Google Scholar]
- Palermo, B.J.; Wilkinson, K.S.; Plante, T.B.; Nicoli, C.D.; Judd, S.E.; Kamin Mukaz, D.; Long, D.L.; Olson, N.C.; Cushman, M. Interleukin-6, Diabetes, and Metabolic Syndrome in a Biracial Cohort: The Reasons for Geographic and Racial Differences in Stroke Cohort. Diabetes Care 2024, 47, 491–500. [Google Scholar] [CrossRef]
- Liu, C.; Feng, X.; Li, Q.; Wang, Y.; Li, Q.; Hua, M. Adiponectin, TNF-α and Inflammatory Cytokines and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Cytokine 2016, 86, 100–109. [Google Scholar] [CrossRef]
- Kim, A.B.; Arvanitakis, Z. Insulin Resistance, Cognition, and Alzheimer Disease. Obes. Silver Spring Md 2023, 31, 1486–1498. [Google Scholar] [CrossRef]
- Maggi, S.; Limongi, F.; Noale, M.; Romanato, G.; Tonin, P.; Rozzini, R.; Scafato, E.; Crepaldi, G.; ILSA Study Group. Diabetes as a Risk Factor for Cognitive Decline in Older Patients. Dement. Geriatr. Cogn. Disord. 2009, 27, 24–33. [Google Scholar] [CrossRef]
- Kullmann, S.; Heni, M.; Hallschmid, M.; Fritsche, A.; Preissl, H.; Häring, H.-U. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol. Rev. 2016, 96, 1169–1209. [Google Scholar] [CrossRef]
- Abbasi, F.; Robakis, T.K.; Myoraku, A.; Watson, K.T.; Wroolie, T.; Rasgon, N.L. Insulin Resistance and Accelerated Cognitive Aging. Psychoneuroendocrinology 2023, 147, 105944. [Google Scholar] [CrossRef] [PubMed]
- Rutter, M.K.; Meigs, J.B.; Sullivan, L.M.; D’Agostino, R.B., Sr.; Wilson, P.W. Insulin Resistance, the Metabolic Syndrome, and Incident Cardiovascular Events in the Framingham Offspring Study. Diabetes 2005, 54, 3252–3257. [Google Scholar] [CrossRef] [PubMed]
- Oprescu, A.C.; Grosu, C.; Bild, W. Correlations between Cognitive Evaluation and Metabolic Syndrome. Metabolites 2023, 13, 570. [Google Scholar] [CrossRef]
- Karoly, H.C.; Skrzynski, C.J.; Moe, E.; Bryan, A.D.; Hutchison, K.E. Investigating Associations Between Inflammatory Biomarkers, Gray Matter, Neurofilament Light and Cognitive Performance in Healthy Older Adults. Front. Aging Neurosci. 2021, 13, 719553. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, C.A.; Ferreira, C.N.; Loures, C.M.G.; Fraga, V.G.; Chaves, A.C.; Oliveira, A.C.R.; de Souza, L.C.; Resende, E.d.P.F.; Carmona, K.C.; Guimarães, H.C.; et al. Leptin, hsCRP, TNF-α and IL-6 Levels from Normal Aging to Dementia: Relationship with Cognitive and Functional Status. J. Clin. Neurosci. 2018, 56, 150–155. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Mechanisms of TNF-α-Induced Insulin Resistance. Exp. Clin. Endocrinol. Diabetes 1999, 107, 119–125. [Google Scholar] [CrossRef]
- He, M.M.; Smith, A.S.; Oslob, J.D.; Flanagan, W.M.; Braisted, A.C.; Whitty, A.; Cancilla, M.T.; Wang, J.; Lugovskoy, A.A.; Yoburn, J.C.; et al. Small-Molecule Inhibition of TNF-Alpha. Science 2005, 310, 1022–1025. [Google Scholar] [CrossRef]
- McMillan, D.; Martinez-Fleites, C.; Porter, J.; Fox, D.; Davis, R.; Mori, P.; Ceska, T.; Carrington, B.; Lawson, A.; Bourne, T.; et al. Structural Insights into the Disruption of TNF-TNFR1 Signalling by Small Molecules Stabilising a Distorted TNF. Nat. Commun. 2021, 12, 582. [Google Scholar] [CrossRef]
- Leung, C.-H.; Zhong, H.-J.; Yang, H.; Cheng, Z.; Chan, D.S.-H.; Ma, V.P.-Y.; Abagyan, R.; Wong, C.-Y.; Ma, D.-L. A Metal-Based Inhibitor of Tumor Necrosis Factor-α. Angew. Chem. Int. Ed. 2012, 51, 9010–9014. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Zapata-Bustos, R.; Gómez-Espinoza, G.; Salazar-Olivo, L.A. Isoorientin Reverts TNF-α-Induced Insulin Resistance in Adipocytes Activating the Insulin Signaling Pathway. Endocrinology 2012, 153, 5222–5230. [Google Scholar] [CrossRef] [PubMed]
- Akash, M.S.H.; Rehman, K.; Liaqat, A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J. Cell. Biochem. 2018, 119, 105–110. [Google Scholar] [CrossRef]
- Popa, C.; Netea, M.G.; Van Riel, P.L.M.; Van Der Meer, J.W.; Stalenhoef, A.F. The Role of TNF-α in Chronic Inflammatory Conditions, Intermediary Metabolism, and Cardiovascular Risk. J. Lipid Res. 2007, 48, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Inflammation, Not Cholesterol, Is a Cause of Chronic Disease. Nutrients 2018, 10, 604. [Google Scholar] [CrossRef]
- Sethi, J.K.; Hotamisligil, G.S. Metabolic Messengers: Tumour Necrosis Factor. Nat. Metab. 2021, 3, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, X.; Ibrahim, M.; Peltzer, N. Cell Death and Inflammation during Obesity: “Know My Methods, WAT(Son)”. Cell Death Differ. 2023, 30, 279–292. [Google Scholar] [CrossRef]
- Kern, L.; Mittenbühler, M.J.; Vesting, A.J.; Ostermann, A.L.; Wunderlich, C.M.; Wunderlich, F.T. Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation—Driven Liver and Colorectal Cancers. Cancers 2018, 11, 24. [Google Scholar] [CrossRef]
- Patsalos, O.; Dalton, B.; Leppanen, J.; Ibrahim, M.; Himmerich, H. Impact of TNF-α Inhibitors on Body Weight and BMI: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2020, 11, 481. [Google Scholar] [CrossRef]
- Virdis, A.; Colucci, R.; Bernardini, N.; Blandizzi, C.; Taddei, S.; Masi, S. Microvascular Endothelial Dysfunction in Human Obesity: Role of TNF-α. J. Clin. Endocrinol. Metab. 2019, 104, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, W.R.C.; França, A.K.T.d.C.; Alcione, A.M.D.S.; Padilha, L.L.; Bogea, E.G. Waist-to-Height Ratio Cut-off Points to Predict Obesity in Adolescents and Associa-Tion with Inflammatory Markers. Nutr. Hosp. 2022, 39, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- July, M.; Faiz, S.; Yaqub, A.; Santhanam, P.; Douglas, J.; Stanek, R.; Gress, T.; Olajide, O.; Driscoll, H.; Santanam, N. Role of Adipokines and Inflammatory Markers in Postmenopausal Hypertension. Minerva Endocrinol. 2018, 43, 101–108. [Google Scholar] [CrossRef]
- Yan, J.; Yang, S.; Han, L.; Ba, X.; Shen, P.; Lin, W.; Li, T.; Zhang, R.; Huang, Y.; Huang, Y.; et al. Dyslipidemia in Rheumatoid Arthritis: The Possible Mechanisms. Front. Immunol. 2023, 14, 1254753. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Q.; Zhang, X.; Song, Y.; Zheng, J.; An, Y.; Lu, Y. Correlation between Inflammatory Biomarkers, Cognitive Function and Glycemic and Lipid Profiles in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Clin. Biochem. 2023, 121–122, 110683. [Google Scholar] [CrossRef]
- Toader, M.P.; Taranu, T.; Constantin, M.M.; Olinici, D.; Mocanu, M.; Costan, V.V.; Toader, S. High Serum Level of Interleukin-6 Is Linked with Dyslipidemia in Oral Lichen Planus. Exp. Ther. Med. 2021, 22, 987. [Google Scholar] [CrossRef]
- Nisar, M.; Iqbal, M.-U.-N. Influence of Hs-CRP, IL-6 and TNF-α and It’s Role in Dyslipidemia and Type 2 Diabetes in Population of Karachi, Pakistan. Pak. J. Pharm. Sci. 2021, 34, 1217–1225. [Google Scholar] [PubMed]
- Rehman, K.; Akash, M.S.H.; Liaqat, A.; Kamal, S.; Qadir, M.I.; Rasul, A. Role of Interleukin-6 in Development of Insulin Resistance and Type 2 Diabetes Mellitus. Crit. Rev. Eukaryot. Gene Expr. 2017, 27, 229–236. [Google Scholar] [CrossRef]
- Lehrskov, L.L.; Christensen, R.H. The Role of Interleukin-6 in Glucose Homeostasis and Lipid Metabolism. Semin. Immunopathol. 2019, 41, 491–499. [Google Scholar] [CrossRef]
- Plantone, D.; Pardini, M.; Righi, D.; Manco, C.; Colombo, B.M.; De Stefano, N. The Role of TNF-α in Alzheimer’s Disease: A Narrative Review. Cells 2023, 13, 54. [Google Scholar] [CrossRef]
- Bruunsgaard, H.; Andersen-Ranberg, K.; Jeune, B.; Pedersen, A.N.; Skinhøj, P.; Pedersen, B.K. A High Plasma Concentration of TNF-α Is Associated With Dementia in Centenarians. J. Gerontol. Ser. A 1999, 54, M357–M364. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.A.; Kareem, O.; Khushtar, M.; Akbar, M.; Haque, M.R.; Iqubal, A.; Haider, M.F.; Pottoo, F.H.; Abdulla, F.S.; Al-Haidar, M.B.; et al. Neuroinflammation: A Potential Risk for Dementia. Int. J. Mol. Sci. 2022, 23, 616. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, A.; Htike, T.T.; James, R.; Picon, C.; Reynolds, R. TNF-Mediated Neuroinflammation Is Linked to Neuronal Necroptosis in Alzheimer’s Disease Hippocampus. Acta Neuropathol. Commun. 2021, 9, 159. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Badoni, H.; Abu-Izneid, T.; Olatunde, A.; Rahman, M.M.; Painuli, S.; Semwal, P.; Wilairatana, P.; Mubarak, M.S. Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules 2022, 27, 3194. [Google Scholar] [CrossRef]
Variables | No Insulin Resistance (n = 96) | Insulin Resistance (n = 83) | p | ||||
---|---|---|---|---|---|---|---|
Mean | SD | SEM | Mean | SD | SEM | ||
MMSE adj | 24.913 | 2.927 | 0.321 | 23.977 | 3.044 | 0.311 | 0.032 |
Education [y] | 15.302 | 2.318 | 0.237 | 14.096 | 2.681 | 0.294 | 0.006 |
Age [y] | 55.615 | 6.330 | 0.646 | 58.663 | 6.872 | 0.754 | 0.003 |
Weight [kg] | 70.122 | 13.810 | 1.409 | 77.683 | 13.478 | 1.479 | 0.000 |
BMI [kg/m2] | 26.249 | 5.096 | 0.520 | 29.673 | 5.513 | 0.605 | 0.000 |
FAT [%] | 37.110 | 7.034 | 0.718 | 40.110 | 6.292 | 0.691 | 0.005 |
FFM [kg] | 43.525 | 5.563 | 0.568 | 45.782 | 4.738 | 0.520 | 0.001 |
Trunk fat [kg] | 12.633 | 6.299 | 0.643 | 15.869 | 6.535 | 0.717 | 0.000 |
WC [cm] | 94.554 | 12.469 | 1.273 | 100.789 | 12.576 | 1.380 | 0.001 |
WHR | 0.910 | 0.074 | 0.008 | 0.925 | 0.073 | 0.008 | 0.232 |
WHtR | 0.579 | 0.079 | 0.008 | 0.623 | 0.085 | 0.009 | 0.000 |
SBP [mmHg] | 127.365 | 15.209 | 1.552 | 135.831 | 19.017 | 2.087 | 0.005 |
DBP [mmHg] | 82.542 | 8.739 | 0.892 | 85.590 | 14.039 | 1.541 | 0.293 |
GLU [mg/dL] | 88.899 | 11.114 | 1.134 | 104.659 | 21.054 | 2.311 | 0.000 |
TG [mg/dL] | 129.425 | 84.350 | 8.609 | 196.847 | 113.118 | 12.416 | 0.000 |
TChol [mg/dL] | 215.664 | 43.862 | 4.477 | 207.836 | 46.141 | 5.065 | 0.279 |
INS [ulU/mL] | 8.271 | 1.195 | 0.122 | 18.756 | 9.723 | 1.067 | 0.000 |
% B | 106.566 | 25.389 | 2.591 | 138.860 | 84.351 | 9.259 | 0.000 |
% S | 95.948 | 15.269 | 1.558 | 47.575 | 15.556 | 1.707 | 0.000 |
TNF-α [pg/mL] | 4.422 | 2.343 | 0.240 | 4.770 | 5.974 | 0.656 | 0.513 |
IL-6 [pg/mL] | 6.145 | 8.417 | 0.864 | 23.536 | 110.904 | 12.247 | 0.000 |
Presence of MetS [n (%)] | 44 (46) | 46 (67) | 0.004 | ||||
BMI < 25 kg/m2 [n (%)] | 47 (26) | 19 (11) | 0.000 | ||||
25 kg/m2 ≤ BMI > 30 kg/m2 [n (%)] | 33 (18) | 28 (16) | |||||
BMI ≥ 30 kg/m2 [n (%)] | 16 (9) | 36 (20) | |||||
PA < 600 MET/min/wk [n (%)] | 12 (7) | 16 (9) | 0.429 | ||||
PA 600–1500 MET/min/wk [n (%)] | 44 (25) | 33 (18) | |||||
PA > 1500 MET/min/wk [n (%)] | 40 (22) | 34 (19) |
Variables | TNF-α | |
---|---|---|
R | p | |
MMSE adj | −0.400 | 0.000 |
GLU [mg/dL] | −0.268 | 0.000 |
TG [mg/dL] | −0.114 | 0.130 |
Tchol mg/dL | 0.217 | 0.004 |
INS [ulU/mL] | −0.068 | 0.367 |
Homa IR | −0.098 | 0.192 |
Homa2 IR | −0.092 | 0.222 |
BMI | 0.062 | 0.414 |
FAT% | 0.278 | 0.000 |
FFM [kg] | −0.133 | 0.076 |
WC [cm] | 0.200 | 0.008 |
SBP [mmHg] | −0.013 | 0.860 |
DBP [mmHg] | 0.134 | 0.074 |
Variables | Model 1 * | Model 2 ** | ||||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |||
TNF-α | ||||||||
MetS | 0.987 | 0.922 | 1.056 | 0.699 | 0.975 | 0.897 | 1.060 | 0.555 |
General obesity | 0.985 | 0.912 | 1.065 | 0.708 | 0.959 | 0.730 | 1.261 | 0.766 |
Abdominal obesity (WHtR) | 1.239 | 0.998 | 1.539 | 0.052 | 1.429 | 1.005 | 2.031 | 0.047 |
Hypertension (SBP) | 0.965 | 0.893 | 1.044 | 0.373 | 0.969 | 0.898 | 1.046 | 0.419 |
Hypertenion (DBP) | 0.998 | 0.933 | 1.068 | 0.959 | 0.994 | 0.925 | 1.068 | 0.867 |
Hyperglicemia | 0.946 | 0.853 | 1.049 | 0.290 | 0.964 | 0.877 | 1.060 | 0.450 |
Hypertrigycerydemia | 0.899 | 0.803 | 1.007 | 0.066 | 0.894 | 0.787 | 1.014 | 0.082 |
Insulin resistance (HOMA IR) | 1.017 | 0.949 | 1.091 | 0.627 | 1.022 | 0.950 | 1.100 | 0.554 |
Insulin resistance (HOMA2 IR) | 1.018 | 0.950 | 1.092 | 0.605 | 1.023 | 0.951 | 1.100 | 0.543 |
IL-6 | ||||||||
MetS | 0.995 | 0.980 | 1.011 | 0.564 | 0.964 | 0.920 | 1.010 | 0.127 |
General obesity | 0.999 | 0.993 | 1.004 | 0.688 | 1.001 | 0.990 | 1.013 | 0.845 |
Abdominal obesity (WHtR) | 1.031 | 0.964 | 1.102 | 0.374 | 1.001 | 0.985 | 1.017 | 0.922 |
Hypertension (SBP) | 0.997 | 0.989 | 1.005 | 0.488 | 0.979 | 0.941 | 1.019 | 0.307 |
Hypertenion (DBP) | 0.991 | 0.960 | 1.023 | 0.581 | 0.972 | 0.934 | 1.013 | 0.176 |
Hyperglicemia | 1.000 | 0.995 | 1.004 | 0.850 | 0.998 | 0.992 | 1.004 | 0.591 |
Hypertrigycerydemia | 1.095 | 1.053 | 1.139 | 0.000 | 1.096 | 1.044 | 1.151 | 0.000 |
Insulin resistance (HOMA IR) | 1.066 | 1.028 | 1.105 | 0.001 | 1.058 | 1.011 | 1.107 | 0.014 |
Insulin resistance (HOMA2 IR) | 1.068 | 1.030 | 1.107 | 0.000 | 1.059 | 1.013 | 1.108 | 0.012 |
Model 1 * | Model 2 ** | |||||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |||
Cognitive impatiment n = 118 | ||||||||
TNF-α | 1.382 | 1.195 | 1.598 | 0.000 | 1.362 | 1.153 | 1.610 | 0.000 |
IL6 | 1.000 | 0.996 | 1.004 | 0.931 | 1.002 | 0.997 | 1.008 | 0.370 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mruczyk, K.; Cisek-Woźniak, A.; Molska, M.; Skoczek-Rubińska, A. The Role of Inflammatory Markers in Linking Metabolic Syndrome to Cognitive Decline in Middle-Aged Women: A Focus on TNF-α and IL-6. Metabolites 2025, 15, 186. https://doi.org/10.3390/metabo15030186
Mruczyk K, Cisek-Woźniak A, Molska M, Skoczek-Rubińska A. The Role of Inflammatory Markers in Linking Metabolic Syndrome to Cognitive Decline in Middle-Aged Women: A Focus on TNF-α and IL-6. Metabolites. 2025; 15(3):186. https://doi.org/10.3390/metabo15030186
Chicago/Turabian StyleMruczyk, Kinga, Angelika Cisek-Woźniak, Marta Molska, and Aleksandra Skoczek-Rubińska. 2025. "The Role of Inflammatory Markers in Linking Metabolic Syndrome to Cognitive Decline in Middle-Aged Women: A Focus on TNF-α and IL-6" Metabolites 15, no. 3: 186. https://doi.org/10.3390/metabo15030186
APA StyleMruczyk, K., Cisek-Woźniak, A., Molska, M., & Skoczek-Rubińska, A. (2025). The Role of Inflammatory Markers in Linking Metabolic Syndrome to Cognitive Decline in Middle-Aged Women: A Focus on TNF-α and IL-6. Metabolites, 15(3), 186. https://doi.org/10.3390/metabo15030186